ALGEBRAIC GEOMETRY I, PROBLEM SET 5

Problem 1. (a) Let $C \subset \mathbb{P}^2$ be a non-singular curve and $Y \subset \mathbb{P}^2$ an irreducible curve different from C. Set $Y.C = \sum_P I(Y \cdot C; P) P \in \text{Div}(C)$. Show that $\mathcal{L}([Y])|_C \cong \mathcal{L}(Y.C)$ on C.

(b) Let $L = V_+(f)$ and $M = V_+(g) \subset \mathbb{P}^2$ be lines (not equal to C) where $f, g \in k[x, y, z]$ are linear forms. Then the divisor of $f/g \in k(C)$ is (f/g) = L.C - M.C.

Problem 2. Let $E \subset \mathbb{P}^2$ be an elliptic curve and $P_0 \in E$ any point. Show that the map $E \to C\ell^{\circ}(E)$ given by $P \mapsto P - P_0$ is bijective.

Problem 3. Let $D: S \to M$ be an *R*-derivation and $p(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$ a polynomial. Then $D(p(a_1, \ldots, a_n)) = \sum_{i=1}^n \frac{\partial p}{\partial x_i}(a_1, \ldots, a_n)D(a_i)$ for all elements $a_1, \ldots, a_n \in S$.

Problem 4. Let $E = V_+(zy^2 - x^3 + z^2x) \subset \mathbb{P}^2$, char $(k) \neq 2$. Show that $\Omega_E \cong \mathcal{O}_E$. [Hint: Compute the divisor of the section d(x/z) of Ω_E .]

Problem 5. Let $\operatorname{GL}_n(k)$ act on $\operatorname{Gr}(d, n)$ by $g.V = \{g(x) \mid x \in V\}$. Show that for any points $V_1, V_2 \in \operatorname{Gr}(d, n)$ there exists an element $g \in \operatorname{GL}_n(k)$ such that $g.V_1$ and $g.V_2$ are both in $U_{\{1,\ldots,d\}} \subset \operatorname{Gr}(d, n)$. Conclude that $\operatorname{Gr}(d, n)$ is separated.

Problem 6. (a) Let $0 be integers and <math>E = k^n$. Show that the set $\{(V, W) \in \operatorname{Gr}(p, E) \times \operatorname{Gr}(q, E) \mid V \subset W\}$ is closed in $\operatorname{Gr}(p, E) \times \operatorname{Gr}(q, E)$.

(b) Let $0 < d_1 < d_2 < \cdots < d_m < n$ be integers and let $F\ell(d_1, \ldots, d_m; E)$ be the set of flags of subspaces $V_1 \subset V_2 \subset \cdots \subset V_m \subset E$ such that dim $V_i = d_i$. Give this set a structure of projective variety.

Problem 7. Set $E = k^n$, $X = \operatorname{Gr}(d, E)$, and let $F_1 \subset F_2 \subset \cdots \subset F_n = E$ be a flag of subspaces such that dim $F_i = i$. Given a sequence of integers $a = (0 < a_1 < a_2 < \cdots < a_d \le n)$, let $\Omega_a^{\circ}(F_{\bullet})$ be the set of all $V \in X$ such that dim $(V \cap F_p) = i$ whenever $a_i \le p < a_{i+1}, 0 \le i \le d$. (We set $a_0 = 0$ and $a_{d+1} = n + 1$.)

(a) Show that $\Omega_a^{\circ}(F_{\bullet}) \cong \mathbb{A}^m$ where $m = \sum a_i - \binom{d+1}{2}$.

(b) Show that the orbits for the action of the upper triangular matrices on X are the sets $\Omega_a^{\circ}(F_{\bullet})$ for all sequences a where $F_i = \operatorname{span}\{e_1, \ldots, e_i\}$.

(c) The Schubert varieties in X are the closures $\Omega_a(F_{\bullet}) = \Omega_a^{\circ}(F_{\bullet})$. Find a singular Schubert variety in some Grassmannian.