
ALGEBRAIC GEOMETRY I, PROBLEM SET 3 SOLUTIONS

Problem 1. Resolution of singularities for curves.
Let X be a curve with smooth locus U = X −Xsing. Prove that there exists a

non-singular curve X̃ with a finite morphism ϕ : X̃ → X such that the restriction
ϕ : ϕ−1(U) → U is an isomorphism. (For resolution of singularities in higher
dimension, one can only hope for a “proper” morhism ϕ.)

Solution: Resolution of singularities for curves.
Set K = k(X) and let ϕ : CK 99K X be the birational map given by the identity

map on K. Let U ⊂ CK be the largest open set where ϕ is defined as a morphism.
We must show that ϕ(U) = X. Let V ⊂ X be any open affine subset. Then

“finiteness of integral closure” implies that B = k[V ] is a Dedekind domain, so

Ṽ = Spec-mB is a non-singular curve. The identity map on K now results in a
commutative diagram of morphisms and rational maps

CK
//___ X

Ṽ

OO

// V

OO

which shows that Ṽ ⊂ U . Since Ṽ → V is surjective by “lying over”, this proves
that ϕ(U) = X.

Problem 5. [Hartshorne I.5.3 and I.5.4]
Let X ⊂ P

2 be a curve and P ∈ P
2 any point. Let IX,P ⊂ OP2,P be the ideal of

functions f ∈ OP2,P such that f |U∩X = 0 for some open set U containing P . The
multiplicity µP (X) of X at P is the largest number r such that IX,P ⊂ m

r
P where

mP ⊂ OP2,P is the maximal ideal.
(a) P ∈ X ⇔ µP (X) ≥ 1.
(b) P is a non-singular point of X iff µP (X) = 1.
(c) Let Y ⊂ P

2 be another curve such that X ∩ Y is a finite set. Show that if
P ∈ X ∩ Y then I(X · Y ;P ) = dimk OP2,P /(IX,P + IY,P ).

(d) I(X · Y ;P ) = 1 iff P is a non-singular point of both X and Y , and the
tangent directions at P are different.

(e) I(X · Y ;P ) ≥ µP (X) · µP (Y ).
(f) For all but a finite number of lines L ⊂ P

2 through P we have µP (X) =
I(X · L;P ).

Solution: (c) We may assume P = (0 : 0 : 1) ∈ P
2. Set S = k[x, y, z], and let

Q = I(P ) = (x, y), I(X) = (f), and I(Y ) = (g) ⊂ S. Then I(X · Y ;P ) =
lengthSQ/(f, g). Set R = OP2,P = k[x

z
, y
z
]( x

z
,
y

z
) and I = IX,P + IY,P ⊂ R.

Then I is generated by f ′ = f(x
z
, y
z
, 1) and g′ = g(x

z
, y
z
, 1). We must show that

lengthSQ/(f, g) = dimk R/I.
1
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Now SQ = k[x, y, z](x,y) = k(z)[x
z
, y
z
]( x

z
,
y

z
) = R ⊗k k(z). Tensoring the exact

sequence R⊕2 (f ′,g′)
−−−−→ R → R/I → 0 with k(z) we obtain SQ/(f, g) ∼= R/I ⊗k k(z).

Thus lengthSQ/(f, g) = dimk(z) SQ/(f, g) = dimk R/I as claimed.

(e) Let X = V (f) and Y = V (g) ⊂ A
2 and assume P = (0, 0). Set m = µP (X),

n = µP (Y ), S = k[x, y], and Q = I(P ) = (x, y) ⊂ S. Then I(X · Y ;P ) =
dimk SQ/(f, g) ≥ dimk SQ/(f, g,Q

m+n) = dimk S/(f, g,Q
m+n). Now using the

exact sequence

S/Qn × S/Qm (f,g)
−−−→ S/Qm+n → S/(f, g,Qm+n) → 0

we obtain dimk S/(f, g,Q
m+n) ≥

(

m+n+1
2

)

−
(

m+1
2

)

−
(

n+1
2

)

= mn as required.

Problem 14. A morphism f : X → Y of varieties is called affine if for every open
affine set V ⊂ Y the inverse image f−1(V ) is also affine. f is called finite if it is
affine and k[f−1(V )] is a finitely generated k[V ]-module for all open affine V ⊂ Y .

Let Y =
⋃

Vi be an open affine covering of Y such that f−1(Vi) is affine ∀ i.
Show that f is affine. If k[f−1(Vi)] is a finitely generated k[Vi]-module for all i then
f is finite.

Solution: Assume that Y = V1 ∪ · · · ∪ Vm is an open affine covering such that
f−1(Vi) is affine for each i. Let U ⊂ Y be any open affine subvariety. We must
show that f−1(U) is affine.

Given h ∈ k[Vi], the non-vanishing set (Vi)h = {y ∈ Vi | h(y) 6= 0} is affine.
Furthermore, f−1((Vi)h) = f−1(Vi)f∗h is a non-vanishing set in the affine variety
f−1(Vi), so f−1((Vi)h) is affine. Since the sets (Vi)h form a basis for the topology
of Vi, we may cover the intersection Vi ∩ U with such sets. It follows that U has
an open covering U =

⋃

V ′
i such that V ′

i and f−1(V ′
i ) are affine for each i. By

replacing Y with U and X with f−1(U), we may assume that Y = U is affine. We
must prove that X is affine.

Let h ∈ k[Y ] be a regular function such that Yh ⊂ Vi for some i. Then Yh is affine
and f−1(Yh) = f−1((Vi)h) = f−1(Vi)f∗h is affine. Since the sets Yh form a basis for
the topology of Y , we may choose h1, . . . , hN ∈ k[Y ] such that Y = Yh1

∪ · · · ∪ YhN

and f−1(Yhi
) is affine for each i. The first condition implies that (h1, . . . , hN ) is

the unit ideal in k[Y ]. Set gi = f∗(hi) ∈ k[X]. Then (g1, . . . , gN ) is the unit ideal
in k[X] and Xgi = f−1(Yhi

) is affine for each i. It follows that X is affine.


