
Algebra 2, Homework 1 Solutions

Problem 1:

Let F ⊂ E be an algebraic field extension and R a ring such that F ⊂ R ⊂ E.
Prove that R is field.

It is enough to show that r−1 ∈ R whenever 0 6= r ∈ R. Let f(x) = xn +
a1x

n−1 + · · · + an−1x + an ∈ F [x] be the minimal polynomial for r over F . Since
f(x) is irreducible, we must have an 6= 0. Set s = rn−1 +a1r

n−2 + · · ·+an−1. Then
rs = f(r) − an = −an, so r−1 = −a−1

n s ∈ R.

Problem 2:

Let E = Q(
√

2,
√

3). Then E has the Q-basis {1,
√

2,
√

3,
√

6}. Find a, b, c, d ∈ Q

such that (1 +
√

2 +
√

3)−1 = a + b
√

2 + c
√

3 + d
√

6.

One checks that
√

3 /∈ Q(
√

2), from which it easily follows that [E : Q] = 4 and

{1,
√

2,
√

3,
√

6} is a basis.

The equation (a + b
√

2 + c
√

3 + d
√

6)(1 +
√

2 +
√

3) = 1, with a, b, c, d ∈ Q, is
equivalent to

(a + 2b + 3c) + (a + b + 3d)
√

2 + (a + c + 2d)
√

3 + (b + c + d)
√

6 = 1,

which gives a + 2b + 3c = 1, a + b + 3d = 0, a + c + 2d = 0, and b + c + d = 0. We
obtain a = 1

2
, b = 1

4
, c = 0, and d = − 1

4
.

Problem 3:

Let E = Q(
√

2,
√

3,
√

5).
(a) Show that E/Q is Galois.

This is true because E is a splitting field over Q of the separable polynomial
f(x) = (x2 − 2)(x2 − 3)(x2 − 5).

(b) Find Gal(E/Q).

We first check that
√

5 /∈ Q(
√

2,
√

3). Assume that α = a + b
√

2 + c
√

3 + d
√

6
satisfies α2 = 5, where a, b, c, d ∈ Q. Then (1) a2 + 2b2 + 3c2 + 6d2 = 5, (2)
ab+3cd = 0, (3) ac+2bd = 0, and (4) ad+ bc = 0. If d = 0, then ab = bc = ca = 0,

so α ∈ Q ∪ Q
√

2 ∪ Q
√

3 which contradicts α2 = 5. We therefore have d 6= 0. Now
(2) and (4) imply that d(a2−3c2) = a(ad+ bc)− c(ab+3cd) = 0, and since

√
3 /∈ Q

this gives a = c = 0. It then follows from (3) that b = 0, so α ∈ Q
√

6, again

contradicting α2 = 5. Since
√

5 /∈ Q(
√

2,
√

3) we obtain [E : Q] = 8.

The roots of f(x) are {±
√

2,±
√

3,±
√

5}, and G = Gal(E/Q) is a subgroup

of the permutation group Sym({±
√

2,±
√

3,±
√

5}). Since each element of G also
preserves the roots of each of the polynomials x2 − 2, x2 − 3, x2 − 5, we must have
G ⊂ Sym({±

√
2})×Sym({±

√
3})×Sym({±

√
5}). Finally, since |G| = 8, we obtain

G = Sym({±
√

2}) × Sym({±
√

3}) × Sym({±
√

5}) ∼= Z/2 × Z/2 × Z/2.

(c) Find α ∈ E such that E = Q(α).

Set α =
√

2+
√

3+
√

5. Using the above description of G = Gal(E/Q), we obtain
Gal(E/Q(α)) = {σ ∈ G | σ(α) = α} = {1}. It follows that Q(α) = E.
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Problem 4:

Let E be a finite extension of Q. Show that E contains only finitely many roots
of 1.

Set n = [E : Q] and let α ∈ E be a primitive m-th root of unity. Then φ(m) =
[Q(α) : Q] ≤ n, where φ(m) is Euler’s phi function. Recall that φ(ab) = φ(a)φ(b)
whenever (a, b) = 1, and φ(pd) = (p − 1)pd−1 for each prime p and d ≥ 1. These
identities imply that m ≤ 2φ(m)2 ≤ 2n2. Finally, since there are at most m
primitive m-th roots of 1, the total number of roots of 1 is at most

2n
2

∑

m=1

m =

(

2n2 + 1

2

)

.

Problem 5:

Let K/F be a finite Galois extension such that [K : F ] = pn where p is a prime
and n ≥ 1. Show that:

(a) There exists a subextension F ⊂ E ⊂ K such that [E : F ] = p.
(b) Any such subextension E is Galois over F .

By the Main Theorem of Galois theory, we need to prove that, if G is any non-
trivial p-group, then G contains a subgroup of index p and every such subgroup is
normal. It follows from Sylow’s first theorem that G has a subgroup of index p.
Let H ≤ G be any subgroup of index p, and let C ⊂ G be the center of G. Then
C 6= {1}. If C 6⊂ H, then G is generated by C and H, so H is normal. Otherwise
H/C is a subgroup of index p in G/C, and it follows by induction on |G| that H/C
is normal in G/C, hence H is normal in G.

Problem 6:

Let F ⊂ E ⊂ K be field extensions such that K/F is Galois. Set G = Gal(K/F )
and H = Gal(K/E). Show that AutF (E) ∼= NG(H)/H.

For each σ ∈ G we have σ(E) = E ⇔ Gal(K/σ(E)) = Gal(K/E) ⇔ σHσ−1 = H
⇔ σ ∈ NG(H). It follows that restriction of automorphisms gives a well defined
group homomorphism

φ : NG(H) → AutF (E) .

The kernel of this homomorphism is H = Gal(K/E). We must show that φ is
surjective. Let σ : E → E be any element of AutF (E). Since K/F is Galois, K is
a splitting field over F of some polynomial f(x) ∈ F [x]. Since K is also a splitting
field of f(x) over E, and since f(x) is preserved by σ, it follows that σ can be
extended to an automorphism of K.

Problem 7:

Let f(x) ∈ Q[x] be an irreducible polynomial of degree 4 with exactly two real
roots. Show that Gal(f(x)/Q) is either S4 or D4.

Write f(x) = (x − α)(x − β)(x − γ)(x − γ) where α, β ∈ R and γ ∈ C r R.
Then the splitting field of f(x) over Q is E = Q(α, β, γ), and G = Gal(E/Q) is a
subgroup of S4 = Sym({α, β, γ, γ}). Consider the tower of extensions

Q ⊂ Q(α) ⊂ Q(α, β) ⊂ E .

The first extension has degree 4, and the last extension has degree 2. If β /∈ Q(α),
then the middle extension has degree 3, so [E : Q] = 24 and G = S4.
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Otherwise the middle extension is trivial and |G| = [E : Q] = 8. Since Q(α)/Q

is not a normal field extension, H = Gal(E/Q(α)) is not a normal subgroup in G.
In particular, G is not Abelian, which implies that no element of G has order 8,
and at least one element σ ∈ G has order greater than 2. Write H = {1, τ} and
S = 〈σ〉 = {1, σ, σ2, σ−1}. Since [G : S] = 2, S is a normal subgroup of G. It
follows that for each element ν ∈ G we have νσν−1 ∈ {σ, σ−1}. We deduce that
{1, σ2} is also a normal subgroup of G, hence τ 6= σ2, so G = 〈σ, τ〉 is generated by
σ and τ . Finally, since G is not Abelian we must have τστ−1 = σ−1, so σ and τ
satisfy the relations of the Dihedral group D4 (σ4 = 1, τ2 = 1, and τστ−1 = σ−1).

Problem 8:

Let F be a perfect field and F ⊂ E an algebraic field extension, such that every
non-constant polynomial f(x) ∈ F [x] has a root in E. Show that E is algebraically
closed. (Hint: Primitive element theorem.)

We first show that if f(x) ∈ F [x] is any polynomial, then E contains a splitting
field for f(x) over F . To see this, let K be any splitting field for f(x) over F . Since
F is perfect it follows that K/F is a finite separable extension, so there exists a
primitive element α ∈ K such that K = F (α). Let g(x) ∈ F [x] be the minimal
polynomial for α. By assumption we can find α′ ∈ E such that g(α′) = 0. Then
F (α′) ∼= F [x]/(g(x)) ∼= K is a splitting field for f(x) contained in E.

To see that E is algebraically closed, it is enough to show that, if E ⊂ E′ is any
finite field extension, then E = E′. Let α ∈ E′ be any element. Since α is algebraic
over F , it has a minimal polynomial f(x) ∈ F [x]. Since E contains a splitting field
for f(x), it follows that all roots of f(x) are contained in E, including α. This
proves that E′ = E.


