REVIEW OF VARIETIES

1. AFFINE VARIETIES

k =k alg closed field.

R f.g. reduced k-algebra.

Spec-m(R) = { max. ideals m C R}

Topology: Zariski closed sets are Z(I) = {m D I}

Let f € R. Def. f:Spec-m(R) — k, f(m) = image of f by R — R/m = k.
Def: Let U C Spec-m(R) be open, f: U — k a function.

f is regular if it is locally of the form f(m) = p(m)/q(m), p,q € R.

E[U] = { regular f: U — k}.

Exercise*: k[Spec-m(R)] = R

Coordinate ring: A(Spec-m(R)) = R (only for affine varieties)
Example: R = k[f1,..., fa] = k[x1,...,2]/1. (f1,..., fn): X = Z(I) C A"

2. SPACES WITH FUNCTIONS

Def: A space with functions is a top space X with functor
U w— k[U] C { all fcns U — k } such that

1 U=U,Us: fekU]l < flu. € kU] Va.

(2) f € k[U] = D(f) C U open and 1/f € kE[D(f)].

Notation: Ox(U) = k[U]

Def: A morphism of SWFs is a cont. map ¢ : X — Y such that pullback of
regular functions are regular.

Le. if V. C Y is open and f € Oy (V), then ¢*(f) = fop € Ox(p 1(V)).

3. SUBSPACE OF SWF

X SWF, Y C X any subset. Give Y structure of SWF as follows:

* Subspace topology.

*U U CYisopen, f: U — k function, then f is regular iff f can locally be
extended to regular fcn on X.

Le. Vye UU' C X and F € Ox(U') s.t. y € U' and f(x) = F(x) Ve e UNU".

Def. A prevariety is a SWF X s.t. 9 open cover X = U; U --- U U, with
U; = Spec-m(R;) affine variety for each i.

Exercise: Let X = Spec-m(R) be affine and f € R. Then X; := D(f) &
Spec-m(Ry).

Exercise: X SWF and Y affine variety.

1-1 correspondence { morphisms X — Y } < { k-alg homs A(Y) — k[X] }.

Cor: Two affine varieties isomorphic iff coordinate rings isomorphic.

Exercise: A™ ~\ {0} is not affine for n > 2.

Exercise: An open subset of a prevariety is a prevariety.

Exercise: A closed subset of a prevariety is a prevariety.

Def: X top space. A subset W C X is locally closed if it is an intersection of
an open set and a closed set.
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Cor: A locally closed subset of a prevariety is a prevariety.

4. PROJECTIVE SPACE

Def: P = (A" <\ {0})/k* = lines through origin in A™*!.

7 A" {0} — P" projection.

Topology: U C P" open < 7~ 1(U) C A" open.

Regular fens: f: U — k is regular & 7*(f) = for : 7 Y(U) — k regular.

Notation: (ag:---: an) = 7(ag,...,an).

Projective coord ring: k[A" 1] = k[zo,...,z,].

Def: Let f € k[zo,...,z,] homogeneous poly.

Di(f)y={(ag:--:an) €P™| f(ao,...,an) # 0}

Exercise: Dy (x;) =2 A™.

Cor: P" = Dy (z9)U---U Dy (xy,) is a prevariety.

Exercise: X SWF and ¢ : P* — X function. Then ¢ is a morphism iff p o 7 :
A"t {0} — X is a morphism.

Def: If W C P" subset, then I(W) = I(x=Y(W)) C k[zo, ..., zn].

Def: If I C k[xo, ..., 2,] homogeneous ideal, then Z, (I) = n(Z(I)) C P".

Projective Nullstellensatz: I C k[zo, ..., 2,] homogeneous ideal. If Z,(I) # ()
then I(Z, (1)) = V1.

5. PROJECTIVE VARIETIES

Def. A projective variety is a closed subset of P (with SWF structure).

A quasi-projective variety is a locally closed subset of P".

An affine variety is a closed subset of A"™.

A quasi-affine variety is a locally closed subset of A".

Exercise: P™ is not quasi-affine for n > 1.

Exercise*: If X is both projective and quasi-affine, then X is finite.

Def: If X C P is closed, then proj. coord. ring of X is k[xo,...,x,]/I(X).
DEPENDS ON EMBEDDING!!

Def: R graded ring, f € Rg.

Ry = { homogeneous elts. in Ry of degree zero } = {g/f™ | g € Ram}.

Exercise: R f.g. reduced graded k-algebra = R(y) f.g. reduced k-algebra.

Exercise: X C P™ projective, R = k[zo, ..., x,|/I(X). f € Rq with d > 0. Then
Xp=XnN Dy(f) Spec—m(R(f)).

Hints: Enough to assume X =P" R = k[zg, ..., z,].

Show that k[DJr(f)] = R(f)

Identity map Ry — k[D, (f)] defines morphism D (f) — Spec-m(Ry)).

Show this is an isomorphism.

6. PrODUCTS

Let X and Y be SWFs. A product of X and Y is a SWF called X x Y with
morphisms 7x : X XY — X and 7y : X XY — Y, such that (X x Y, nx,7y) is
universal.

Exercise: Show that products of SWFs exist and are unique.

Example: A! x A! = A%, NOTE: A? does not have the product topology!
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7. SEPARATED SWFs

Def: A SWF X is separated if V SWFs Y and morphisms f,g: Y — X the set
{yeY | fly) =g(y)} CY is closed.

(Algebraic version of Hausdorff.)

Non-example: X = (A! \ {0}) U {O1,02} = union of two copies of A.

Def: An algebraic variety is a separated prevariety.

Exercise: Any subspace of a separated SWF is separated.

Exercise: A product of separated SWF's is separated.

Exercise: A: X — X X X, z — (z,z) is a morphism.

Def: Ax :=A(X) C X x X.

Exercise: A : X — Ax isomorphism.

Exercise: X is separated & Ax C X x X is closed.

Exercise: A" is separated, hence all (quasi-) affine varieties are algebraic varieties.

Exercise: P™ is separated, hence all (quasi-) projective varieties are varieties.

Exercise: If X and Y are affine varieties, then X x Y = Spec-m(A(X) ®; A(Y)).

Cor: A product of pre-varieties is a pre-variety.

8. RATIONAL MAPS

Def: A topological space X is irreducible if X is not a union of two proper
closed subsets.

Let X and Y be irreducible varieties.

Consider pairs (U, f) such that § # U C X isopen and f : U — Y is a morphism.

Relation: (U, f)~ (V,g)if f=gonUNV.

Exercise: ~ is an equiv. relation. (Since X is irreducible and Y is separated.)

Def: A rational map f: X --» Y is an equivalence class for ~.

Exercise: There is a unique maximal open subset of points in X where f is
defined as a morphism.

Def: A rational function on X is a rational map f: X --» Al = k.

f is given by a regular function f : U — k, where ) ## U C X is open.

Def: K(X)={f:X --» k}

Exercise: k(X) is a field.

Exercise: ) C U C X open = k(U) = k(X).

Exercise: X irred. affine variety = k(X) = K(A(X)) fraction field.

Def: (U, f): X --»Y is dominant if f(U) =Y.

Exercise: If f: X --»Y and g: Y --» Z are rational maps and f is dominant,
then 3 well-defined composition go f: X --» Z.

Exercise: Let X and Y be irreducible varieties. 1-1 correspondence:

{ dominant f: X --»Y} « { field ext. k(Y) C k(X) over k }.

Def: f: X --»Y is birational if f is dominant and 3 dominant g : ¥ --+ X
s.t. fog=1idy and go f = idx.

Def: X and Y are birationally equivalent (written X =~ Y) iff 3 birational
map f: X --» Y.

Example: A2 ~P? ~ P! x P!

Exercise: X Y & k(X) 2 k(Y) as k-algebras <

Jopensubsets U C X and V CY st. U= V.

Def: X is rational if X is birationally equivalent to A" for some n.

Def: X is unirational if 3 dominant rational map f: A™ --» X.

Exercise*: E = Z(y? — 2® + ) C A3 is not rational.
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Exercise**: If C' is a unirational curve, then C' is rational.

9. COMPLETE VARIETIES

Def: A variety X is complete if for any variety Y, my : X x Y — Y is closed.

(Analogue of compact manifolds. Schemes: same as proper over Spec(k).)

Note: 1) Closed subsets of complete varieties are complete.

2) Products of complete varieties are complete.

Example: Points are complete!

Example: A! is not complete.

W = Z(zy — 1) C Al x Al is closed but (W) = A \ {0} is not closed in A.

Exercise: Let ¢ : X — Y be a morphism of varieties. If X is complete then
©(X) C Y is closed and complete. (Use graph I'y C X xY.)

Exercise: ¢ : X — Y cont. map of top. spaces. Then X irred. = (X)) irred.

Cor: If X is irreducible and complete then k[X] = k.

Proof: If f : X — Al is any morphism then f(X) C A! is closed, complete, and
irreducible, hence a point.

Exercise: Any complete quasi-affine variety if finite.

Exercise*: P™ is complete, hence all projective varieties are complete.



