
ALGEBRAIC GEOMETRY I, PROBLEM SET 1 SOLUTIONS

Problem 1. Show that I(An) = (0).

Solution: Start by showing that any algebraically closed field k is infinite, e.g. by
showing that there are infinitely many monic irreducible polynomials in k[x]. Then
use induction on n and the fact that if k is infinite and 0 6= f ∈ k[x] then f(a) 6= 0
for some a ∈ k.

Problem 4. [Hartshorne I.1.2 and I.1.11]
(a) Show that the set X = {(t, t2, t3) ∈ A

3 | t ∈ k} is closed in A
3 and find I(X).

(b) Same for the subset Y = {(t3, t4, t5) ∈ A
3 | t ∈ k} of A3.

(c) Show that I(Y ) can’t be generated by less than three polynomials.
Hint: Is I(Y ) a graded ideal? Are you sure??

Solution: (b) Let Y = {(t3, t4, t5) ∈ A
3 | t ∈ k}. Set I = (y2 − xz, yz − x3, z2 −

x2y) ⊂ k[x, y, z]. I claim that Y = V (I).
Since the generators of Y vanish on the points of Y we have Y ⊂ V (I). Let

p = (x, y, z) ∈ V (I). If x = 0 then y = z = 0 as well, so p ∈ Y . If x 6= 0, set
t = y/x and notice that

t3 = y3/x3 = y xz/x3 = yz/x2 = x3/x2 = x

t4 = tx = y

t5 = ty = y2/x = xz/x = z

This shows that p = (x, y, z) = (t3, t4, t5) ∈ Y .
Now let f ∈ k[x, y, z] be any polynomial. Notice that if we replace any occurrence

of y2 in f by xz, the resulting polynomial has the same residue as f modulo I.
Similarly yz can be replaced with x3 and z2 can be replaced with x2y. Keep
replacing monomials in this way until we reach a polynomial of the form h =
h1(x) + y h2(x) + z h3(x) with h1, h2, h3 ∈ k[x], such that h ≡ f modulo I. (Notice
that the process of replacing monomials has to stop since the number of y’s and z’s
in each monomial decreases at each step.)

I claim that I(Y ) = I. We already know that I ⊂ I(Y ), so let f ∈ I(Y ). Then
choose h = h1(x) + yh2(x) + zh3(x) as above. Then we have

h1(t
3) + t4 h2(t

3) + t5 h3(t
3) = h(t3, t4, t5) = f(t3, t4, t5) = 0

for all t ∈ k which implies that h1 = h2 = h3 = 0 by comparing powers of t. We
conclude that f ≡ 0 modulo I so f ∈ I.

(c) Define a grading of k[x, y, z] by taking the degrees of x, y, and z to be 3, 4,
and 5, respectively. Then the generators of I are homogeneous of degrees 8, 9, and
10. Now suppose I = (f, g) is generated by two polynomials. Then we can write

y2 − xz = p1 f + p2 g

for some p1, p2 ∈ k[x, y, z]. Since this equation must still hold if we clear all terms
of degree above 10, we get

y2 − xz = α1 f̃ + α2 g̃
1
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where f̃ and g̃ are the sums of the terms of degrees at most 10 in f and g, and
αi = pi(0, 0, 0) ∈ k. Here it is crucial that the degree of any variable times f or g
has all terms of degree at least 11. Similarly we can write

yz − x3 = β1 f̃ + β2 g̃ and z3 − x2y = γ1 f̃ + γ2 g̃

for some βi, γi ∈ k. But now the three dimensional vector space spanned by the
generators of I is spanned by two elements, which is impossible.

Problem 6. Show that W = {(x, y, z) ∈ A
3 | x2 = y3 and y2 = z3} is an irre-

ducible closed subset of A3 and find I(W ).
Hint: Construct a homomorphism k[x, y, z] → k[T ] with kernel I(W ).

Solution: Define a k-algebra homomorphism α : k[x, y, z] → k[t] by α(x) = t9,
α(y) = t6, and α(z) = t4. Then I = (x2 − y3, y2 − z3) ⊂ ker(α). If f ∈ k[x, y, z]
is any polynomial we can write f = g1(z) + g2(z)x + g3(z)y + g4(z)xy + h where
gi ∈ k[z] and h ∈ I, and α(f) = g1(t

4) + g2(t
4)t9 + g3(t

4)t6 + g4(t
4)t15. If α(f) = 0

then g1 = g2 = g3 = g4 = 0, so f = h ∈ I. This shows that I = ker(α). In
particular k[x, y, z]/I is a subring of the domain k[t], so I must be a prime ideal.
From this it follows that W = V (I) is irreducible and I(W ) = I.

Problem 7. Find
√

(y2 + 2xy2 + x2 − x4, x2 − x3).

Solution:
√
I = I(V (I)).

Problem 10. Let X = V (xy − zw) ⊂ A
4 and U = D(y) ∪ D(w) ⊂ X. Define

a regular function f : U → k by f = x/w on D(w) and f = z/y on D(y).
Show that there are no polynomial functions p, q ∈ A(X) such that q(a) 6= 0
and f(a) = p(a)/q(a) for all a ∈ U .

Solution: Let R = k[X] = k[x, y, z, w]/(xy − zw). It is enough to show that if
q ∈ R is any regular function such that q(u) 6= 0 for all u ∈ U then q is constant.
Since the restriction of q to D(w) ⊂ X is a non-zero regular function, q is a unit

in k[D(w)] = Rw = k[x, y, w]w. (The identification of Rw with k[x, y, w]w is by
mapping z to xy/w.) The only units in this ring are the elements of the form αwn

where α ∈ k∗ and n ∈ Z. If n < 0 we can replace q with q−1, so assume n ≥ 0.
Then since (0, 1, 0, 0) ∈ D(y) ⊂ U we must have q(0, 1, 0, 0) 6= 0, so n = 0.

Problem 11. Let X be an affine variety such that the affine coordinate ring A(X)
is a unique factorization domain. Let U ⊂ X be an open subset. Show that if
f : U → k is any regular function, then there exist p, q ∈ A(X) such that q(x) 6= 0
and f(x) = p(x)/q(x) for all x ∈ U .

Solution: If f, g, p, q are elements of a UFD R such that gcd(f, g) = gcd(p, q) = 1
and f/g = p/q ∈ R0 then f = p and g = q up to units.

Problem 12. (a) k[An
r {0}] = k[x1, . . . , xn] for n ≥ 2.

(b) An r {0} is not an affine variety for n ≥ 2.
(c) Every global regular function on P

n is constant, i.e. k[Pn] = k.
(d) Pn is not quasi-affine for n ≥ 1.

Solution: (a) Any regular function on U = An r {0} can be written as f/g where
f, g ∈ k[An] and g 6= 0 on U . This implies that g is constant.

(b) The inclusion U ⊂ A
n corresponds to the identity map k[An] = k[An], so if

U was affine, then this inclusion would have to be an isomorphism.
(c) The regular functions of degree zero in k[An+1

r {0}] are all constant by (a).
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(d) If Pn is quasi-affine then there exists an injective morphism ϕ : Pn → Am

for some m. Since each coordinate function ϕi is regular, it must be constant, so
ϕ(Pn) is a single point.

Problem 13. Let ϕ : A1 → V (y2 − x3) ⊂ A
2 be the morphism given by ϕ(t) =

(t2, t3). Show that ϕ is bijective, but not an isomorphism.

Solution: The k-algebra homomorphism ϕ∗ : k[x, y]/(y2 − x3) → k[t] is defined
by ϕ∗(x) = t2 and ϕ∗(y) = t3. Since this map is not surjective, ϕ is not an
isomorphism.

Problem 15. Let X ⊂ P
n be a projective variety with projective coordinate ring

R = k[x0, . . . , xn]/I(X). Let f ∈ R be a non-constant homogeneous element.
Show that D+(f) ⊂ X is an open affine subvariety with affine coordinate ring
k[D+(f)] = R(f).

Solution: Let F ∈ k[x0, . . . , xn] be a representative for f . Then we know that
D+(F ) ⊂ Pn is affine, which implies that the closed subset D+(f) = D+(F )∩X of
D+(F ) is affine as well. This construction can also be used to compute the affine
coordinate ring of D+(f).

Problem 19. Assume that the characteristics of k is not 2. If C = V+(f) ⊂ P
2 is

any curve defined by an irreducible homogeneous polynomial f ∈ k[x, y, z] of degree
2, then C ∼= P1.

Solution: Write f(x, y, z) = a x2+ b xy+ c xz+ p y2+ q yz+ r z2 ∈ k[x, y, z] where
a, b, c, p, q, r ∈ k. Then f(x, y, z) = (x, y, z) ·A · (x, y, z)T where A is the matrix

A =





a b/2 c/2
b/2 p q/2
c/2 q/2 r



 .

Since A is symmetric and char(k) 6= 2, we can write BABT = diag(d1, d2, d3)
for some invertible matrix B (check this!). If we use B to change coordinates on
P
2 we may therefore assume that f(x, y, z) = d1 x

2 + d2 y
2 + d3 z

2. Since f is
irreducible, all di must be non-zero, so by further scaling the variables we may
assume f = x2 + y2 + z2. Finally, we can define an explicit isomorphism ϕ : P1 ∼−→
V+(x

2 + y2 + z2) ⊂ P2 by ϕ(s : t) = (2st : s2 − t2 :
√
−1(s2 + t2)).


