ALGEBRAIC GEOMETRY I, PROBLEM SET 1 SOLUTIONS

Problem 1. Show that I(A™) = (0).

Solution: Start by showing that any algebraically closed field k is infinite, e.g. by
showing that there are infinitely many monic irreducible polynomials in k[z]. Then
use induction on n and the fact that if &k is infinite and 0 # f € k[z] then f(a) #0
for some a € k.

Problem 4. [Hartshorne I.1.2 and 1.1.11]
(a) Show that the set X = {(¢,t2,3) € A® | t € k} is closed in A% and find I(X).
(b) Same for the subset Y = {(t3,t4,t°) € A3 | t € k} of A3.
(c) Show that I(Y') can’t be generated by less than three polynomials.
Hint: Is I(Y) a graded ideal? Are you sure??
Solution: (b) Let Y = {(3,t*,¢5) € A% |t € k}. Set [ = (y*> — wz,yz — x3,2% —
2?y) C k[z,y, 2]. I claim that Y = V().
Since the generators of ¥ vanish on the points of ¥ we have Y C V(I). Let
p=(x,y,2) € V(I). fx =0theny =2=0as well,sop €Y. If z # 0, set
t = y/x and notice that

3=y e} =yaz/ad =yz/? =2 )2 =2
t4:tx:y
5 4 2 _
v =ty=y"Jr=xz/r =2

This shows that p = (z,y, 2) = (£3,t4,#5) € Y.

Now let f € k[z,y, z] be any polynomial. Notice that if we replace any occurrence
of y? in f by xz, the resulting polynomial has the same residue as f modulo I.
Similarly yz can be replaced with x> and 22 can be replaced with z2y. Keep
replacing monomials in this way until we reach a polynomial of the form h =
hi(x) 4y he(z) 4+ z hg(z) with hy, ha, hs € k[z], such that h = f modulo I. (Notice
that the process of replacing monomials has to stop since the number of 3’s and z’s
in each monomial decreases at each step.)

I claim that I(Y) = I. We already know that I C I(Y), so let f € I(Y). Then
choose h = hq(z) + yho(x) + zhs(z) as above. Then we have

ha(t3) 4+ t* ho(t3) 4+ 2 ha(t3) = h(t3,t4, %) = f(£3,¢4,6°) = 0

for all ¢ € k which implies that h; = hy = hg = 0 by comparing powers of t. We
conclude that f =0 modulo I so f € I.

(c) Define a grading of k[x,y, z] by taking the degrees of z, y, and z to be 3, 4,

and 5, respectively. Then the generators of I are homogeneous of degrees 8, 9, and
10. Now suppose I = (f,g) is generated by two polynomials. Then we can write

v —azz=p f+payg
for some p1,ps € k[z,y, 2]. Since this equation must still hold if we clear all terms
of degree above 10, we get

Yy —xz=a; f+azg
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where f and g are the sums of the terms of degrees at most 10 in f and g, and
a; = pi(0,0,0) € k. Here it is crucial that the degree of any variable times f or g
has all terms of degree at least 11. Similarly we can write

yz— 2> =61 f+ B2 g and 2 —2ly=yf+7g

for some (;,7; € k. But now the three dimensional vector space spanned by the
generators of I is spanned by two elements, which is impossible.

Problem 6. Show that W = {(z,y,2) € A3 | 22 = 3 and y? = 23} is an irre-
ducible closed subset of A® and find I(W).

Hint: Construct a homomorphism k[x,y, z] — k[T] with kernel T(W).
Solution: Define a k-algebra homomorphism « : k[z,y,2] — k[t] by a(z) = t°,
a(y) =15, and a(z) = t*. Then I = (22 — y?,y% — 23) C ker(a). If f € k[z,9, 2]
is any polynomial we can write f = g1(z) + ¢g2(2)x + g3(2)y + ga(2)xy + h where
gi € k[z] and h € I, and a(f) = g1(t*) + g2 (¢*)t° + g3 (¢*)t® + ga(¢*)t'°. If a(f) =0
then g1 = g2 = g3 = g4 = 0, so f = h € I. This shows that I = ker(a). In
particular k[z,y, z]/I is a subring of the domain k[t], so I must be a prime ideal.
From this it follows that W = V(I) is irreducible and I(W) = I.

Problem 7. Find /(32 + 22y% + 22 — 24,22 — 23).
Solution: /I = I(V(I)).

Problem 10. Let X = V(zy — 2w) C A* and U = D(y) U D(w) C X. Define
a regular function f : U — k by f = z/w on D(w) and f = z/y on D(y).
Show that there are no polynomial functions p,q € A(X) such that g(a) # 0
and f(a) = p(a)/q(a) for all a € U.

Solution: Let R = k[X] = k[z,y, z,w]/(zy — zw). It is enough to show that if
q € R is any regular function such that g(u) # 0 for all uw € U then ¢ is constant.
Since the restriction of ¢ to D(w) C X is a non-zero regular function, ¢ is a unit
in k[D(w)] = Ry = k[z,y,w]w. (The identification of R,, with k[z,y,w], is by
mapping z to xy/w.) The only units in this ring are the elements of the form aw™
where o € k* and n € Z. If n < 0 we can replace ¢ with ¢!, so assume n > 0.
Then since (0,1,0,0) € D(y) C U we must have ¢(0,1,0,0) # 0, so n = 0.

Problem 11. Let X be an affine variety such that the affine coordinate ring A(X)
is a unique factorization domain. Let U C X be an open subset. Show that if
f:U — k is any regular function, then there exist p,q € A(X) such that ¢(z) # 0
and f(z) =p(z)/q(z) for all z € U.

Solution: If f, g, p, q are elements of a UFD R such that ged(f, g) = ged(p,q) =1
and f/g=p/q € Ry then f = p and g = ¢ up to units.

Problem 12. (a) k[A™ \ {0}] = k[z1,...,2,] for n > 2.
(b) A™ ~ {0} is not an affine variety for n > 2.
(c) Every global regular function on P” is constant, i.e. k[P"] = k.
(d) P™ is not quasi-affine for n > 1.

Solution: (a) Any regular function on U = A™ \ {0} can be written as f/g where
fyg € k[A™] and g # 0 on U. This implies that g is constant.

(b) The inclusion U C A™ corresponds to the identity map k[A"] = k[A"], so if
U was affine, then this inclusion would have to be an isomorphism.

(¢) The regular functions of degree zero in k[A"+1 < {0}] are all constant by (a).
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(d) If P is quasi-affine then there exists an injective morphism ¢ : P* — A™
for some m. Since each coordinate function ¢; is regular, it must be constant, so
©(P") is a single point.

Problem 13. Let ¢ : A — V(y? — 23) C A% be the morphism given by ¢(t) =
(t2,¢3). Show that ¢ is bijective, but not an isomorphism.

Solution: The k-algebra homomorphism ¢* : k[z,y]/(y*> — 2®) — k[t] is defined
by ¢*(z) = t? and ¢*(y) = t3. Since this map is not surjective, ¢ is not an
isomorphism.

Problem 15. Let X C P™ be a projective variety with projective coordinate ring
R = E[xo,...,zn]/I(X). Let f € R be a non-constant homogeneous element.
Show that D, (f) C X is an open affine subvariety with affine coordinate ring
KDy ()] = Rp)-

Solution: Let F € k[xo,...,z,] be a representative for f. Then we know that
D, (F) C P" is affine, which implies that the closed subset D (f) = D4 (F)NX of
D, (F) is affine as well. This construction can also be used to compute the affine
coordinate ring of D, (f).

Problem 19. Assume that the characteristics of k is not 2. If C' =V (f) C P? is
any curve defined by an irreducible homogeneous polynomial f € k[z, y, 2] of degree
2, then C = P

Solution: Write f(z,y,2) = ax® +bay+cxz+py? +qyz+1r2% € klx,y, 2] where
a,b,c,p,q,r € k. Then f(x,y,2) = (2,y,2) - A (z,y,2)T where A is the matrix

a b/2 ¢/2
A=1b/2 p q/2
c¢/2 q/2 r

Since A is symmetric and char(k) # 2, we can write BABT = diag(dy,ds,d3)
for some invertible matrix B (check this!). If we use B to change coordinates on
P? we may therefore assume that f(z,y,2) = dy2? + day? + d3 22. Since f is
irreducible, all d; must be non-zero, so by further scaling the variables we may
assume f = 2% + y? + 22. Finally, we can define an explicit isomorphism ¢ : P! =
Vi(z? 4+ 92+ 22) C P2 by p(s:t) = (2st : 82 —t2 1 /—1(s% +1?)).



