ALGEBRAIC GEOMETRY I, PROBLEM SET 2 SOLUTIONS

Problem 1. Prove that the Segre map s : P* x P — PV gives an isomorphism
of P" x P™ with a closed subvariety of PV, where N = nm +n + m.

Solution: Denote the variables on PV by zij for 0 <i <nand 0 < j < m. Set
I = (2ij251 — zi12kj) C k[zi;]. Then s(P™ x P™) C Vi (I) C PV, Given fixed indexes
i,7, define ¢ : Vi (I)N Dy (2i5) = P X< P™ by o((2x1)) = (205 : 215 : -+ * 2nj) X (%40 :
-+« Zim). These maps are compatible and define a morphism ¢ : V. (I) — P™ xP™
which is inverse to the Segre map.

Problem 3. Let X be a pre-variety such that for each pair of points z,y € X
there is an open affine subvariety U C X containing both = and y.

(a) Show that X is separated.

(b) Show that P™ has this property.

Solution: (a) Given two morphisms f,g : ¥ — X we show that D = {y € YV |
f(y) #g(y)} isopenin Y. If f(y) # g(y) then take an open affine U C X such that
f(y),g9(y) € U. Then V = f~1(U)Ng Y (U) C X is open and f and g restrict to
morphisms f,g: V — U. Since U is separated, it follows that {v € V' | f(v) # g(v)}
is open in Y. Finally, D is the union of such sets.

Problem 4. [Hartshorne I1.2.16 and 11.2.17]

Let X be any variety and f € k[X] a regular function.

(a) If h is a regular function on D(f) C X then f™h can be extended to a regular
function on all of X for some n > 0. [Hint: Let X = U; U--- U U, be an open
affine cover. Start by showing that some f™h can be extended to U; for each 4.]

(b) k[D(F)] = k[X].

(¢) Let R be a k-algebra and let fi,..., fr € R be elements that generate the
unit ideal, (f1,..., fr) = R. If Ry, is a finitely generated k-algebra for each 4, then
R is a finitely generated k-algebra.

(d) Suppose fi,..., fr € k[X] satisfy (f1,..., fr) = k[X] and D(f;) is affine for
each i. Then X is affine.

Solution: (a) If f is a regular function on a variety X we will write X; = D(f).
If h is regular on Xy and X = U; U --- U U,, where each U; is open affine, then
for each i we have h € k[(U;)¢] = kU], so h = g/f" for some g € kU], i.e.
f"h = g € k[U;]. If we take n large enough to work for all 1 < i < m, we obtain
Fh € k[X).

(b) Using (a) it is easy to check that the obvious k-algebra homomorphism
E[X]; — E[X/] is an isomorphism.

(c) We first prove that k[X] is a finitely generated k-algebra. By the assumptions
we can write g1 fi +- -+ g, fr = 1 with g; € k[X]. Since Xy, is affine, we know that
k[X]s = k[X},] is a finitely generated k-algebra for each i. Choose h; 1,...,h; n €
k[X] so that k[X];, is generated by h;1,...,hin, f; 5. We claim that k[X] is
generated by the elements f;, g;, h;; for 1 < ¢ < rand 1 < j < N. In fact, if
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p € k[X] is any regular function, then fMp € k[fi, hi1,...,hin] C k[X] for M
sufficiently large. It follows that p = (g1.f1 + -+ + g, fr)"Mp € k[fi, gi, hi j]-

Set Y = Spec-m(k[X]) and let ¢ : X — Y be the morphism given by the identity
k[X] — E[X]. Since (f1,..., fr) is the unit ideal it follows that Y =Yy, U---UY7},
is an open covering. Since Xy, is affine and since k[Xy,] = k[Y7,] by (b) we deduce
that ¢ restricts to an isomorphism ¢ : Xy, = ¢~ 1(Yy,) — Yy, for all i. It follows
that ¢ is an isomorphism.

Problem 5. Let E be the elliptic curve V, (y?z—2%+x2?) C P2 and let f,g: E --»
P! be the rational maps defined by f(z:y:2) = (z:2) and gz :y: 2) = (y : 2).
(These are just projections to the x and y axis on the open subset D, (z).)
(a) Find the maximal open sets in E where f and g are defined as morphisms.
(b) Find the degrees of the field extensions k(t) C k(FE) induced by f and g.
(c) Find the cardinality of f~1(p) and g='(p) when p € P! is a typical point.
(Part of the exercise is to define what “typical” means.)

Solution: (a) Both f and g can be defined on all of E, since
fleiy:2)=(z:2)=(2%:2%2) = (y?2 + 222 : 222) = (y* + w2 : 2?).

(b) E has an open subset isomorphic to V(y? — 23 +1z) C A%, so k(E) is the field
of fractions of k[z,y]/(y?> —x®+2). Now f* is the map k(t) — k(E) given by t +— .
k(E) has the basis {1,y} over k(x), so the degree of the extension f*: k(t) C k(E)
is two. Similarly ¢g* is the map k(t) — k(F) given by t — y; k(F) has the basis
{1, 2,22} over k(y) so the degree is 3.

Problem 6. Let X be a projective variety and ¢ : P! --» X any rational map.
Show that ¢ is defined as a morphism on all of P*.
Solution: It is enough to show that if U C A! is a non-empty open set such

that 0 ¢ U then any morphism f : U — P" can be extended to a morphism
f: UU{0} — P*. On a non-empty open subset U’ C U we can write f(x) =

(fo(z) : fi(x) : -+ : fo(x)) where f; € k[z]. Replace each f; with =™ f; where
m is the largest power such that z™ divides f; for all i. Then we can define
f:U U{0} - P by f(z) = (fo(z) : -+ : fu(z)). Thus our rational function is

defined on U U (U’ U{0}) = U U {0} as required.

Problem 7. (a) If X has components X7, ..., X, then dim(X) = max dim(X;).

(b) dim(X X Y) = dim(X) + dim(Y).

Solution: (b) We claim that if X and Y are both irreducible then so is X x Y.
Suppose X x Y = W7 U W, for closed subsets W; C X x Y such that Wy # X x Y.
If (z,y) € Ws then ({2} x Y)N Wy = {2} x Z where Z C Y is a proper closed
subset. Now for all ¥ € Y \ Z we must have X x {y’'} C W1, so Wi contains
X x (Y N Z). But this set is dense in X x Y so W; = X x Y.

If X and Y are varietiesand Xo C X; C ... X,,C X and Yy CY; C...Y,, CY
are maximal chains of irreducible closed subsets, then Xg x Yy € Xg x Y, C --- C
XoxY,CX1xY,, C---C X, xY,, is achain in X x Y of length m + n. This
shows that dim X x Y > dim X +dimY.

For the opposite inequality we may assume that X and Y are both affine and
irreducible. Choose f1,..., fn € k[X] such that {f1,..., fn} is a transcendence
basis for k(X)/k, and choose gi,...,gm € k[Y] similarly. Set fi = f; ® 1 and
g = 1®g; € k[X]Qk k[Y] = kE[X xY]. Then k(X x Y) is algebraic over

E(fi,- oy fny 1y« -5 Gm), so tr.deg. k(X xY) <n+m.
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Problem 8. The commutative algebra result lying over states that if R C S is an
integral extension of commutative rings and P C R is a prime ideal, then there is
some prime @ C S such that QN R = P.

(a) Use lying over to show that if ¢ : X — Y is a dominant morphism of
irreducible varieties, then ¢(X) contains a dense open subset of Y.

(b) If ¢ : X — Y is any morphism of varieties, then its image ¢(X) is con-

structible, i.e. a finite union of locally closed subsets of Y.
Solution: (a) WLOG X and Y are affine. Take f1,...,f, € k[X] such that
{f1,-.., fn}is atrancendense basis for k(X )/k(Y"). Then the ring extensions k[Y] C
E[Y1[f1,---, fa] C E[X] correspond to dominant morphisms X — Y x A" — Y.
Since the latter map is open it is enough to replace Y with Y x A", so we may
assume that k(X) is a finite extension of k(Y).

Now let k[X] be generated by fi,..., f,. Then each f; is algebraic over k(Y).
This implies that each f; is integral over k[Y];, for a suitable h € k[Y]. Replacing
X with X, and Y with Y, we may therefore assume that k[Y] C k[X] is an integral
extension. But in this case the morphism X — Y is surjective by “Lying over”.

(b) Use induction on dim X. It is enough to see that the image of each component
of X is constructible, so WLOG X is irreducible. Since the image of ¢(X) is a
constructible subset of Y if and only if it is a constructible subset of ¢(X), we may
furthermore assume that ¢ is dominant. But then ¢(X) contains a dense open
subset V' C Y by part (a). Set U = ¢~ 1(V) C X. Since U is open in X, the
set W = X \ U is a closed subvariety of X of dimension strictly smaller than the
dimension of X. By induction this implies that ¢ (W) is constructible, so the same
is true for p(X) = o(U)U (W) =V U p(W).

Problem 10. Assume char(k) = 0. Let X =V, (f) C P"* be a hypersurface given

by a square-free homogeneous polynomial f € klzo, ...,z
d
(a) Show that Xgng = Vi (5L, 25).

(b) Show that Xging # X.
Solution: (a) Apply the Jacobi Criterion for affine varieties to one Dy (x;) at a

time to obtain Xgns = Vo (f, 2 6:::0 . ax Ly = V+(am0 cee 896 L. The last equality
holds in characteristic zero because (deg f ) =2 63:
(b) WLOG X isirreducible, so f is an irreducible polynomlal IV, (2L Bacs s 8‘?\; )

= V4 (f) then af € /(f) for each i. Therefore f must divide (g~ oL )N for some N.
Since f is irreducible, this implies that (2 X -) = 0 for each 4, a contradlction.

Problem 11. [Shafarevich 11.1.13]

(a) Show that an intersection of r hypersurfaces in P" is never empty.

(b) Let X C P™ be a hypersurface of degree at least two, such that X contains
a linear subspace L C P™ of dimension r > n/2. Prove that X is singular. [Hint:
Choose the coordinates on P™ such that L = Vi (zp41, Tpi2, ..., Tn) C P

Solution: (a) If f1,..., f. € k[zg,...,x,] are non-constant homogeneous polyno-
mials then each component of V(fy,...,f,) C A" has dimension at least one.
And there is at least one such component because 0 € V(f1,..., fr).

(b) WLOG L = Vi (%ys1,Trt2,.-.,Tpn). Since L C Vi (f) it follows that f €
(y41,---,2n). This implies that g:i € (Tyg1y---yxy) for all 1 < @ < 7, ie.
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L C V(le ey %). Since there are only n —r < r equations a% = 0 left, it
follows from (a) that LﬂV+(8$ e az Ly 4.
Problem 12. [Shafarevich I11.1.10].

Let X C P™ be a hypersurface of degree three. If X has two different singular
points, then X contains the line joining them.
Solution: WLOG (1:0:0:---:0)and (0:1:0:---:0) are singular points of X.
Since %(1,0,0, ...,0) = 0 for all 4, it follows that 2% does not divide any of the
monomials in f. Similarly 22 does not divide any monomial in f. But this means
that f(s,¢,0,...,0) =0 for all s,t € k, so X contains the line {(s:¢:0:---:0)}
through the given two singular points.

Problem 14. [Mostly Hartshorne 1.6.3]

Give examples of varieties X and Y, a point P € X, and a morphism ¢ :
X ~{P} — Y such that ¢ can’t be extended to a morphism on all of X in each of
the cases:

(a) X is a non-singular curve and Y is not projective.

(b) X is a curve, P is a singular point on X, Y is projective.

(¢) X is non- smgular of dimension at least two, Y is projective.

1

(b

(c

Solution: (a) id : (P! — {oc}) — AL

) (V(y? o —a%) — {(0,0)}) — P (a,5) = (2 9)
) (A7 — {0}) — P,

Problem 17. Let E = V(y?> — 23 +2) C A%, Show that if P € E is any point then
E ~ {P} is affine.

Solution: Let P = (x,yo) and set U = E — {P}. If char(k) = 2 or if yg = 0 then
U = D(x — xp) is affine. If char(k) # 2 and yo # 0 then

ho Yty v:— 3 LBt —ai-z+ay 2 +amo+af-1
T — Zo (x —20)(y — vo) (x —20)(y — vo) Y — Yo

defines a regular function h € k[U] and h - (v — z9) — (y — yo) = 2yo € k*. It
follows the functions z — xg and y — yo generate the unit ideal in k[U]. Since the
non-vanishing sets Uy, = Ey—, and Uy_y, = Ey_,, are both affine (because E
is affine), it follows that U is affine.

Problem 18. [Hartshorne 1.6.2]

Let E =V (y? — 23 + ) C A2, char(k) # 2.

(a) E is a non-singular curve.

(b) The units in k[F] are the non-zero elements of k. [Hints: Define an auto-
morphism o : k[E] — k[E] fixing  and sending y to —y. Then define a norm
N : k[E] — k[z] by N(a) = ao(a). Show that N(1) =1 and N(ab) = N(a)N(b).]

(c) E[E] is not a unique factorization domain.

(d) Show that E is not rational.

Solution: (a) Jacobi criterion.

(b) If a,b € k[E] satisfy ab =1 then N(a)N(b) = N(1) =1so N(a) € k*. Write
a = f(x) +yg(x) where f,g € k[z]. Then N(a) = f? — (23 — 2)g?. By looking
at the highest term in this expression one sees that N(a) can only be constant if
fek*and g =0,1ie. ac€k*

(©) % = oz — (@ +1).
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(d) If E is rational then FE is isomorphic to an open subset of P!. Since F is
not projective, E is in fact an open subset of Al which implies that k[E] is a
localization of k[A], thus a UFD.



