Problem 1:

Let $F \subset E$ be an algebraic field extension and R a ring such that $F \subset R \subset E$. Prove that R is field.

It is enough to show that $r^{-1} \in R$ whenever $0 \neq r \in R$. Let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n \in F[x]$ be the minimal polynomial for r over F. Since f(x) is irreducible, we must have $a_n \neq 0$. Set $s = r^{n-1} + a_1 r^{n-2} + \cdots + a_{n-1}$. Then $rs = f(r) - a_n = -a_n$, so $r^{-1} = -a_n^{-1} s \in R$.

Problem 2:

Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Then E has the \mathbb{Q} -basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. Find $a, b, c, d \in \mathbb{Q}$ such that $(1 + \sqrt{2} + \sqrt{3})^{-1} = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$.

One checks that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, from which it easily follows that $[E : \mathbb{Q}] = 4$ and $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis.

The equation $(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6})(1 + \sqrt{2} + \sqrt{3}) = 1$, with $a, b, c, d \in \mathbb{Q}$, is equivalent to

$$(a+2b+3c) + (a+b+3d)\sqrt{2} + (a+c+2d)\sqrt{3} + (b+c+d)\sqrt{6} = 1,$$

which gives a + 2b + 3c = 1, a + b + 3d = 0, a + c + 2d = 0, and b + c + d = 0. We obtain $a = \frac{1}{2}$, $b = \frac{1}{4}$, c = 0, and $d = -\frac{1}{4}$.

Problem 3:

Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. (a) Show that E/\mathbb{Q} is Galois.

This is true because E is a splitting field over \mathbb{Q} of the separable polynomial $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5)$.

(b) Find $\operatorname{Gal}(E/\mathbb{Q})$.

We first check that $\sqrt{5} \notin \mathbb{Q}(\sqrt{2},\sqrt{3})$. Assume that $\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ satisfies $\alpha^2 = 5$, where $a, b, c, d \in \mathbb{Q}$. Then (1) $a^2 + 2b^2 + 3c^2 + 6d^2 = 5$, (2) ab + 3cd = 0, (3) ac + 2bd = 0, and (4) ad + bc = 0. If d = 0, then ab = bc = ca = 0, so $\alpha \in \mathbb{Q} \cup \mathbb{Q}\sqrt{2} \cup \mathbb{Q}\sqrt{3}$ which contradicts $\alpha^2 = 5$. We therefore have $d \neq 0$. Now (2) and (4) imply that $d(a^2 - 3c^2) = a(ad + bc) - c(ab + 3cd) = 0$, and since $\sqrt{3} \notin \mathbb{Q}$ this gives a = c = 0. It then follows from (3) that b = 0, so $\alpha \in \mathbb{Q}\sqrt{6}$, again contradicting $\alpha^2 = 5$. Since $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$ we obtain $[E : \mathbb{Q}] = 8$.

The roots of f(x) are $\{\pm\sqrt{2},\pm\sqrt{3},\pm\sqrt{5}\}$, and $G = \operatorname{Gal}(E/\mathbb{Q})$ is a subgroup of the permutation group $\operatorname{Sym}(\{\pm\sqrt{2},\pm\sqrt{3},\pm\sqrt{5}\})$. Since each element of G also preserves the roots of each of the polynomials $x^2 - 2$, $x^2 - 3$, $x^2 - 5$, we must have $G \subset \operatorname{Sym}(\{\pm\sqrt{2}\}) \times \operatorname{Sym}(\{\pm\sqrt{3}\}) \times \operatorname{Sym}(\{\pm\sqrt{5}\})$. Finally, since |G| = 8, we obtain $G = \operatorname{Sym}(\{\pm\sqrt{2}\}) \times \operatorname{Sym}(\{\pm\sqrt{3}\}) \times \operatorname{Sym}(\{\pm\sqrt{5}\}) \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$.

(c) Find $\alpha \in E$ such that $E = \mathbb{Q}(\alpha)$.

Set $\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5}$. Using the above description of $G = \text{Gal}(E/\mathbb{Q})$, we obtain $\text{Gal}(E/\mathbb{Q}(\alpha)) = \{\sigma \in G \mid \sigma(\alpha) = \alpha\} = \{1\}$. It follows that $\mathbb{Q}(\alpha) = E$.

Problem 4:

Let E be a finite extension of \mathbb{Q} . Show that E contains only finitely many roots of 1.

Set $n = [E : \mathbb{Q}]$ and let $\alpha \in E$ be a primitive *m*-th root of unity. Then $\phi(m) = [\mathbb{Q}(\alpha) : \mathbb{Q}] \leq n$, where $\phi(m)$ is Euler's phi function. Recall that $\phi(ab) = \phi(a)\phi(b)$ whenever (a, b) = 1, and $\phi(p^d) = (p - 1)p^{d-1}$ for each prime p and $d \geq 1$. These identities imply that $m \leq 2\phi(m)^2 \leq 2n^2$. Finally, since there are at most m primitive *m*-th roots of 1, the total number of roots of 1 is at most

$$\sum_{m=1}^{2n^2} m = \binom{2n^2 + 1}{2}.$$

Problem 5:

Let K/F be a finite Galois extension such that $[K : F] = p^n$ where p is a prime and $n \ge 1$. Show that:

(a) There exists a subextension $F \subset E \subset K$ such that [E:F] = p.

(b) Any such subextension E is Galois over F.

By the Main Theorem of Galois theory, we need to prove that, if G is any nontrivial p-group, then G contains a subgroup of index p and every such subgroup is normal. It follows from Sylow's first theorem that G has a subgroup of index p. Let $H \leq G$ be any subgroup of index p, and let $C \subset G$ be the center of G. Then $C \neq \{1\}$. If $C \not\subset H$, then G is generated by C and H, so H is normal. Otherwise H/C is a subgroup of index p in G/C, and it follows by induction on |G| that H/Cis normal in G/C, hence H is normal in G.

Problem 6:

Let $F \subset E \subset K$ be field extensions such that K/F is Galois. Set G = Gal(K/F)and H = Gal(K/E). Show that $\text{Aut}_F(E) \cong N_G(H)/H$.

For each $\sigma \in G$ we have $\sigma(E) = E \Leftrightarrow \operatorname{Gal}(K/\sigma(E)) = \operatorname{Gal}(K/E) \Leftrightarrow \sigma H \sigma^{-1} = H$ $\Leftrightarrow \sigma \in N_G(H)$. It follows that restriction of automorphisms gives a well defined group homomorphism

$$\phi: N_G(H) \to \operatorname{Aut}_F(E)$$
.

The kernel of this homomorphism is $H = \operatorname{Gal}(K/E)$. We must show that ϕ is surjective. Let $\sigma : E \to E$ be any element of $\operatorname{Aut}_F(E)$. Since K/F is Galois, K is a splitting field over F of some polynomial $f(x) \in F[x]$. Since K is also a splitting field of f(x) over E, and since f(x) is preserved by σ , it follows that σ can be extended to an automorphism of K.

Problem 7:

Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with exactly two real roots. Show that $\operatorname{Gal}(f(x)/\mathbb{Q})$ is either S_4 or D_4 .

Write $f(x) = (x - \alpha)(x - \beta)(x - \gamma)(x - \overline{\gamma})$ where $\alpha, \beta \in \mathbb{R}$ and $\gamma \in \mathbb{C} \setminus \mathbb{R}$. Then the splitting field of f(x) over \mathbb{Q} is $E = \mathbb{Q}(\alpha, \beta, \gamma)$, and $G = \operatorname{Gal}(E/\mathbb{Q})$ is a subgroup of $S_4 = \operatorname{Sym}(\{\alpha, \beta, \gamma, \overline{\gamma}\})$. Consider the tower of extensions

$$\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset \mathbb{Q}(\alpha,\beta) \subset E.$$

The first extension has degree 4, and the last extension has degree 2. If $\beta \notin \mathbb{Q}(\alpha)$, then the middle extension has degree 3, so $[E : \mathbb{Q}] = 24$ and $G = S_4$.

Otherwise the middle extension is trivial and $|G| = [E : \mathbb{Q}] = 8$. Since $\mathbb{Q}(\alpha)/\mathbb{Q}$ is not a normal field extension, $H = \operatorname{Gal}(E/\mathbb{Q}(\alpha))$ is not a normal subgroup in G. In particular, G is not Abelian, which implies that no element of G has order 8, and at least one element $\sigma \in G$ has order greater than 2. Write $H = \{1, \tau\}$ and $S = \langle \sigma \rangle = \{1, \sigma, \sigma^2, \sigma^{-1}\}$. Since [G : S] = 2, S is a normal subgroup of G. It follows that for each element $\nu \in G$ we have $\nu \sigma \nu^{-1} \in \{\sigma, \sigma^{-1}\}$. We deduce that $\{1, \sigma^2\}$ is also a normal subgroup of G, hence $\tau \neq \sigma^2$, so $G = \langle \sigma, \tau \rangle$ is generated by σ and τ . Finally, since G is not Abelian we must have $\tau \sigma \tau^{-1} = \sigma^{-1}$, so σ and τ satisfy the relations of the Dihedral group D_4 ($\sigma^4 = 1, \tau^2 = 1$, and $\tau \sigma \tau^{-1} = \sigma^{-1}$).

Problem 8:

Let F be a perfect field and $F \subset E$ an algebraic field extension, such that every non-constant polynomial $f(x) \in F[x]$ has a root in E. Show that E is algebraically closed. (Hint: Primitive element theorem.)

We first show that if $f(x) \in F[x]$ is any polynomial, then E contains a splitting field for f(x) over F. To see this, let K be any splitting field for f(x) over F. Since F is perfect it follows that K/F is a finite separable extension, so there exists a primitive element $\alpha \in K$ such that $K = F(\alpha)$. Let $g(x) \in F[x]$ be the minimal polynomial for α . By assumption we can find $\alpha' \in E$ such that $g(\alpha') = 0$. Then $F(\alpha') \cong F[x]/(g(x)) \cong K$ is a splitting field for f(x) contained in E.

To see that E is algebraically closed, it is enough to show that, if $E \subset E'$ is any finite field extension, then E = E'. Let $\alpha \in E'$ be any element. Since α is algebraic over F, it has a minimal polynomial $f(x) \in F[x]$. Since E contains a splitting field for f(x), it follows that all roots of f(x) are contained in E, including α . This proves that E' = E.