
Homework, Math 311:03, Fall 2009
Sample Solutions to Various Problems from Chapter 0

0.1#6 TASK Suppose that A; B; C are sets.
(a) Prove that

If A � B, then C �B � C � A:
(b) Either prove the converse or provide a counterexample.

PROOF
(a) Assume that A � B: [Note: Our book uses � for the weak inclusion.

I am using � to emphasize that we are not limiting ourselves to the strong
inclusion, the one that rules out equality.] I must show that

for all x, x 2 C �B =) x 2 C � A:

So consider an arbitrary x and assume x 2 C � B: This means x 2 C and
x =2 B: Since A � B and x =2 B, we learn that x =2 A: Thus x 2 C �A: �
(b) The converse says

If C �B � C � A, then A � B:

This need not be true. Consider the example

A = f1g ; B = C = �

Then we have

C � A = � and C �B = �; so C �B � C � A but A  B
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0.1#10 TASK b. Give a concise description of the set B +
1S
n=1

(�n; n) :
RESULT B = R
REASONING By de�nition

B = fx : 9n in N; x 2 (�n; n)g
B is a union of subsets of R; so B is a subset of R: To show the reverse
inclusion, consider an arbitrary real r. We can �nd a positive integer nr
such that �nr < r < nr: So r belongs to the interval (�nr; nr): Thus there
is an index n, namely n = nr; such that r 2 (�n; n): This shows that r 2 B:
�

TASK d. Give a concise description of the set D +
1S
n=1

�
� 1n ; 2 +

1
n

�
:

RESULT

D =

�
�1
1
; 2 +

1

1

�
= (�1; 3)

REASONING By de�nition

D =

�
x : 9n; x 2

�
�1
n
; 2 +

1

n

��
:

Suppose that x 2 D: Then we can and do pick a positive integer, call it
no,

x 2
�
� 1
no
; 2 +

1

n0

�
Since no � 1, we get

1

no
� 1 so � 1 � � 1

no
< x < 2 +

1

no
< 2 + 1 and x 2 (�1; 3) :

This shows that
D � (�1; 3) :

Now suppose that x 2 (�1; 3) : Then with n = n1 = 1 we get

x 2 (�1; 3) =
�
� 1
n1
; 2 +

1

n1

�
so x 2 D:
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0.3 #20 TASK Prove that

8n in N; 1 + 3 + :::+ (2n� 1) = n2

PROOF This calls for a proof by induction. For each positive integer n, let
P (n) denote the assertion

The sum of the �rst n odd integers is n2

Base Step. Consider n = 1: The sum of the �rst n odd integers is just 1:
Also n2 = 1: So the assertion P (1) is true.

Induction Step. Suppose that n is an arbitrary positive integer and that
P (n) is true. We must deduce the truth of P (n+ 1):
The sum of the �rst n+1 odd integers is the sum of the �rst n odd integers

plus the (n+1)st: This sum is, by the induction hypothesis just n2+(2n+ 1) :
But

n2 + (2n+ 1) = (n+ 1)2

and this gives us

The sum of the �rst n+ 1 odd integers is (n+ 1)2

which is exactly P (n+ 1):
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0.3 #24 TASK: De�ne a function f from N into N by

f (1) = 1 f (2) = 2 f (3) = 3 and

whenever n � 4; f(n) = f(n� 1) + f(n� 2) + f(n� 3):

Show that
for all n in N; f(n) � 2n

EXPLORATION We check the assertion for several values of n

when n = 1; f(n) = f(1) = 1 � 2 = 21 = 2n

when n = 2; f(n) = f(2) = 2 � 4 = 22 = 2n

when n = 3; f(n) = f(3) = 3 � 8 = 23 = 2n

when n = 4; f(n) = f(4) = f(3) + f(2) + f(1) = 3 + 2 + 1 � 16 = 24 = 2n

when n = 5; f(n) = f(5) = f(4) + f(3) + f(2) = 6 + 3 + 2 � 32 = 25 = 2n

PROOF
For each n in N, let P (n) denote the assertion

for all positive integers k with k � n; f(k) � 2k:

We have already seen that P (n) is true whenever n 2 f1; 2; 3; 4g :
I now prove by induction that for all integers n with n � 4 that P (n) is

true.
The base case is now the case n = 4: P (4) was proved in the exploration.
Suppose the n 2 fk in N : k � 4g and P (n) is true. Note that since

n � 4; n�1 2 N and n�2 2 N and n�3 2 N:We will deduce that P (n+1)
is also true. By P (n)

f(n) � 2n f(n� 1) � 2n�1 and f(n� 2) � 2n�2:

Thus

f(n+ 1) = f(n) + f(n� 1) + f(n� 2)
� 2n + 2n�1 + 2n�2 = 2n�2

�
22 + 21 + 1

�
� 2n�2 (7) < 2n�2 � 8 = 2(n�2)+3 = 2n+1

4



By the induction hypothesis P (n) we know that f(k) � 2k whenever k � n:
We have just shown that f(k) � 2k whenever k = n + 1: Thus P (n + 1)
follows.
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0.4 #32 TASK: Suppose that n 2 N: Let Pn denote the set of all polynomials
of degree exactly n and integer coe¢ cients. Show that Pn is countable.
EXPLORATION We will try to use the results of Section 0.4 to avoid doing
hard work. So we know that

(Cor 0.15) any subset of a countable set is countable;
(Thm 0.16) the Cartesian product of two countable sets is countable,

and thus by a simple induction the cartesian product of any �nite number of
countable sets is countable;

(Thm 0.17) a countable union of countable sets is countable.
PROOF A polynomial of degree n with integer coe¢ cients is a function of
the form

g(x) =

nX
k=0

ck x
k

where each ck 2 Z and cn 6= 0: Thus there is a one-one function f from Pn
onto Z�Z� :::�Z� (Z� f0g) where we have n copies of Z: This f is given
by

f

 
nX
k=0

ck x
k

!
= (c0; c1; :::; cn)

Two polynomials are equal if and only if their ordered strings of coe¢ cients
are equal. So this function f is indeed one to one. By de�nition of degree
n the function f is onto. Now the Cartesian product of n copies of Z and
one copy of Z�f0g is a product of a �nite number of countable sets, so Pn~
a countable set and is thus countable.
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0.4 #38 TASK Suppose that a < b and c < d: Show that [a; b]~[c; d]:

REMARK The statement is not true in the generality used in the text. The
interval [0; 0] is certainly not equivalent to the interval [0; 1] � the �rst
contains one and only one element, namely 0; the second is in�nite since it
contains the subset f1=k : k 2 Ng which is not �nite.
PROOF It is easy to construct a polynomial function of degree 1 that maps
[a; b] one to one onto [c; d]: The graph of this polynomial is the straight line
segment with endpoints (a; c) and (b; d): Take

m =
d� c
b� a and f(x) = b+m(x� a)

Since m > 0 it is easy to see that

whenever a � r < s � b then c = f(a) � f(r) < f(s) � f(b) = d

and thus that f maps [a; b] one-to-one into [c; d]: It remains to show that f
is onto. Consider an arbitrary y in [c; d]: I need to show that there is an x
in [a; b] such that f(x) = y: Now for any real x

f(x) = y () m(x� a) + c = y () y � c
m

= x� a () x = a+
y � c
m

We are done as soon as we see why a + (y � c) =m 2 [a; b]: Since y � [c; d]
and m > 0 we get

c � y � d and so 0 � y � c
m

� d� c
m

= b� a

and so a � a+
y � c
m

� b which means a+ y � c
m

2 [a; b]:
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0.5 #41 TASK Suppose that 0 < a < b: Show that 0 < a2 < b2 and
0 <

p
a <

p
b:

REMARK For this problem we will assume that every positive real r have
a unique positive real square root denoted by

p
r:

PROOF
Step 1. Show that 0 < a2: This follows by the order axiom that says the
product of positive reals is positive.
Step 2. Show that a2 < b2: By hypothesis, b� a is positive. Now

b2 = [a+ (b� a)]2 = a2 + 2 � a � (b� a) + (b� a)2

Note that both 2 � a � (b� a) and (b� a)2 are positive since they are products
of positive reals. Thus

2 � a � (b� a) + (b� a)2 > 0

and
b2 = a2 + 2 � a � (b� a) + (b� a)2 > a2:

Step 3 Show that 0 <
p
a <

p
b: By the meaning of

p
a we know

p
a > 0:

To get the second inequality we appeal to trichotomy.
Suppose

p
a =

p
b: Then

a =
�p
a
�2
=
�p
b
�2
= b; which is false.

So we learn that
p
a 6=

p
b:

Suppose that
p
b <

p
a: Then by the argument of Step 2 we would learn

that
b =

�p
b
�2
<
�p
a
�2
= a, which is false.

So we learn that
p
b �

p
a:

We must conclude then that
p
a <

p
b:
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0.5 #44 TASK Suppose that x = lub(S): Show that for each positive "
there is an element s in S such that x� " < s � x:

REMARK Implicit in the hypothesis are the assumptions that � 6= S � R
and x 2 R:

PROOF Consider and arbitrary positive ": Since x = min(UB(S)) and
x� " < x we know that x� " is not an upper bound for S: Thus there must
be an s with the two properties s 2 S and x� " < s: Pick one such and
call it so: Since so 2 S, we also know that so has the property that so � x:
Thus there is an element in S, namely so; such that x� " < so � x:
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