Homework, Math 311:03, Fall 2009
Sample Solutions to Various Problems from Chapter 0

0.1#6 TASK Suppose that A, B, C are sets.
(a) Prove that
IfAC B,thenC —BC(C— A.

(b) Either prove the converse or provide a counterexample.

PROOF

(a) Assume that A C B. [Note: Our book uses C for the weak inclusion.
I am using C to emphasize that we are not limiting ourselves to the strong
inclusion, the one that rules out equality.] I must show that

forallz, r€e C — B=— 2x € C — A.

So consider an arbitrary x and assume x € C'— B. This means x € C and
r ¢ B. Since A C B and x ¢ B, we learn that z ¢ A. Thusz € C — A. 0O
(b) The converse says

fC—-BCC— A, then AC B.
This need not be true. Consider the example
A={1}, B=C=9¢
Then we have

C—A=¢andC—-B=¢,s0 C—BCC—-—A but AL B



0.1#10 TASK b. Give a concise description of the set B= [J (—n,n).

RESULT B=R
REASONING By definition

B={zr:IninN, z € (—n,n)}

B is a union of subsets of R, so B is a subset of R. To show the reverse
inclusion, consider an arbitrary real ». We can find a positive integer n,
such that —n, < r < n,. So r belongs to the interval (—n,,n,). Thus there

is an index n, namely n = n,, such that r € (—n,n). This shows that r € B.
O]

o0

TASK d. Give a concise description of the set D = | (—% , 2+ %) :
=1

RESULT '

1 1
D — — 2 — = —]_
REASONING By definition

1 1
D:{:c : dn, xE(——, 2+—)}.
n n

Suppose that x € D. Then we can and do pick a positive integer, call it
No,

Since n, > 1, we get
1 1 1
—<1s0 —1<—<2x<2+—<2+4+1 andz € (-1,3).
No No No
This shows that
D C(-1,3).
Now suppose that z € (—1,3). Then with n =n; =1 we get

1 1
r e (—1,3) = <——, 2-|——) so zeD.
ni ni



0.3 #20 TASK Prove that
VninN, 14+3+..+(2n—1)=n"

PROQOF This calls for a proof by induction. For each positive integer n, let
P(n) denote the assertion

The sum of the first n odd integers is n’

Base Step. Consider n = 1. The sum of the first n odd integers is just 1.
Also n? = 1. So the assertion P(1) is true.

Induction Step. Suppose that n is an arbitrary positive integer and that
P(n) is true. We must deduce the truth of P(n + 1).

The sum of the first n+1 odd integers is the sum of the first n odd integers
plus the (n+1)t. This sum is, by the induction hypothesis just n?+(2n + 1).
But

n?+@2n+1)=(n+1)°
and this gives us
The sum of the first n + 1 odd integers is (n + 1)

which is exactly P(n + 1).



0.3 #24 TASK: Define a function f from N into N by
fO) =1 f@=2 f()=3 and
whenever n > 4, f(n) = f(n—1)+ f(n —2)+ f(n — 3).

Show that
forallnin N, f(n) <2"

EXPLORATION We check the assertion for several values of n

whenn = 1, f(n)=f(1)=1<2=21=2"

whenn = 2, f(n)=f(2)=2<4=2>=2"

whenn = 3, f(n)=f(3)=3<8=2"=2"

whenn = 4, f(n) = f(4) = f3)+ f2Q)+ f(1) =3+24+1<16=21=2"
whenn = 5, f(n) = f(5) = f(4) + fB) + f(2) =6+3+2<32=2"=2"
PROOF

For each n in N, let P(n) denote the assertion
for all positive integers k with £ < n, f(k) < ok

We have already seen that P(n) is true whenever n € {1,2,3,4} .

I now prove by induction that for all integers n with n > 4 that P(n) is
true.

The base case is now the case n = 4. P(4) was proved in the exploration.

Suppose the n € {k in N : £k > 4} and P(n) is true. Note that since
n>4, n—1€Nandn—2 &€ Nandn—3 € N. We will deduce that P(n+1)
is also true. By P(n)

f(n)<2"  f(n—1)<2"land f(n—2) <2V 2
Thus

fln+1) = f(n)+ f(n=1) + f(n —2)
2n 4 2~y o2 = on=2 (92 4 ob 4 1)

271—2 (7) < 2%—2 .8 = 2(%—2)+3 — 27L—|—1

VARVAN

4



By the induction hypothesis P(n) we know that f(k) < 2¥ whenever k < n.
We have just shown that f(k) < 2* whenever k = n + 1. Thus P(n + 1)
follows.



0.4 #32 TASK: Suppose that n € N. Let P,, denote the set of all polynomials
of degree exactly n and integer coefficients. Show that P, is countable.
EXPLORATION We will try to use the results of Section 0.4 to avoid doing
hard work. So we know that

(Cor 0.15) any subset of a countable set is countable;

(Thm 0.16) the Cartesian product of two countable sets is countable,
and thus by a simple induction the cartesian product of any finite number of
countable sets is countable;

(Thm 0.17) a countable union of countable sets is countable.
PROOF A polynomial of degree n with integer coefficients is a function of

the form
n

s =3 et
k=0

where each ¢;, € Z and ¢, # 0. Thus there is a one-one function f from P,

onto Z x Z x ... x Z x (Z — {0}) where we have n copies of Z. This f is given

by
f (Z Ch SUk) = (Co,C1y -, Cn)

k=0
Two polynomials are equal if and only if their ordered strings of coefficients
are equal. So this function f is indeed one to one. By definition of degree
n the function f is onto. Now the Cartesian product of n copies of Z and
one copy of Z — {0} is a product of a finite number of countable sets, so P~
a countable set and is thus countable.



0.4 #38 TASK Suppose that a < b and ¢ < d. Show that [a, b] [c, d].

REMARK The statement is not true in the generality used in the text. The
interval [0,0] is certainly not equivalent to the interval [0,1] — the first
contains one and only one element, namely 0; the second is infinite since it
contains the subset {1/k : k € N} which is not finite.

PROOF 1t is easy to construct a polynomial function of degree 1 that maps
[a, b] one to one onto [c,d]. The graph of this polynomial is the straight line
segment with endpoints (a,c) and (b,d). Take

_d—c
b—ua

Since m > 0 it is easy to see that

m and  f(x)=b+ m(x —a)

whenever a <r < s <bthenc= f(a) < f(r) < f(s) < f(b)=d

and thus that f maps [a, b] one-to-one into [¢,d]. It remains to show that f
is onto. Consider an arbitrary y in [c,d]. 1 need to show that there is an x
in [a, b] such that f(x) =y. Now for any real x

—c —c

=r—a < :c:a—l—y—
m m

flr)=y<=mx—a)+c=y <

We are done as soon as we see why a + (y — ¢) /m € [a,b]. Since y < [c,d]
and m > 0 we get

y—céd—c:b_a

m m

IA

y<d andso 0<

Cc

—c —c
and so a < a+ =—— < which means a+y—6[a,b].
m m



0.5 #41 TASK Suppose that 0 < a < b. Show that 0 < a®> < b? and
0 < v/a < Vb.

REMARK For this problem we will assume that every positive real r have
a unique positive real square root denoted by /7.

PROOF

Step 1. Show that 0 < a?. This follows by the order axiom that says the
product of positive reals is positive.

Step 2. Show that a? < b>. By hypothesis, b — a is positive. Now

P=[a+0b-—a)?=d®+2-a-(b—a)+ (b—a)?

Note that both 2-a- (b—a) and (b — a)? are positive since they are products
of positive reals. Thus

2-a-(b—a)+(b—a)?>0
and
=a’+2-a-(b—a)+ (b—a) > d.

Step 3 Show that 0 < \/a < v/b. By the meaning of \/a we know /a > 0.
To get the second inequality we appeal to trichotomy.
Suppose \/a = v/b. Then

a = (\/5)2 = (\/1_9)2 = b, which is false.

So we learn that v/a # V/b.
Suppose that Vb < va. Then by the argument of Step 2 we would learn
that

b= (\/5)2 < (\/5)2 = a, which is false.

So we learn that v/b ¢ \/a.
We must conclude then that v/a < v/b.



0.5 #44 TASK Suppose that = = [ub(S). Show that for each positive ¢
there is an element s in S such that x — ¢ < s < z.

REMARK Implicit in the hypothesis are the assumptions that ¢ £ S C R
and z € R.

PROOF Consider and arbitrary positive €. Since x = min(UB(S)) and
xr — e < x we know that x — ¢ is not an upper bound for .S. Thus there must
be an s with the two properties s € S and =z —¢e < s. Pick one such and
call it s,. Since s, € S, we also know that s, has the property that s, < x.
Thus there is an element in S, namely s,, such that z — e < s, < .



