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Questions and Solutions

First Day—Part I: Answer each of the following three questions

1. Let f be a complex valued measurable function on R. Let µ be the
Lebesgue measure and suppose that for each a < b,∣∣∣∣∫ b

a

fdµ

∣∣∣∣ ≤ b− a.

Prove that |f(x)| ≤ 1 for almost every x.

First Solution. Invoke the Lebesgue Differentiation Theorem: If x is in the
Lebesgue set for f (which has complement of measure zero), then

f(x) = lim
h→0

1

2h

∫ x+h

x−h
fdµ.

By assumption, the integral is absolute value at most 2h, hence |f(x)| ≤ 1.

Second Solution. Suppose not. The set E = {x : |f(x)| > 1} is the union
of the countable family of sets

E(θ, ε) = {x : Re
(
eiθf(x)

)
> 1 + ε}

with θ, ε rational and ε > 0. Thus if µ(E) > 0 then there exists θ and an
ε > 0 such that the set F = E(θ, ε) has positive Lebesgue measure. Let U
be any open containing F such that µ(U) ≤ (1 + ε/2)µ(F ) (such sets exits
by the outer regularity of Lebesgue measure). Then U is a countable union
of disjoint intervals (aj, bj). Since the measure µ is countably additive, the
assumption on f gives∣∣∣∣∫

U

f dµ

∣∣∣∣ =

∣∣∣∣∣
∞∑
j=1

∫ bj

aj

fdµ

∣∣∣∣∣ ≤
∞∑
j=1

(bj − aj) = µ(U) ≤ (1 + ε/2)µ(F ) .



On the other hand, since Re(eiθf) ≥ (1 + ε) on F ,∣∣∣∣∫
F

f dµ

∣∣∣∣ =

∣∣∣∣∫
F

eiθf dµ

∣∣∣∣ ≥ ∣∣∣∣∫
F

Re(eiθf) dµ

∣∣∣∣ ≥ (1 + ε)µ(F ) .

Since ∣∣∣∣∫
U

f dµ

∣∣∣∣ ≥ ∣∣∣∣∫
F

f dµ

∣∣∣∣− ∣∣∣∣∫
U∩F c

f dµ

∣∣∣∣ ,
the last two inequalities give

(1 + ε/2)µ(F ) ≥ (1 + ε)µ(F )−
∣∣∣∣∫
U∩F c

f dµ

∣∣∣∣ .
Hence

∣∣∣∣∫
U∩F c

f dµ

∣∣∣∣ ≥ (ε/2)µ(F ) for every such open set U containing F .

Since µ(F ) > 0 this last inequality is a contradiction. Indeed, since f is
integrable, we can choose such a U with

∫
U∩F c |f | dµ < (ε/2)µ(F ).

2. Use contour integration to evaluate∫ ∞
0

1

(1 + x2)2
dx.

Be clear about any computation of residues and about any computations of
limits of integrals.

Solution. Let f(z) =
1

(1 + z2)2
. Then the poles of f are at z = i,−i and

are of order 2. Let R > 1. and consider the counter clockwise closed path γ
consisting of

γ1 = {y = 0, x ∈ [−R,R]} and γ2 = {Re z ≥ 0, |z| = R} .

Then by the Residue Theorem,∫
γ

f(z)dz = 2πiResf (i) = 2πi
d

dz

{
(z − i)2f(z)

}∣∣∣
z=i

= 2πi
{ −2

(z + i)3

}∣∣∣
z=i

=
π

2
.

2
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On the other hand, if R > 2 there is a constant C > 0 such that |f(z)| ≤
C/R4 for z on γ2. Since the length of γ2 is πR, this gives the estimate∫
γ2
|f(z)dz| ≤ πC/R3. Therefore

∫ ∞
0

1

(1 + x2)2
dx =

1

2

∫ ∞
−∞

1

(1 + x2)2
dx = lim

R→∞

1

2

∫ R

−R

1

(1 + x2)2
dx

=
1

2
lim
R→∞

{∫
γ

f(z) dz −
∫
γ2

f(z) dz

}
=
π

4
.

3. Let S9 denote the symmetric group on {1, 2, ..., 9} and let σ ∈ S9 be given
(in table form) by

σ =

[
1 2 3 4 5 6 7 8 9
9 5 8 1 7 2 6 3 4

]
.

As usual C(σ), the centralizer of σ in S9, is defined to be C(σ) = {τ ∈
S9|τσ = στ}. Find |C(σ)| and justify your answer.

First Solution. In cycle form σ = (194)(2576)(38). S9 acts on itself
by conjugation and C(σ) is the stabilizer of σ. The orbit of σ consists of
9!(2!3!1!)/(3!4!2!) = 9!/(24) elements. This is because there are 9!/(3!4!2!)
partitions of {1, . . . , 9} into subsets of cardinalities 3, 4, and 2 and there are
(k − 1)! distinct k-cycles permuting a set of k elements. Hence |C(σ)| =
|S9|/|S9σ| = (9!)/(9!/24) = 24.

Second Solution. In cycle form σ = (194)(2576)(38). S9 acts on itself
by conjugation and C(σ) is the stabilizer of σ. If τ ∈ S9 then τστ−1 =
(τ(1)τ(9)τ(4))(τ(2)τ(5)τ(7)τ(6))(τ(3)τ(8)). Thus if τστ−1 = σ then τ is
determined by the choices of τ(1) (3 possibilities), τ(2) (4 possibilities), and
τ(3) (2 possibilities). This gives a total of 3 · 4 · 2 = 24 elements in C(σ).

First Day—Part II: Answer three of the following questions. If you
work on more than three questions, indicate clearly which three
should be graded.

4. Recall that a set X in a topological space is called a Gδ set when it is a
countable intersection of open sets, and it is called an Fσ set when it is a
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countable union of closed sets. Let µ denote Lebesgue measure on R. Show
that for every Borel set A ⊂ R there is a Gδ set G and an Fσ set F such that
F ⊂ A ⊂ G and µ(G ∩ F c) = 0. Here F c = R \ F .

Solution. Use the inner and outer regularity of µ to get for each k > 0 an
open set Uk and a closed set Ck such that Ck ⊂ A ⊂ Uk and

µ(A ∩ Cc
k) ≤ 1/(2k), µ(Uk ∩ Ac) ≤ 1/(2k) .

Without loss of generality we may assume that Uk+1 ⊂ Uk and Ck ⊂ Ck+1

for all k. Let G =
⋂
k Uk, which is a Gδ set. Let F =

⋃
k Fk, which is an Fσ

set. Then
µ(G ∩ F c) = lim

k→∞
µ(Uk ∩ F c

k ) .

Since
µ(Uk ∩ F c

k ) = µ(Uk ∩ Ac) + µ(A ∩ F c
k ) < 1/k ,

the assertion is proved.

5. Let f be analytic on the unit disc D, and assume that |f(z)| < 1 for all
z ∈ D. Prove that if there exist two distinct points a and b in the disc which
are fixed points, that is, f(a) = a and f(b) = b, then f(z) = z for all z ∈ D.

Solution. Let φa(z) =
a− z
1− āz

for z ∈ D be the Möbius transform. Then φa

is an automorphism of D with inverse φ−a. Consider F (z) = φa ◦ f ◦ φ−a(z).
Then F (0) = 0 and

F

(
a− b
1− āb

)
=

a− b
1− āb

6= 0 . (?)

Furthermore, |F (z)| ≤ 1 for z ∈ D. By the Schwarz lemma, F (z) = wz for
some w ∈ ∂D. Clearly w = 1 by (?). Hence f(z) = z for all z ∈ D.

6. Prove that there exists no simple group of order 80.

Solution. Let G be a group of order 80 = 24 · 5. Let n5 be the number
of 5-Sylow subgroups in G. If n5 = 1 then G has a normal subgroup since
all 5-Sylow subgroups are conjugate. Hence G is not simple in this case. If
n5 > 1 then, by the theorem on the number of Sylow subgroups, the group
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has 16 distinct 5-Sylow subgroups. Since these subgroups are cyclic of prime
order, their pairwise intersections are trivial, so in this case G has at most
80− 16 · 4 = 16 elements whose orders are powers of 2. These elements form
only one Sylow 2-subgroup, and therefore that subgroup is normal. Hence G
is not simple.

7. Let X and Y be topological spaces and f : X → Y and g : X → Y be
continuous functions. Prove that if Y is a Hausdorff space then {x ∈ X :
f(x) = g(x)} is closed.

Solution. let E = {x ∈ X : f(x) = g(x)}. Suppose z 6∈ E; we show that
there is a neighborhood of z disjoint from E. Since f(z) 6= g(z) there are
neighborhoods Nf of f(z) and Ng of g(z) that are disjoint. By continuity of
f and g, f−1(Nf ) and g−1(Ng) are neighborhoods of z. Let N = f−1(Nf ) ∩
g−1(Ng). Then N is a neighborhood of z. Now we claim that N ∩ E = ∅.
Let w ∈ N . Then f(w) ∈ Nf and g(w) ∈ Ng and the disjointness of Nf and
Ng implies f(w) 6= g(w) so w 6∈ E.

8. Let (fn) be a sequence of nonnegative integrable functions on [0, 1] con-
verging almost everywhere to a function f(x). Prove that if

lim
n→∞

∫
[0,1]

fndµ =

∫
[0,1]

f dµ

then
lim
n→∞

fn = f

in L1[0, 1].

First Solution. Since fn ≥ 0, we have 0 ≤ min{fn, f} ≤ f . Since f ∈
L1[0, 1] and min{fn, f} → f pointwise as n → ∞, the Lebesgue Dominated
Convergence Theorem implies that

lim
n→∞

∫
[0,1]

min{fn, f} dµ =

∫
[0,1]

f dµ .

Hence the relation |fn − f | = fn + f − 2 min{fn, f} gives

lim
n→∞

∫
[0,1]

|fn − f | dµ = lim
n→∞

∫
[0,1]

fn dµ−
∫
[0,1]

f dµ = 0 .



6 Rutgers Graduate Program in Mathematics

Second Solution. Set X = [0, 1] and let ε > 0 be given. Since f is integrable
and nonnegative, there exists δ > 0 such that

∫
E
f dµ < ε for any measurable

set E ⊂ X with µ(E) < δ. Since µ(X) < ∞, Egorov’s Theorem implies
that there exists a measurable set E with µ(E) < δ and {fn} converging to
f uniformly on X \ E. Since µ(X \ E) < ∞, the uniform convergence on
X \E and the assumed convergence of the integrals implies that there exits
an integer N such that∫

X\E
|fn − f | dµ < ε and

∣∣∣∣∫
X

(fn − f) dµ

∣∣∣∣ < ε for all n ≥ N . (?)

Assume n ≥ N . Since fn ≥ 0 we can use (?) to estimate

0 ≤
∫
E

fn dµ =

∫
E

(fn − f) dµ+

∫
E

f dµ

=

∫
X

(fn − f) dµ−
∫
X\E

(fn − f) dµ+

∫
E

f dµ

≤ 3ε .

¿From this estimate we obtain∫
E

|fn − f | dµ ≤
∫
E

|fn|+ |f | dµ ≤ 4ε .

Thus ∫
X

|fn − f | dµ ≤
∫
X\E
|fn − f | dµ+

∫
E

|fn − f | dµ ≤ 5ε

for all n ≥ N . Since ε > 0 was arbitrary, this proves the convergence in L1.

9. Let A and B be commuting 8 by 8 diagonalizable matrices over the real
numbers with characteristic polynomials

det(A− λI) = (λ− 1)3(λ− 3)5

and
det(B − λI) = λ2(λ− 4)6 .

Suppose the minimum polynomial of A−B is

(λ2 − 1)(λ2 − 9) .
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Find the dimension of the vector space of all 8 by 8 real matrices that com-
mute with both A and B.

Solution. Let V1, V3 be the eigenspaces with eigenvalues λ = 1 and λ = 3
for A. Then dimV1 = 3 and dimV3 = 5 since A is diagonalizable. Likewise,
let W0,W4 be the eigenspaces with eigenvalues λ = 0 and λ = 4 for B. Then
dimW0 = 2 and dimW4 = 6 since B is diagonalizable. Let Vi,j = Vi ∩Wj for
i = 1, 3 and j = 0, 4. Since B commutes with A,

R8 = V1,0 ⊕ V1,4 ⊕ V3,0 ⊕ V3,4

and A and B act by the scalars i and j, respectively, on Vi,j. We have

dimV1,0 + dimV3,0 = 2 , dimV1,4 + dimV3,4 = 6 , (?)

dimV1,0 + dimV1,4 = 3 , dimV3,0 + dimV3,4 = 5 .

Since A − B has minimum polynomial (λ2 − 1)(λ2 − 9), the eigenvalues of
A−B are ±1 and ±3. Hence V1,0 and V3,4 are nonzero eigenspaces for A−B
with eigenvalues 1, −1, respectively. Likewise, V3,0 and V1,4 are nonzero
eigenspaces for A − B with eigenvalues 3, −3 respectively. It follows from
(?) that dimV1,0 = dimV3,0 = 1, and hence dimV1,4 = 2 and dimV3,4 = 4.
A matrix commutes with both A and B if and only if it maps each joint
eigenspace Vi,j to itself. The action of the matrix on Vi,j can be any linear
transformation. So, the dimension of the space of all 8 by 8 real matrices
that commute with both A and B is 12 + 22 + 12 + 42 = 22.

Day 1 Exam End



RUTGERS UNIVERSITY

GRADUATE PROGRAM IN MATHEMATICS

Written Qualifying Examination

January 2011, Day 2

Second Day—Part I: Answer each of the following three questions

1. Let f(x) be a function on [0, 1] and suppose that f ′(x) is defined for all
0 ≤ x ≤ 1. Prove that f ′(x) is a measurable function.

Solution. Take a differentiable extension of f(x) to the right of x = 1. For
example, set f(1 + a) = f(1) + af ′(1) for a > 0. Set

φn(x) = n
[
f
(
x+

1

n

)
− f(x)

]
.

Each φn(x) is continuous and therefore measurable. Since f ′(x) = limn→∞ φn(x)
it is measurable.

2. Prove that all the roots of z7 − 5z3 + 12 = 0 lie in {z ∈ C : 1 ≤ |z| ≤ 2}.

Solution. Let f(z) = z7− 5z3 + 12, g(z) = z7, and h(z) = 12. On |z| = 1,

|f(z)− h(z)| = |z7 − 5z3| ≤ 6 < 12 = |h(z)| .

Therefore f(z) has no zeros in |z| < 1 by Rouche’s theorem, since h(z) has
no zeros there. On |z| = 2,

|f(z)− g(z)| = |5z3 − 12| ≤ 5 · 23 + 12 = 26 < 27 = |g(z)| .

Therefore f(z) has 7 zeros in |z| ≤ 2 by Rouche’s theorem, since g(z) has 7
zeros there (counting multiplicities). By the first part, the zeros of f(z) all
have modulus greater than 1, and since f(z) has degree 7, these are all of its
zeros.
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3. Are the quotient rings Z[x]/(x3+1) and Z[x]/(x3+2x2+x+1) isomorphic?
Provide full justification for your answer.

Solution. The rings are not isomorphic. In fact, the first ring contains zero
divisors since x3 + 1 = (x+ 1)(x2 − x+ 1) is not irreducible in Z[x]. For the
second ring, note that ±1 is not a root of p(x) = x3 + 2x2 + x + 1. Since
p(x) is monic and the product of its (complex) roots is the constant term 1,
it follows that p(x) has no integer roots. Hence p(x) is irreducible in Z[x],
since any factorization of it would include at least one linear factor (because
p(x) has degree 3). Since Z[x] is a unique factorization domain, it follows
that p(x) is prime. Thus Z[x]/(p(x)) is an integral domain. This proves that
the rings are not isomorphic.

Second Day—Part II: Answer three of the following questions. If
you work on more than three questions, indicate clearly which
three should be graded.

4. Find the Laurent expansion of f(z) = (1−z2)e1/z around z = 0. Compute
the residue at 0.

Solution. The Laurent series for e1/z is given by

e1/z =
∞∑
n=0

1

n!zn
.

Hence

f(z) =
∞∑
n=0

(
1

n!zn
− 1

n!zn−2

)
= −z2 − z +

∞∑
n=0

n2 + 3n+ 1

(n+ 2)!
z−n .

The coefficient of z−1 in the series is (12 + 3 · 1 + 1)/3!. Thus Resf (0) = 5/6.

5. Let f be a complex-valued measurable function on R. Let µ be Lebesgue
measure and suppose that for each g ∈ L2(µ), the function fg ∈ L1(µ). Show
that f ∈ L2(µ).

Solution. For each positive integer N define

FN = {g ∈ L2(µ) :

∫
|fg| dµ ≤ N} .
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The assumption on f is that

L2(µ) =
∞⋃
N=1

FN . (?)

We first show that FN is closed in L2(µ). Indeed, if {gj} is a sequence in
FN that converges to a function g in the L2(µ) norm, then by passing to a
subsequence we may assume that {gj} that converges to g almost everywhere.
Since fgj converges to fg almost everywhere, Fatou’s Lemma implies that∫

|fg| dµ ≤ lim inf
j→∞

∫
|fgj| dµ ≤ N .

Since L2(µ) is a complete metric space, Baire’s Theorem asserts that one of
the sets on the right side of (?) must have an interior point. Hence there
exists an N , a function g0 ∈ FN , and a real number r > 0 such that the ball
of radius r around g0 is contained in FN . Thus for all unit vectors h ∈ L2(µ),

r

∫
|hf |dµ ≤

∫
|(rh+ g0)f |dµ+

∫
|g0f |dµ ≤ N +

∫
|g0f |dµ .

This proves that

M = sup
‖h‖2=1

∫
|hf |dµ <∞ . (??)

Hence the linear functional g 7→ F (g) =
∫
fg dµ, for g ∈ L2(µ), is bounded

with bound M . By the Riesz Representation Theorem, there exists a function
ϕ ∈ L2(µ) such that F (g) =

∫
ϕg dµ for all g ∈ L2(µ). Hence f = ϕ almost

everywhere, so f ∈ L2(µ).
(??) can also be proved without the help of the Baire Category Theorem as
follows. First one may assume that f ≥ 0, as the assumption on f is also
valid for the real and imaginary parts of f , and then for their positive and
negative parts. If (??) is not valid, then for any k ∈ N, there exists gk with
||gk||L2(µ) = 1 such that

∫
fgk dµ = ak ≥ k. One may even take gk ≥ 0.

Define

hl =
l∑

k=1

(kak)
−1gk,

then ||hl||L2(µ) ≤
∑l

k=1 k
−2, and

∫
fhl dµ =

∑l
k=1 k

−1. It now follows by
Monotone Convergence Theorem that

h =
∞∑
k=1

(kak)
−1gk ∈ L2(µ),
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but
∫
fhdµ ≥

∫
fhl dµ for all l, which leads to

∫
fgdµ =∞, a contradiction.

6. Let x = (x1, x2) and y = (y1, y2) be vectors over the field F = Z/3. Show
that the bilinear forms B(x, y) = −x1y1 − x2y2 and D(x, y) = x1y1 + x2y2
are equivalent.

Solution. Interpreting x and y as column vectors, then D(x, y) = xty and
B(x, y) = xt(−I)y. Thus we need a matrix

P =

(
a b
c d

)
with coefficients in F such that P t(−I)P = I, or P tP = −I. Thus entries of
P must satisfy a2 + c2 = −1, b2 + d2 = −1, and ab+ cd = 0. One solution is
a = b = d = 1 and c = −1, since 2 = −1 in F .

7. Consider the curve S = {(x, sin(1/x)) : x ∈ (0, 1]} ⊆ R2. Let T =
S ∪ ({0} × [−1, 1]). Show that T is a connected subset of R2.

Solution. Suppose A,B is a pair of disjoint non-empty open sets of R2

whose union contains S. S is the image of the connected set (0, 1] under the
continuous map f : (0, 1] −→ R2 given by f(x) = (x, sin(1/x)) and is hence
connected. Thus S is a subset of A or B; assume S ⊂ A. Every point (0, y)
of {0} × [−1, 1] = T − S is a limit point of S. Indeed, let b = arcsin(y) and
for k a positive integer let xk = 1/(b + 2kπ). Then f(xk) = (xk, y), which
converges to (0, y) as k → ∞. So if (0, y) ∈ B then B contains points of S
since B is open. This contradicts the assumption A∩B = ∅, so we conclude
that T ⊆ A, and hence T is connected.

8. Let G be a finite group. Prove that G is cyclic if and only if G has exactly
one subgroup of order n for each positive integer n dividing |G|.

Solution. Let N = |G|. If G is a cyclic group then G ∼= Z/NZ. The
subgroups of G are in one-to-one correspondence with subgroups kZ of Z
containing NZ, i.e., with k | N , by the isomorphism theorems. Since
kZ/NZ ∼= Z/(N/k)Z there is exactly one subgroup of order n = N/k for
each n dividing N .
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Conversely, suppose that G has a unique subgroup Gn of order n for each n
dividing N . We proceed by induction on N . Let p be a prime dividing N .
By Cauchy’s Theorem every Gn with p dividing n has a subgroup of order
p, so Gp ≤ Gn for all such n. Therefore by the isomorphism theorems, G/Gp

has a unique subgroup of each order dividing N/p. By induction G/Gp is
cyclic. Choose x ∈ G such that Gpx generates G/Gp. Then N/p divides the
order of x.
If x has order N , then G is cyclic. So assume that x has order N/p. Also
〈x〉Gp = G so N = |G| = |〈x〉||Gp|/|〈x〉∩Gp| = (N/p)p/|〈x〉∩Gp|. Therefore
〈x〉∩Gp = 1. Every subgroup H of G is normal, since H is the only subgroup
of order |H|. Therefore, G = 〈x〉 × Gp. If p divides N/p, then 〈x〉 has a
subgroup of order p, contradicting the uniqueness of Gp. Therefore p does
not divide N/p, so G ∼= ZN/p×Zp ∼= ZN by the Chinese Remainder Theorem.

9. Exhibit a conformal map f : U → D, (that is, a bijective map f from U
to D, such that both f and its inverse are holomorphic), where D is the unit
disc {z ∈ C : |z| < 1} and U is the set {z ∈ D : Re z > 0}.

Solution. First we let

g(z) =
i− z
i+ z

.

Since fractional linear transformations carry circles (a line being a circle
through ∞) to circles, and g has the values g(i) = 0, g(0) = 1, g(−i) = ∞,
and g(1) = i, it follows that g maps the imaginary axis to the real axis, and
maps the unit circle to the imaginary axis. Also

g(iy) =
1− y
1 + y

,

so g maps {iy : −1 < y < 1} to the positive real axis. Since 1/2 ∈ U
and g(1/2) = (3 + 4i)/5 is in the first quadrant, it follows that g maps U
conformally to the first quadrant

Q = {x+ iy ∈ C : x > 0 and y > 0} .

Next, the map z 7→ z2 sends Q conformally to the upper half-plane

H = {x+ iy ∈ C : y > 0} .
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Finally, if we let

h(z) =
z − i
z + i

,

then h maps H to D, because |h(z)| = 1 if z is real (since in that case
h(z) = w/w̄ if w = z − i), and h(i) = 0. So, the composite map f given by

f(z) = h(g(z)2) =

{(i− z
i+ z

)2
− i
}/{(i− z

i+ z

)2
+ i

}
sends U conformally onto D.

Remark. It is recommended that maps constructed in this problem be
illustrated with appropriate sketches. Relevant points and boundaries in the
domains and ranges should be labeled.

Exam Day 2 End


