ALGEBRA 2, HOMEWORK 2 SOLUTIONS

Problem 1:

Let W = {(z,y,2) € A% | 22 = ¢® and y?> = 23} where k is an algebraically
closed field. Show that W is Zariski closed and find I(W) C k[z,y, 2].

Set J = (x? — 3,942 — 23) C klx,y,2]. Then W = Z(J) is Zariski closed and
J C I(W). The ring R = k[x,y,z]/J is a free module over the subring k[z] with
basis 1,z,y,zy. It follows that any polynomial f € k[z,y,z] can be written as
f=91(2) + g2(2)x + g3(2)y + ga(z)zy + h where g; € k[z] and h € J. Notice that
for t € k we have f(t9,%,¢%) = g1 (t*) + g2 (¢*)t° + g3 (¢*)t® + ga (¢* )15, If f € I(W),
then f(t9,t5,¢%) = 0 for all t € k, so g1(T*) + g2(T*)T® + g3(T*) TS + go(THT'® =
0 € k[T]. Since 1,T°,T¢ TS € K[T] are linearly independent over the subring
K[T*], we deduce that g; = go = g3 = g4 = 0, so f = h € J. This shows that
IW) =J=(2?—y3,y% - 23).

Problem 2:
Set I = (y?+2xy? +22 — 24,
field. Find the radical vT C k[
If char(k) = 3 then I = I(Z(I)) = I({(0,0)} U ({1} x k)) = (2% — z, 2y — y).
If char(k) # 3 then T = I(Z(I)) = 1({(0,0),(1,0)}) = (2% — z,%).

Problem 3:
(a) Let K be a field and R, S C K two normal subrings. Show that RN S is also
a normal ring.

Let Ry = (R~ 0)"'R C K denote the field of fractions of R. Notice that
(RN S)y € RyN Sy C K. By assumption R is integrally closed in Ry and S is
integrally closed in Sp. Let x € (RN S)g be integral over RN S. Then = € Ry is
integral over R, so x € R. Similarly, z € Sy is integral over S, so x € S. We obtain
x € RN S. This shows that RN .S is a normal ring,.

22 —2®) C k[z,y], where k is an algebraically closed
x,y]. (Does it depend on the characteristic of k?)

(b) Show that if k is any field, then R = k[z,v, 2]/(2? — xy) is a normal ring.
Hint: R & k[z, xt, xt?] C k(x,t).

Let ¢ : klx,y,z] — k[z,t] be the ring homomorphism defined by ¢(x) = z,
d(y) = xt?, and ¢(z) = zt. Then (2? — zy) C Ker(¢). The ring R is a free k[x, y]-
module with basis 1, z, so every polynomial f(z,y,z) € k[x,y, z] can be written as
f(x,y,2) = fo(z,y) + fi(x,y)z + h where fo, f1 € k[z,y] and h € (2% — zy). If
f € Ker(¢), then fo(z,xt?) + fi(z,2t?)xt = 0 € k[z,t]. Since 1 and zt are linearly
independent over the subring k[z,t?], it follows that fo = f1 = 0 € k[z,y], so
f = h € (22—xy). This shows that Ker(¢) = (22—zy), so R = k[z, xt, 2t?] C k(z,t).
Notice that k[z, xt, xt?] = klx,t] N k[xt?,t71] C k(z,t). Since k[z,t] and k[xt? ¢t~ !]
are normal rings, we deduce that R = k[x, zt, 2t?] is normal.

Problem 4:

Let C and D be additive categories and let F' : C — D be an additive functor.
Prove that F'(0) =0 and F(A® B) = F(A) @ F(B) for all objects A, B € ob(C).

Set Z = F(0¢), let 0z € Homp(Z,Z) be the zero morphism, and let 1z €
Homp(Z, Z) be the identity morphism. Then 1z = F(1g) = F(0p) = 0z, the last
equality because F' is additive. If M € obD is any object and f € Homp(Z, M),
then f = foly = fo0z =0zm, so Homp(Z, M) = {0z a}. Similarly we obtain
Homp(M,Z) = {0ar,z}. It follows that Z is a zero object in D.
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Let A1, Az € obC and set S = A; @ As. Then there are morphisms p; : S — A;
and i; : A; — S for j = 1,2, such that pjiy = 6514, and i1p1 + i2p2 = 1gs.
Set I; = F(i;) : F(4;) — F(S) and P; = F(p;) : F(S) — F(A;). Since F is
additive we then obtain P;I = d; 1r(a;) and I1 Py + Io P = 1p(g). This shows
that F(A; & Ag) = F(S) = F(A1) ® F(As).

Problem 5:
Let R be a ring and let C be the category of complexes of R-modules. Show that
C is an abelian category.

Given a morphism « : A, — B, of complexes of R-modules, define K; = Ker(a; :
A; — B;) and C; = Coker(«;). The differentials of A, and B, define differentials
K; — K;_1 and C; — C;_;. We obtain new complexes K, and C,, and the
inclusion K, — A, is a kernel of a while the projection B, — C, is a cokernel. The
other axioms of an abelian category should also be checked. (This was a bit short,
but nothing is difficult.)

Problem 6:
Let R be any ring. Show that the intersection of all maximal left ideals in R is
equal to the intersection of all maximal right ideals in R.

This is a consequence of the results proved in chapter 4. Here is a summary of
the ideas. Define rad(R) C R and rad’'(R) C R by

rad(R)= (] I  and rad’(R) = N J.

ICR max left JCR max right

Then rad(R) is a left ideal of R and rad’(R) is a right ideal.
We first show that rad(R) is a two-sided ideal. This follows from the identity

rad(R) = m anng(R/I).

ICR max left

One inclusion is clear because anng(R/I) C I. The other inclusion follows because

anng(R/I) = ﬂ anng(y) .
0#£yeER/I

Notice that if I is a maximal left ideal in R, then R/I is an irreducible left R-
module, so for 0 # y € R/I we have R/anng(y) = Ry = R/I, which shows that
anng(y) is a maximal left ideal of R.

We next show that every element of rad(R) is quasi-regular. Let z € rad(R). If z
is not left quasi-regular, then R(1—z) # R, so we can choose a maximal left ideal I
such that R(1 —z) C I C R. But then z,1—2 € I, so 1 € I, a contradiction. Since
z is left quasi-regular, we can choose z’ € R such that (1 — 2’)(1 — z) = 1. Then
2/ =2'z— 2z €erad(R), so 2’ is also left quasi-regular, and we can find 2” € R such
that (1—2")(1—2') =1. Weobtain z = 2" and (1-2)(1-2") = (1-2")(1—2) = 1.

Assume that rad(R) ¢ rad’(R). Then we can choose a maximal right ideal .J
such that rad(R) ¢ J. Since rad(R) is a right ideal, we obtain rad(R) + J = R,
so we can write 1 = z 4 b with z € rad(R) and b € J. Since z is quasi-regular,
we can choose 2/ € R such that b(1 — 2’) = (1 —2)(1 —2’) = 1. But then 1 € J,
a contradiction. We deduce that rad(R) C rad’(R). A symmetric argument gives
rad’(R) C rad(R).



Problem 7:
Prove that the functor Homyz(—, Q) : Z-mod®” — Z-mod is exact. (This means
that Q is an injective Z-module.)

Let A C B be Z-modules. It is enough to show that the restriction map
Homgy(B,Q) — Homgz(A, Q) is surjective. Let ¢ € Homyz(A, Q) and consider the
set S of pairs (C, ) for which C' is a submodule with ACC C B, v :C — Qis a
Z-homomorphism, and 1|4 = ¢. Define a partial order on S by (C,¢) < (C', ')
if and only if C C C” and ¥'|c = 9. Then S is inductively ordered, so by Zorn’s
lemma we can choose a maximal element (C,¢) € S. We claim that C = B.
Otherwise choose v € B~ C and set C' = C + Zzx. If C N Zx = 0, then set
Y =1yp®0:C" =C®Zx — Q. We obtain (C, ) < (C',¢'), a contradiction. Oth-
erwise we have C' N Zx = Zmax for some m > 2. This time we obtain a well-defined
extension ¥’ : C' — Q of 4 by setting ¢’(c + px) = 9 (c) + Z4p(mz) for ¢ € C and
p € Z. We obtain (C,¢) < (C',4'), a contradiction. We conclude that C = B.
Now ¢ € Homgz(A, Q) is the image of ¢ € Homgy(B,Q), as required.

Problem 7:
Let R be a commutative ring and S C R a multiplicative subset.
(a) Show that S™'M = M ®@p S™'R for any R-module M.

By localizing the R-homomorphism M — M ®zr S~ 'R defined by m — m®1, we
obtain an S~!R-homomorphism S™*M — M ®r S~!R given by m/s — m ® 1/s.
The R-bilinear map M x S™'R — S~1M defined by m ® r/s + rm/s induces the
inverse map.

(b) The functor F : R-mod — S~!R-mod defined by F(M) = S~1M is exact.

Let A C B be R-modules. We must show that the induced map S~™'4 — S~'B
of S~'!R-modules is injective. Assume that a/s € S~'A is mapped to zero in
S~!B. Then there exists ¢t € S such that ta = 0 € B. But then ta =0 € A C B,
soa/s=0¢€ S1A.

Problem 8:

Let R be a commutative local Noetherian ring with residue field ¥k = R/m, and let
M be a finitely generated R-module. Choose z1,...,z, € M such that z7,...,7,
is a basis for the k-vector space M /mM.

(a) Prove that M is generated by z1,...,2, as an R-module.

Set N = {(x1,...,2,) C M and set Q = M/N. Then 0 = N - M — Q — 0 is
an exact sequence of R-modules. Since the functor — ®pg k is right exact, we obtain
an exact sequence of k-vector spaces N/mN — M/mM — Q/m@Q — 0. Since the
first map is an isomorphism, we have Q = m@), so @ = 0 by Nakayama’s lemma.

(b) If M is flat, then M is a free R-module with basis x1,..., 2.

Consider the map ¢ : R™ — M defined by ¢(aq,...,a,) = a121 + -+ + an@y,
and set K = Ker(¢) C R"™. The short exact sequence 0 — K — R* — M — 0
gives the long exact sequence Torf (M, k) — K/mK — (R/m)™ — M/mM — 0.
The last map is an isomorphism, so if M is flat then it follows that Tor?(M, k) =0
and K/mK = 0. Since R is Noetherian and R™ is a finitely generated R-module,
we deduce that K is finitely generated, so K = 0 by Nakayama’s lemma.
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Problem 9:

Let R be a commutative Noetherian ring and M a finitely generated R-module.
Then the following are equivalent:

(a) M is a projective R-module.

(b) M is a flat R-module.

(¢) For every prime ideal P C R, Mp is a free Rp-module.

(a) = (b): Any projective module is a direct summand of a free module.

(b) = (c¢): Assume that M is a flat R-module and let P C R be a prime ideal.
It is enough to show that Mp is a flat Rp-module. Let 0 — A; — Ay — A3 — 0 be
an exact sequence of Rp-modules. Then A, is also an exact sequence of R-modules,
and we have MP@RP A, = (M®RRP) QRp A, = M®pg (RP QRp A*) = MQ®grA..
This sequence is exact because M is a flat R-module.

(¢) = (a): It is enough to show that if Mp is a projective Rp-module for every
prime ideal P C R, then M is a projective R-module. For this we need to show
that if A — B is a surjective homomorphism of R-modules, then Hompg(M, A) —
Homp(M, B) is also surjective. Let C' be the cokernel, so that Hompr(M, A) —
Hompg(M, B) — C — 0 is an exact sequence of R-modules. We will show that C =
0. It follows from the lemma below that Hompg, (Mp, Ap) — Homg, (Mp, Bp) —
Cp — 0 is exact for every prime ideal P C R. Since Mp is a projective Rp-
module, this implies that Cp = 0. Assume that 0 # = € C' is any non-zero element.
Then anng(x) € R is a proper ideal, so we can find a maximal ideal P with
anng(z) C P C R. But then z/1 # 0 € Cp, a contradiction.

Lemma: Let R be a commutative ring, let M and N be R-modules, and let
S C R be a multiplicatively closed subset. Assume that M is finitely presented.
Then S~!Hompg(M, N) =2 Homg-15(S~'M,S~IN).

Proof: By localizing the map Homg (M, N) — Homg-1(S7*M,S™LN) we ob-
tain an S~!R-homomorphism S~ Hompg(M,N) — Homg-15(S~1M,S™IN). If
M = RF is a free of finite rank, then this map is an isomorphism since

S~ Homp(R", N) = S~HN*) = (S7'N)* = Homg 1z ((ST'R)*, STIN)
= Homg-1 (S 1 (R¥),S7IN).
Suppose that M is finitely presented, and choose a presentation F/ — F — M — 0

where F’ and F are finitely generated free R-modules. We have a commutative
diagram with exact columns:

0 0

l !

S~'Hompr(M,N) ——— Homg-1x(S™'M,S~IN)

l l

S~ Homp(F,N) ——— Homg-1x(S™'F,S7IN)

l l

S~ Homp(F',N) ——— Homg-15(S~'F',S7IN)
Since the two lower horizontal maps are isomorphisms, so is the top horizontal map,
as required.



