ALGEBRA 2, HOMEWORK 1 SOLUTIONS

Problem 1:
Let F' C E be an algebraic field extension and R a ring such that FF C R C E.
Prove that R is field.

It is enough to show that r~! € R whenever 0 # r € R. Let f(x) = 2" +
a1+ -+ a, 12 + a, € F[r] be the minimal polynomial for r over F. Since
f(x) is irreducible, we must have a,, # 0. Set s ="' +a; 7" 2+-.-+a,_;. Then
rs=f(r) —ap = —an, sor ! = —a,ts € R.

Problem 2:
Let E = Q(\@, \/§) Then E has the Q-basis {1, V2,/3, \@} Find a,b,c,d € Q
such that (1 ++v2 4+ v3)"! = a + bv2 + ¢V/3 + dV6.

One checks that v/3 ¢ Q(v/2), from which it easily follows that [E : Q] = 4 and
{1, V2,/3, ﬁ} is a basis.

The equation (a + bv/2 + ¢v/3 + dv6)(1 + V2 + V3) = 1, with a,b,¢,d € Q, is
equivalent to

(a+2b+3¢)+ (a+b+3d)V2+ (a+c+2d)V3+ (b+c+d)V6 =1,

which givesa+2b+3c=1,a+b+3d=0,a+c+2d=0,and b+c+d=0. We

o1y 1, _ 1
obtaina=3,b=3,¢c=0,and d = —7.

Problem 3:

Let E = Q(v2,v3,V5).
(a) Show that E/Q is Galois.

This is true because E is a splitting field over Q of the separable polynomial
f(@) = (2° = 2)(2* = 3)(2? - 5).

(b) Find Gal(E/Q).

We first check that /5 ¢ Q(\/E, \/§) Assume that o = a + bv/2 + cv/3 + dv6
satisfies a? = 5, where a,b,c,d € Q. Then (1) a® + 2b® + 3¢* + 6d*> = 5, (2)
ab+3cd =0, (3) ac+2bd =0, and (4) ad+bc = 0. If d = 0, then ab = be = ca = 0,
so @ € QUQv2 U Qv/3 which contradicts a® = 5. We therefore have d # 0. Now
(2) and (4) imply that d(a® —3c?) = a(ad + bc) — c(ab+3cd) = 0, and since v/3 ¢ Q
this gives a = ¢ = 0. It then follows from (3) that b = 0, so a € QV/6, again
contradicting o = 5. Since v/5 ¢ Q(v/2,v/3) we obtain [E : Q] = 8.

The roots of f(z) are {+v/2,4+v3,+V5}, and G = Gal(E/Q) is a subgroup
of the permutation group Sym({#v/2, £v/3,4++/5}). Since each element of G also
preserves the roots of each of the polynomials 2 — 2, 22 — 3, 22 — 5, we must have
G C Sym({£v/2}) x Sym({#+/3}) x Sym({#+/5}). Finally, since |G| = 8, we obtain
G = Sym({£v2}) x Sym({£v/3}) x Sym({£V5}) = Z/2 x Z./2 x 7./2.

(¢) Find « € E such that F = Q(«).

Set o = v/24++/3++/5. Using the above description of G = Gal(E/Q), we obtain
Gal(E/Q(a)) = {o € G| o(a) = a} = {1}. It follows that Q(«) = E.
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Problem 4:
Let E be a finite extension of Q. Show that E contains only finitely many roots
of 1.

Set n = [E : Q] and let o € E be a primitive m-th root of unity. Then ¢(m) =
[Q() : Q] < n, where ¢(m) is Euler’s phi function. Recall that ¢(ab) = ¢(a)p(b)
whenever (a,b) = 1, and ¢(p?) = (p — 1)p?~! for each prime p and d > 1. These
identities imply that m < 2¢(m)? < 2n2. Finally, since there are at most m
primitive m-th roots of 1, the total number of roots of 1 is at most

2
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Problem 5:

Let K/F be a finite Galois extension such that [K : F] = p™ where p is a prime
and n > 1. Show that:

(a) There exists a subextension F' C E C K such that [E : F] = p.

(b) Any such subextension F is Galois over F.

By the Main Theorem of Galois theory, we need to prove that, if G is any non-
trivial p-group, then G contains a subgroup of index p and every such subgroup is
normal. It follows from Sylow’s first theorem that G has a subgroup of index p.
Let H < G be any subgroup of index p, and let C' C G be the center of G. Then
C #{1}. If C ¢ H, then G is generated by C' and H, so H is normal. Otherwise
H/C is a subgroup of index p in G/C, and it follows by induction on |G| that H/C
is normal in G/C, hence H is normal in G.

Problem 6:
Let F' C E C K be field extensions such that K/F' is Galois. Set G = Gal(K/F)
and H = Gal(K/E). Show that Auty(F) = Ng(H)/H.

For each 0 € G we have 0(E) = E & Gal(K/o(E)) = Gal(K/E) & cHo ' = H
< 0 € Ng(H). Tt follows that restriction of automorphisms gives a well defined
group homomorphism

¢: Ng(H) — Autp(F).
The kernel of this homomorphism is H = Gal(K/FE). We must show that ¢ is
surjective. Let o : E — E be any element of Autp(E). Since K/F is Galois, K is
a splitting field over F of some polynomial f(z) € F[z]. Since K is also a splitting
field of f(x) over E, and since f(x) is preserved by o, it follows that o can be
extended to an automorphism of K.

Problem 7:

Let f(z) € Q[z] be an irreducible polynomial of degree 4 with exactly two real
roots. Show that Gal(f(x)/Q) is either Sy or Dy.

Write f(z) = (z — a)(x — B)(x — v)(x —7) where o, € R and v € C\ R.
Then the splitting field of f(z) over Q is E = Q(a, 5,7), and G = Gal(E/Q) is a
subgroup of Sy = Sym({«, 8,7,7}). Consider the tower of extensions

Qc Qo) cQ(a,8) CE.

The first extension has degree 4, and the last extension has degree 2. If 5 ¢ Q(«),
then the middle extension has degree 3, so [E: Q] = 24 and G = S;.
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Otherwise the middle extension is trivial and |G| = [E : Q] = 8. Since Q(«)/Q
is not a normal field extension, H = Gal(E/Q(«)) is not a normal subgroup in G.
In particular, G is not Abelian, which implies that no element of G has order 8,
and at least one element o € G has order greater than 2. Write H = {1,7} and
S = (o) = {1,0,0%,07t}. Since [G : S] = 2, S is a normal subgroup of G. It
follows that for each element v € G we have vov=! € {o,071}. We deduce that
{1,0?} is also a normal subgroup of G, hence 7 # 02, so G = (o, 7) is generated by
o and 7. Finally, since G is not Abelian we must have 707~ ! = 67!, so ¢ and 7
satisfy the relations of the Dihedral group Dy (6% =1, 72 =1, and 7o ! =07 1).

Problem 8:

Let F' be a perfect field and F' C E an algebraic field extension, such that every
non-constant polynomial f(z) € F[z] has a root in E. Show that F is algebraically
closed. (Hint: Primitive element theorem.)

We first show that if f(x) € F[x] is any polynomial, then E contains a splitting
field for f(x) over F'. To see this, let K be any splitting field for f(z) over F. Since
F' is perfect it follows that K/F is a finite separable extension, so there exists a
primitive element o € K such that K = F(a). Let g(x) € F[z] be the minimal
polynomial for a. By assumption we can find o/ € E such that g(a¢’) = 0. Then
F(o') =2 Flz]/(g(x)) 2 K is a splitting field for f(z) contained in E.

To see that E is algebraically closed, it is enough to show that, if £ C E’ is any
finite field extension, then E = E’. Let a € E’ be any element. Since « is algebraic
over F| it has a minimal polynomial f(z) € F|x]. Since E contains a splitting field
for f(x), it follows that all roots of f(x) are contained in F, including «. This
proves that ' = E.



