
ALGEBRAIC GEOMETRY I, PROBLEM SET 2 SOLUTIONS

Problem 1. Prove that the Segre map s : Pn × Pm → PN gives an isomorphism
of Pn × Pm with a closed subvariety of PN , where N = nm+ n+m.

Solution: Denote the variables on PN by zij for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Set
I = (zijzkl − zilzkj) ⊂ k[zij ]. Then s(Pn×Pm) ⊂ V+(I) ⊂ PN . Given fixed indexes
i, j, define ϕ : V+(I)∩D+(zij) → Pn×Pm by ϕ((zkl)) = (z0j : z1j : · · · : znj)×(zi0 :
· · · : zim). These maps are compatible and define a morphism ϕ : V+(I) → Pn×Pm

which is inverse to the Segre map.

Problem 3. Let X be a pre-variety such that for each pair of points x, y ∈ X
there is an open affine subvariety U ⊂ X containing both x and y.

(a) Show that X is separated.
(b) Show that Pn has this property.

Solution: (a) Given two morphisms f, g : Y → X we show that D = {y ∈ Y |
f(y) 6= g(y)} is open in Y . If f(y) 6= g(y) then take an open affine U ⊂ X such that
f(y), g(y) ∈ U . Then V = f−1(U) ∩ g−1(U) ⊂ X is open and f and g restrict to
morphisms f, g : V → U . Since U is separated, it follows that {v ∈ V | f(v) 6= g(v)}
is open in Y . Finally, D is the union of such sets.

Problem 4. [Hartshorne II.2.16 and II.2.17]
Let X be any variety and f ∈ k[X] a regular function.
(a) If h is a regular function on D(f) ⊂ X then fnh can be extended to a regular

function on all of X for some n > 0. [Hint: Let X = U1 ∪ · · · ∪ Um be an open
affine cover. Start by showing that some fnh can be extended to Ui for each i.]

(b) k[D(f)] = k[X]f .
(c) Let R be a k-algebra and let f1, . . . , fr ∈ R be elements that generate the

unit ideal, (f1, . . . , fr) = R. If Rfi is a finitely generated k-algebra for each i, then
R is a finitely generated k-algebra.

(d) Suppose f1, . . . , fr ∈ k[X] satisfy (f1, . . . , fr) = k[X] and D(fi) is affine for
each i. Then X is affine.

Solution: (a) If f is a regular function on a variety X we will write Xf = D(f).
If h is regular on Xf and X = U1 ∪ · · · ∪ Um where each Ui is open affine, then
for each i we have h ∈ k[(Ui)f ] = k[Ui]f , so h = g/fn for some g ∈ k[Ui], i.e.
fnh = g ∈ k[Ui]. If we take n large enough to work for all 1 ≤ i ≤ m, we obtain
fnh ∈ k[X].

(b) Using (a) it is easy to check that the obvious k-algebra homomorphism
k[X]f → k[Xf ] is an isomorphism.

(c) We first prove that k[X] is a finitely generated k-algebra. By the assumptions
we can write g1f1+ · · ·+grfr = 1 with gi ∈ k[X]. Since Xfi is affine, we know that
k[X]fi = k[Xfi ] is a finitely generated k-algebra for each i. Choose hi,1, . . . , hi,N ∈
k[X] so that k[X]fi is generated by hi,1, . . . , hi,N , f−1

i . We claim that k[X] is
generated by the elements fi, gi, hi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ N . In fact, if
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p ∈ k[X] is any regular function, then fM
i p ∈ k[fi, hi,1, . . . , hi,N ] ⊂ k[X] for M

sufficiently large. It follows that p = (g1f1 + · · ·+ grfr)
rMp ∈ k[fi, gi, hi,j ].

Set Y = Spec-m(k[X]) and let ϕ : X → Y be the morphism given by the identity
k[X] → k[X]. Since (f1, . . . , fr) is the unit ideal it follows that Y = Yf1 ∪ · · · ∪ Yfr

is an open covering. Since Xfi is affine and since k[Xfi ] = k[Yfi ] by (b) we deduce
that ϕ restricts to an isomorphism ϕ : Xfi = ϕ−1(Yfi) → Yfi for all i. It follows
that ϕ is an isomorphism.

Problem 5. Let E be the elliptic curve V+(y
2z−x3+xz2) ⊂ P2 and let f, g : E 99K

P1 be the rational maps defined by f(x : y : z) = (x : z) and g(x : y : z) = (y : z).
(These are just projections to the x and y axis on the open subset D+(z).)

(a) Find the maximal open sets in E where f and g are defined as morphisms.
(b) Find the degrees of the field extensions k(t) ⊂ k(E) induced by f and g.
(c) Find the cardinality of f−1(p) and g−1(p) when p ∈ P1 is a typical point.

(Part of the exercise is to define what “typical” means.)

Solution: (a) Both f and g can be defined on all of E, since
f(x : y : z) = (x : z) = (x3 : x2z) = (y2z + xz2 : x2z) = (y2 + xz : x2).

(b) E has an open subset isomorphic to V (y2−x3+x) ⊂ A2, so k(E) is the field
of fractions of k[x, y]/(y2−x3+x). Now f∗ is the map k(t) → k(E) given by t 7→ x.
k(E) has the basis {1, y} over k(x), so the degree of the extension f∗ : k(t) ⊂ k(E)
is two. Similarly g∗ is the map k(t) → k(E) given by t 7→ y; k(E) has the basis
{1, x, x2} over k(y) so the degree is 3.

Problem 6. Let X be a projective variety and ϕ : P1
99K X any rational map.

Show that ϕ is defined as a morphism on all of P1.

Solution: It is enough to show that if U ⊂ A1 is a non-empty open set such
that 0 6∈ U then any morphism f : U → Pn can be extended to a morphism
f : U ∪ {0} → Pn. On a non-empty open subset U ′ ⊂ U we can write f(x) =
(f0(x) : f1(x) : · · · : fn(x)) where fi ∈ k[x]. Replace each fi with x−mfi where
m is the largest power such that xm divides fi for all i. Then we can define
f : U ′ ∪ {0} → Pn by f(x) = (f0(x) : · · · : fn(x)). Thus our rational function is
defined on U ∪ (U ′ ∪ {0}) = U ∪ {0} as required.

Problem 7. (a) If X has components X1, . . . , Xm then dim(X) = max dim(Xi).
(b) dim(X × Y ) = dim(X) + dim(Y ).

Solution: (b) We claim that if X and Y are both irreducible then so is X × Y .
Suppose X ×Y = W1 ∪W2 for closed subsets Wi ⊂ X ×Y such that W2 6= X ×Y .
If (x, y) 6∈ W2 then ({x} × Y ) ∩ W2 = {x} × Z where Z ( Y is a proper closed
subset. Now for all y′ ∈ Y r Z we must have X × {y′} ⊂ W1, so W1 contains
X × (Y r Z). But this set is dense in X × Y so W1 = X × Y .

If X and Y are varieties and X0 ( X1 ( . . . Xn ⊂ X and Y0 ( Y1 ( . . . Ym ⊂ Y
are maximal chains of irreducible closed subsets, then X0 × Y0 ( X0 × Y1 ( · · · (
X0 × Ym ( X1 × Ym ( · · · ( Xn × Ym is a chain in X × Y of length m+ n. This
shows that dimX × Y ≥ dimX + dimY .

For the opposite inequality we may assume that X and Y are both affine and
irreducible. Choose f1, . . . , fn ∈ k[X] such that {f1, . . . , fn} is a transcendence

basis for k(X)/k, and choose g1, . . . , gm ∈ k[Y ] similarly. Set f̃i = fi ⊗ 1 and
g̃j = 1 ⊗ gj ∈ k[X] ⊗k k[Y ] = k[X × Y ]. Then k(X × Y ) is algebraic over

k(f̃1, . . . , f̃n, g̃1, . . . , g̃m), so tr. deg. k(X × Y ) ≤ n+m.
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Problem 8. The commutative algebra result lying over states that if R ⊂ S is an
integral extension of commutative rings and P ⊂ R is a prime ideal, then there is
some prime Q ⊂ S such that Q ∩R = P .

(a) Use lying over to show that if ϕ : X → Y is a dominant morphism of
irreducible varieties, then ϕ(X) contains a dense open subset of Y .

(b) If ϕ : X → Y is any morphism of varieties, then its image ϕ(X) is con-

structible, i.e. a finite union of locally closed subsets of Y .

Solution: (a) WLOG X and Y are affine. Take f1, . . . , fn ∈ k[X] such that
{f1, . . . , fn} is a trancendense basis for k(X)/k(Y ). Then the ring extensions k[Y ] ⊂
k[Y ][f1, . . . , fn] ⊂ k[X] correspond to dominant morphisms X → Y × An → Y .
Since the latter map is open it is enough to replace Y with Y × An, so we may
assume that k(X) is a finite extension of k(Y ).

Now let k[X] be generated by f1, . . . , fn. Then each fi is algebraic over k(Y ).
This implies that each fi is integral over k[Y ]h for a suitable h ∈ k[Y ]. Replacing
X with Xh and Y with Yh we may therefore assume that k[Y ] ⊂ k[X] is an integral
extension. But in this case the morphism X → Y is surjective by “Lying over”.

(b) Use induction on dimX. It is enough to see that the image of each component
of X is constructible, so WLOG X is irreducible. Since the image of ϕ(X) is a

constructible subset of Y if and only if it is a constructible subset of ϕ(X), we may
furthermore assume that ϕ is dominant. But then ϕ(X) contains a dense open
subset V ⊂ Y by part (a). Set U = ϕ−1(V ) ⊂ X. Since U is open in X, the
set W = X r U is a closed subvariety of X of dimension strictly smaller than the
dimension of X. By induction this implies that ϕ(W ) is constructible, so the same
is true for ϕ(X) = ϕ(U) ∪ ϕ(W ) = V ∪ ϕ(W ).

Problem 10. Assume char(k) = 0. Let X = V+(f) ⊂ Pn be a hypersurface given
by a square-free homogeneous polynomial f ∈ k[x0, . . . , xn].

(a) Show that Xsing = V+(
∂f
∂x0

, . . . , ∂f
∂xn

).

(b) Show that Xsing 6= X.

Solution: (a) Apply the Jacobi criterion for affine varieties to one D+(xi) at a

time to obtain Xsing = V+(f,
∂f
∂x0

, . . . , ∂f
∂xn

) = V+(
∂f
∂x0

, . . . , ∂f
∂xn

). The last equality

holds in characteristic zero because (deg f) · f =
∑n

i=0 xi
∂f
∂xi

.

(b) WLOGX is irreducible, so f is an irreducible polynomial. If V+(
∂f
∂x0

, . . . , ∂f
∂xn

)

= V+(f) then
∂f
∂xi

∈
√

(f) for each i. Therefore f must divide ( ∂f
∂xi

)N for some N .

Since f is irreducible, this implies that ( ∂f
∂xi

) = 0 for each i, a contradiction.

Problem 11. [Shafarevich II.1.13]
(a) Show that an intersection of r hypersurfaces in Pr is never empty.
(b) Let X ⊂ Pn be a hypersurface of degree at least two, such that X contains

a linear subspace L ⊂ Pn of dimension r ≥ n/2. Prove that X is singular. [Hint:
Choose the coordinates on Pn such that L = V+(xr+1, xr+2, . . . , xn) ⊂ Pn.]

Solution: (a) If f1, . . . , fr ∈ k[x0, . . . , xr] are non-constant homogeneous polyno-
mials then each component of V (f1, . . . , fr) ⊂ Ar+1 has dimension at least one.
And there is at least one such component because 0 ∈ V (f1, . . . , fr).

(b) WLOG L = V+(xr+1, xr+2, . . . , xn). Since L ⊂ V+(f) it follows that f ∈

(xr+1, . . . , xn). This implies that ∂f
∂xi

∈ (xr+1, . . . , xn) for all 1 ≤ i ≤ r, i.e.
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L ⊂ V ( ∂f
∂x1

, . . . , ∂f
∂xr

). Since there are only n − r ≤ r equations ∂f
∂xi

= 0 left, it

follows from (a) that L ∩ V+(
∂f
∂x0

, . . . , ∂f
∂xn

) 6= ∅.

Problem 12. [Shafarevich II.1.10].
Let X ⊂ Pn be a hypersurface of degree three. If X has two different singular

points, then X contains the line joining them.

Solution: WLOG (1 : 0 : 0 : · · · : 0) and (0 : 1 : 0 : · · · : 0) are singular points of X.

Since ∂f
∂xi

(1, 0, 0, . . . , 0) = 0 for all i, it follows that x2
0 does not divide any of the

monomials in f . Similarly x2
1 does not divide any monomial in f . But this means

that f(s, t, 0, . . . , 0) = 0 for all s, t ∈ k, so X contains the line {(s : t : 0 : · · · : 0)}
through the given two singular points.

Problem 14. [Mostly Hartshorne I.6.3]
Give examples of varieties X and Y , a point P ∈ X, and a morphism ϕ :

X r {P} → Y such that ϕ can’t be extended to a morphism on all of X in each of
the cases:

(a) X is a non-singular curve and Y is not projective.
(b) X is a curve, P is a singular point on X, Y is projective.
(c) X is non-singular of dimension at least two, Y is projective.

Solution: (a) id : (P1 − {∞}) −→ A1.
(b) (V (y2 − x3 − x2)− {(0, 0)}) −→ P1 ; (x, y) 7→ (x : y).
(c) (An+1 − {0}) −→ Pn.

Problem 17. Let E = V (y2−x3+x) ⊂ A2. Show that if P ∈ E is any point then
E r {P} is affine.

Solution: Let P = (x0, y0) and set U = E − {P}. If char(k) = 2 or if y0 = 0 then
U = D(x− x0) is affine. If char(k) 6= 2 and y0 6= 0 then

h =
y + y0
x− x0

=
y2 − y20

(x− x0)(y − y0)
=

x3 − x3
0 − x+ x0

(x− x0)(y − y0)
=

x2 + xx0 + x2
0 − 1

y − y0

defines a regular function h ∈ k[U ] and h · (x − x0) − (y − y0) = 2y0 ∈ k∗. It
follows the functions x − x0 and y − y0 generate the unit ideal in k[U ]. Since the
non-vanishing sets Ux−x0

= Ex−x0
and Uy−y0

= Ey−y0
are both affine (because E

is affine), it follows that U is affine.

Problem 18. [Hartshorne I.6.2]
Let E = V (y2 − x3 + x) ⊂ A2, char(k) 6= 2.
(a) E is a non-singular curve.
(b) The units in k[E] are the non-zero elements of k. [Hints: Define an auto-

morphism σ : k[E] → k[E] fixing x and sending y to −y. Then define a norm
N : k[E] → k[x] by N(a) = a σ(a). Show that N(1) = 1 and N(ab) = N(a)N(b).]

(c) k[E] is not a unique factorization domain.
(d) Show that E is not rational.

Solution: (a) Jacobi criterion.
(b) If a, b ∈ k[E] satisfy ab = 1 then N(a)N(b) = N(1) = 1 so N(a) ∈ k∗. Write

a = f(x) + y g(x) where f, g ∈ k[x]. Then N(a) = f2 − (x3 − x)g2. By looking
at the highest term in this expression one sees that N(a) can only be constant if
f ∈ k∗ and g = 0, i.e. a ∈ k∗.

(c) y2 = x(x− 1)(x+ 1).
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(d) If E is rational then E is isomorphic to an open subset of P1. Since E is
not projective, E is in fact an open subset of A1, which implies that k[E] is a
localization of k[A1], thus a UFD.


