Group Representations

Let G be a group. We say that G acts on aset X (on the left) if there is a set map
G x X — X, sending (9,z) tog-z € X,such that 1.z =z and g- (h-2z) = (gh) -z
forallz € X and g,h € G.

Now fix a field F. A vector space V over F is called a G-module (or representation
of G) if the group G acts on the set V, and if for each g € G there is a linear
transformation o(g) : V. — V such that g -z = o(g)(z) for all x € V. A trivial
representation is a representation with g -x = x for all g € G.

Let GL(V) denote the group of linear automorphisms of V; if V.= F? then
GL(V) = GL4(F). If V is a G-module then o : G — GL(V) is a group homomor-
phism. Conversely, any group homomorphism ¢ : G — GL(V) makes V into a
G-module. Some authors take this as the definition of representation.

A representation V' of GG is also the same thing as a module over the ring F'G.
Here the group ring of G is a vector space F'G with basis G, made into a ring with
the product (Z aigi)(z ﬁjhj) = Z(aiﬁj)(gihj), Oli,ﬁj € F and g;, hj € q.

A G-map (= homomorphism of G-modules) is a linear transformation f : V.— W
commuting with the action of G in the sense that f(g-v) = g- f(v). Of course, this
is the same thing as a homomorphism of modules over the ring F'G.

Permutation representations. Let the set X be a basis of a vector space V.
Any action of G on X can be extended linearly into an action of G on V; such a
representation is called a permutation representation because G permutes the basis.
Each matrix o(g) consists of 0’s and 1’s. The regular representation is an example:
V is the group ring FG, X = G and if v = ) a;g; then g-v =>_ a;(99:)-

1-dimensional representations. A 1-dimensional representation (of G on F)
is equivalent to a group map G——F*. Since F* is an abelian group, the com-
mutator subgroup [G,G] must map to 1, so the representation factors through
G — G/[G,G]. If G has n elements each o(g) must be an nt* root of unity, be-
cause ¢" = 1 in G. The absence of nt? roots of unity in F' can affect the existence
of 1-dimensional representations.

Let C,, denote the cyclic group of order n, with generator 6. It follows that the
1-dimensional representations of C,, (over F') are in 1-1 correspondence with the set
of nt* roots of unity ¢ in F (take o(#) = ¢). The group C; has two 1-dimensional
representations: the trivial representation and the sign representation (6-a = —a).
The cyclic group C3 has three 1-dimensional representations if ' = C, but only one
if F=R.

Operations. Standard operations on vector spaces (B, ®,A*, etc.) also induce
operations on G-modules. Let V = F™ and W = F™ be two representations. The
direct sum V@ W = F™T" is a representation with g- (v+w) = (g-v)+ (9-w), and
the tensor product VW = F™" is a representation with g-(v@w) = (g-v)®(g-w).

Let A%V denote the d** exterior product of V, i.e., the vector space of dimension
(’g) consisting of all alternating d-forms vy A---Awvg on V. The action of G on A%V
is given by the formula g - (1 A---Azg) = (¢9-21) A--- A (g - x4). For example, if
d = m then under the usual identification of A™F™ with F' the action of g on F' is
multiplication by det(c(g)).
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Definition. A nonzero G-module V is called irreducible (= a simple module) if no
proper subspace is a G-submodule. V is called completely reducible (= semisimple)
if it is a direct sum of irreducible G-modules.

Clearly, every 1-dimensional representation is irreducible. If dim(V) = 2, there
is a simple test for irreducibility: V is irreducible if no vector v # 0 in V is an
eigenvalue for all of the 2 x 2 matrices o(g), g € G.

Here is a general test to see if V' is irreducible. For every v # 0, does the orbit
of v (the set G-v = {g-v,g9 € G}, which includes 1-v = v) span V? If so, V is
irreducible. If not, the span of G - v is a proper G-submodule.

Examples. 1) The regular representation of Cy = {1,6} on the plane is given by
O(x,y) = (y,z). The two vectors (1,+1) are eigenvectors so this representation is
the direct sum F'(1,1) @ F(1,-1).

2) The dihedral group D,, (n > 3) is defined as the group of isometries in the
plane fixing the regular n-gon; the 2-dimensional representation defining D,, is
irreducible (as the reflections have different eigenspaces, or because each v and its
rotate by 27 /n span the plane).

3) The quaternionic group @ = {+£1, +i, +j, £k} has an obvious 4-dimensional
representation on the quaternions H. (We take FF = R.) If v # 0, I claim that
{v,iv, ju, kv} is a basis of H; this shows that H is an irreducible representation of
Q. To show this, suppose given a; € R such that a;v+as(iv) +a3(jv) +aq(kv) = 0.
Multiplying on the right by v=! yields a; + asi + asj + a4k = 0, so all the a; = 0.

3) The symmetric group Sy acts on the regular tetrahedron in R® by permuting
the 4 vertices. This extends by linearity to an action of S4 on R3, which is irreducible
(exercise!). More generally, S,, acts on the regular n-simplex in R*~!, giving an
irreducible (n — 1)-dimensional representation of S,,.

Schur’s Lemma. 1)V is irreducible < V = (FQG)/1 for some mazimal left ideal.
2) If VW are irreducible, any nonzero G-map f :V — W is an isomorphism.

3) If V is irreducible, the ring A = Endg (V) of all G-maps V — V is a division
algebra. (A division algebra is an F-algebra in which every non-zero element is a
unit.) If F' is algebraically closed then A = F (multiplication by scalars).

Proof. 1) Any choice of v # 0 in V yields a nonzero G-map FG — V sending
1 to v. Its kernel I is a left ideal, so its image is FG/I. This is a nonzero G-
submodule of V', and every ideal J containing I yields a submodule J/I of V. If
V is irreducible we must have FG/I = V with no ideals J containing I. 2) If W
is irreducible and f # 0, f(V) must be W and ker(f) # V. When V is irreducible
this forces ker(f) = 0, which means that f is an isomorphism. 3) Any nonzero
G-map f:V — V must be an isomorphism by 2), in which case f~! exists and is
a G-map. This proves that every nonzero element f is invertible in A.

Examples with FF = R. The only (finite-dimensional) division algebras over R
are R, C and H. (Over F = C the only f.d. division algebra is C itself.)

1) Consider the rotation representation of C3 on the plane R?. The 2x 2 matrices
commuting with this action are products of scaling by r and rotation by a:

(reose) o) e i, 1= (O 1)

—rsin(a) rcos(a) -1 0



These form a subring A of M3(R) isomorphic to C.
2) For the canonical representation of the quaternion group @ on H, we have
A =H. (Of course!)

Corollary to Schur’s Lemma. If W C V is a submodule and V is completely
reducible, then V=W @& W' for some complementary submodule W'.

Proof. Write V = @V, with V, irreducible. By Zorn’s lemma, there is a largest
family {a;} so that W N @V, =0; set W = @V,,. f W& W' isn't V, it doesn’t
contain some V3; this would imply (W @ W') N Vg = 0, leading to a contradiction.

Remark. The regular representation is never irreducible (unless G = 1). To see
this, recall that the norm element of F'G is the sum N = )_ g of every element in
G. Since gN = N for all g € G, N generates a 1-dimensional submodule F' - N of
FG.

The next theorem states that F'G is completely reducible (when 1/|G| exists in
F), and that it contains every irreducible representation at least once. Therefore
FG=F-N@W' for some W'. In fact, since N? = |G|- N, the element ¢ = N/|G|
is an idempotent of the ring FG and FG =W & W' with W/ = FG(1 — e).

The hypothesis (that 1/|G| exists in F) fails only when F' has characteristic
p > 0 and p divides |G|. In this case, the regular representation is never completely
reducible, because F' - N C FG has no complement. (If FG = F - N @ W' then
some nonzero multiple of N must be idempotent, which is impossible because N2 =
|IG|-N =0.)

Maschke’s Theorem. If G is a finite group and ﬁ € F, then:
1) Every representation of G is completely reducible.

2) There are only a finite number s of irreducible representations V; (up to iso-
morphism), with V; occuring n; > 1 times in the regular representation of G on
F@G.

We will write A; for the division algebra Endg(V;), and set d; = dimp(A;).

3) The ith irreducible representation has dimension d;n;. Hence

i=1

4) FG is the product of the s matriz rings M,,,(A;). The projection FG — My, (4;)
allows us to identify V; with the M, (A;)-module A7".

Some explanation of parts 3) and 4) is in order. The matrix ring M,,,(4;) is the
direct sum of its n; columns, each being the irreducible representation V; = A} of
dimension d;n; over F'. Summing over ¢ = 1,..., s yields the decomposition of the
|G |-dimensional representation F'G into its irreducible components.

Corollary (Complex representations). Suppose that F = C. Then
|G| = an, where n; = dim(V;).

If G is abelian then there are exactly |G| irreducible representations, all of them 1-
dimensional. Every representation is a direct sum of 1-dimensional representations.

Indeed, we must have A; = C and FG = M,,, (C) x--- x M,,_(C). If G is abelian,
FG is a commutative ring; this forces ny = .-+ =ng =1, or FG =1I;_,C.



Proposition. Let ¢ denote the number of conjugacy classes of elements of G. If
F = C then there are c irreducible representations of G. In general, the center E;
of A; is a finite field extension of F, and ¢ =Y _;_, dimp(E;) > s.

The connection to Maschke’s theorem comes from the observation that the center
of FG is [[ E;. Write C4,...,C, for the conjugacy classes of G. The ¢ elements
zj = »_{g € C;} are central elements of F'G, and form a basis for the center of FG.

Examples. 1) If F = C then C3 has three irreducible 1-dimensional represen-
tations. If F' = R then C3 has only two irreducible representations: the trivial
representation V; = R and the rotation representation on the plane V5 = R2.

2) The dihedral group D = Cy x Cj is abelian, so it has 4 one-dimensional
representations—even over R. The regular representation F'D; is the sum of these 4
representations. Finding the irreducible representations of D3 and Ds is an exercise.

3) The dihedral group D4 has 8 elements, and Dys/[Dy, D4] is Cy x C3. Thus it
has exactly 4 one-dimensional representations. We have already observed that Dy
has a 2-dimensional irreducible representation V' as its “birth certificate”. Since
8 = 4.1+ 22, this accounts for all the irreducible representations of Dj.

4) The quaternionic group @ has 8 elements and 5 conjugacy classes. Since
Q/[Q,Q] = Q/{£1} = CyxCy, there are exactly 4 one-dimensional representations.
Counting (8 = 4 + 4) shows there is exactly one other irreducible representation
Vs, of dimension 2 or 4 depending on F. If FF = R, then V5 is the 4-dimensional
representation of () on H; if FF = C then V5 is the 2-dimensional representation of
Q on H=C? (and ns = 2).

Exercises. 1) Consider the rotation representation of C3 on the complex plane
C2. Write this as the direct sum of two 1-dimensional representations over F = C.

2) Provide details for the sketch given above that the 2-dimensional representa-
tion of D,, is irreducible when n > 3.

3) Describe all irreducible representations of D3 and D5 over R and over C. Hint:
Find two actions of D5 on the regular pentagon.

4) Prove that the 3-dimensional representation of Sy arising from the action on
the regular tetrahedron is irreducible.

5) Determine all irreducible complex representations of the alternating group Ay
(12 elements). Hint. Use the fact that [A4, A4] has 4 elements to write down all
group maps As — C*. Then let G act on the set X = {(12)(34), (13)(24), (14)(23)}
of elements of A4 by conjugation, and prove that F'X is irreducible.

6) If V is irreducible and W is any 1-dimensional representation of G, show that
the tensor product V ® W is also an irreducible representation of G.

Young Tableaux. Let S,, denote the symmetric group on n elements. The num-
ber of conjugacy classes of S,, equals the number of unordered partitions of n;
the unordered partition A = {ry,...,7,} corresponds to the congugacy class of
(1,...,71)...(n+1=7p,...,n). Since the order of the r; doesn’t matter, we always
assume that ry > r9 > ... > r,. Each partition A determines an arrangement of n
empty boxes into A rows, the i** row has r; boxes; such an arrangement is called a



Young Tableau of shape A and size n. The corresponding irreducible representation
SA of S, is sometimes called the Specht module of \. We shall write f* for dim(S*).

If we fill in the boxes of a Young tableau of shape A with the numbers 1,....,n
we get a Young diagram D. We call D standard if a) the entries in every row
are increasing, and b) the entries in every column are increasing. The number of
standard Young diagrams of shape X equals f* = dim S*.

There is a simple product formula for f*, called the hook formula. If (i,7) is a
box in a Young Tableau, the corresponding hooklength h;; is the number of boxes
in the “hook” {(i,k),k > j} U {(k,j),k > i} with vertex (i,7). The hook formula
says that

n!

I jyex his

If R (resp. C) denotes the subgroup of S,, consisting of permutations which
merely permute the entries in the rows (resp. in the columns) of D, then the
Specht module may be described as S* = (F'S,,)fp C F'S,,, where fp € FS,, is the

sum
fD = Z (—1)TT0'.

T€C
ocER

dim(S*) = f

Representations of S;. The only partitions of n = 4 are {1,1,1,1,}, {2,1,1},
{2,2}, {3,1} and {4}, corresponding to the 5 Young tableau of size 4. Therefore
there are exactly 5 irreducible representations of S4. The only way to add up to
24 using five squares is 24 = 141444949, so Sy has two irreducible 3-dimensional
representations (corresponding to two actions of Sy on the regular tetrahedron),
one irreducible 2-dimensional representation (Ss acts on the triangle in the plane
by Sy — D3 C GL2(F)) and two 1-dimensional representations (the trivial repre-
sentation and the sign representation). Of course, the dimensions of these repre-
sentations can also be found by the hook formula.

Characters of finite groups. For simplicity, we concentrate on representations
of a finite group G over C. The character xy of a representation V = C" is defined
to be the set map xv : G — C sending g to the trace of the matrix (g). This map is
independent of the choice of basis for V', since the trace is independent of this choice.
This also shows that if V' and W are isomorphic representations then yy = yw.
Note that xy determines the dimension of V', because xy (1) = trace(l) = dim(V).
We will see that in fact xy completely determines V' (over F' = C).

Examples. 1) Let V be the 2-dimensional rotation representation of the cyclic
group C,,. Then xy (%) = 2 cos(27k/n) for all k.

2) The character of the regular representation V' = CG is easy to work out. The
matrix o(g) consists of 0’s and 1’s, and the (7,7) entry is 1 exactly when g - g; = g;
in G. This never happens when g # 1, meaning that all diagonal entries are 0, and
so the trace is 0. In conclusion, if g # 1 then xca(g) = 0.

3) The character of a 1-dimensional representation V' is xv(9) = o(g), simply
because the trace of a 1 x 1 matrix (a) is a. These characters are not so interesting.

The characters x1, ..., xs of the irreducible representations Vi, ...,V are called
the “irreducible” characters. Every character yy is a linear combination of the
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irreducible characters in the vector space C@ of all set maps G — C. To see this,
write V as the sum V =V;, &@--- @V, of irreducible representations. This puts the
matrices o(g) in block diagonal form, and we have xv(9) = xi,(9) + -+ + x5, (9)
for all g € G. In particular, the character of the regular representation is »_ n;x;,
from which we deduce that for every g # 1 we have > n;x;(9) = 0. (And of course
S nixi(1) = Yon? = [G.)

A class function on G is a function ¢ : G — C which is constant on conjugacy
classes, i.e., if ¢’ = hgh™! then ¢(g9’') = #(g). The characters xy are examples
of class functions, because xv(g) and xv(g’') are the traces of the matrices o(g)
and o(g') = Po(g)P~', P = o(h). We choose representatives g1,...,g. of the
¢ conjugacy classes of G; any class function (including xy) is then completely
determined by its values on these c¢ elements. Thus the class functions form a
c-dimensional vector subspace of C¢. We are going to show that the irreducible
characters x; of G form a basis of this vector space. Since they belong to this
subspace, and there are s = ¢ of them, it suffices to show that they are linearly
independent. This follows from the following result, whose proof we omit.

Orthogonality Relations. The irreducible characters are orthogonal (with re-
spect to the usual hermitian inner product) in the vector space C :

Olxs) =D xilg)*xi(9) =

gea

{ G| ifi=3j
0 ifij

Corollary. The irreducible characters {x1, ..., xc} form a basis for the vector space
of class functions on G.

Thus every class function ¢ uniquely determines complex numbers a4, ..., a. such
that ¢(g) = > aixi(g) for all g € G. In fact, a; = ﬁ((bb@) In particular, the
character xy of any representation V uniquely determines integers m; such that

m1 mo me
- .

VeEVie.. Viehd.. . Vod---aV.d...V,.

Character tables. The complex numbers x;(g;) assemble to form a ¢ X ¢ matrix,
called the character table of G. The above results state that the character table tells
us almost everything about all representations of G. The Orthogonality Relations
imply that the columns are linearly independent (being orthogonal). The character
table is not quite a unitary matrix; it satisfies the relation A** A = |G| - I instead.
11 1 1 1 '
e The character tables of C'y and Cs are < ) and [ 1 w w? |, w=e>/3,
1 -1 2
1 w w
e For S3 there are 3 conjugacy classes, represented by: {1,(12), (123)}. The char-
acter table for S3 is



