MATH 535 PROBLEM SET 1 DUE WEDNESDAY 9/20 IN CLASS

Try to solve all of the following problems. Write up at least 4 of them.

Problem 1. Show that $I(\mathbb{A}^n) = (0)$.

Problem 2. If $I \subset R$ is any ideal, show that \sqrt{I} is a radical ideal.

Problem 3.

- (a) $S \subset I(V(S))$.
- (b) $W \subset V(I(W))$.

(c) If W is an algebraic set then W = V(I(W)).

(d) If $I \subset k[x_1, \ldots, x_n]$ is any ideal then $V(I) = V(\sqrt{I})$ and $\sqrt{I} \subset I(V(I))$.

Problem 4.

(a) Show that the set $X = \{(t, t^2, t^3) \in \mathbb{A}^3 \mid t \in k\}$ is closed in \mathbb{A}^3 and find I(X).

(b) Same for the subset $Y = \{(t^3, t^4, t^5) \in \mathbb{A}^3 \mid t \in k\}$ of \mathbb{A}^3 .

(c) Show that I(Y) can't be generated by less than three polynomials.

Hint for (c): Is I(Y) a graded ideal? Are you sure??

Problem 5. Show that $W = \{(x, y, z) \in \mathbb{A}^3 \mid x^2 = y^3 \text{ and } y^2 = z^3\}$ is an irreducible closed subset of \mathbb{A}^3 and find I(W).

Problem 6. Find $\sqrt{(y^2 + 2xy^2 + x^2 - x^4, x^2 - x^3)}$.

Problem 7. Let X be a Noetherian topological space.

(a) If an irreducible closed set Y is contained in a union $\cup X_i$ of finitely many closed sets X_i , then $Y \subset X_i$ for some *i*.

- (b) X has finitely many components.
- (c) X is the union of its components.
- (d) X is not the union of any proper subset of its components.

Problem 8. Let X be any space with functions and $Y \subset \mathbb{A}^n$ an affine variety. Show that a function $f : X \to Y$ is a morphism if and only if each coordinate function $f_i : X \to k$ is regular for $1 \le i \le n$.

Problem 9. Let $X = V(xy - zw) \subset \mathbb{A}^4$ and $U = D(y) \cup D(w) \subset X$. Define a regular function $f : U \to k$ by f = x/w on D(w) and f = z/y on D(y). Show that there are no polynomial functions $p, q \in A(X)$ such that $q(a) \neq 0$ and f(a) = p(a)/q(a) for all $a \in U$.