ALGEBRAIC GEOMETRY PROBLEMS

Problem 1. Show that $I(\mathbb{A}^n) = (0)$.

Problem 2. If $I \subset R$ is any ideal, show that \sqrt{I} is a radical ideal.

Problem 3. (a) $S \subset I(V(S))$.

- (b) $W \subset V(I(W))$.
- (c) If W is an algebraic set then W = V(I(W)).
- (d) If $I \subset k[x_1, \ldots, x_n]$ is any ideal then $V(I) = V(\sqrt{I})$ and $\sqrt{I} \subset I(V(I))$.

Problem 4. [Hartshorne I.1.2 and I.1.11]

- (a) Show that the set $X = \{(t, t^2, t^3) \in \mathbb{A}^3 \mid t \in k\}$ is closed in \mathbb{A}^3 and find I(X).
- (b) Same for the subset $Y = \{(t^3, t^4, t^5) \in \mathbb{A}^3 \mid t \in k\}$ of \mathbb{A}^3 .
- (c) Show that I(Y) can't be generated by less than three polynomials.

Hint: Is I(Y) a graded ideal? Are you sure??

Problem 5. Let R be a commutative ring. The following are equivalent:

- (a) R is Noetherian.
- (b) Every ascending chain of ideals in R stabilizes.
- (c) Every non-empty collection of ideals of R has a maximal element.

Problem 6. Show that $W = \{(x, y, z) \in \mathbb{A}^3 \mid x^2 = y^3 \text{ and } y^2 = z^3\}$ is an irreducible closed subset of \mathbb{A}^3 and find I(W).

Hint: Construct a homomorphism $k[x, y, z] \to k[T]$ with kernel I(W).

Problem 7. Find $\sqrt{(y^2 + 2xy^2 + x^2 - x^4, x^2 - x^3)}$.

Problem 8. Let X be a Noetherian topological space.

- (a) If an irreducible closed set Y is contained in a union $\cup X_i$ of finitely many closed sets X_i , then $Y \subset X_i$ for some i.
 - (b) X has finitely many components.
 - (c) X is the union of its components.
 - (d) X is not the union of any proper subset of its components.

Problem 9. Let X be any space with functions and $Y \subset \mathbb{A}^n$ an affine variety. Show that a function $f: X \to Y$ is a morphism if and only if each coordinate function $f_i: X \to k$ is regular for $1 \le i \le n$.

Problem 10. Let $X = V(xy - zw) \subset \mathbb{A}^4$ and $U = D(y) \cup D(w) \subset X$. Define a regular function $f: U \to k$ by f = x/w on D(w) and f = z/y on D(y). Show that there are no polynomial functions $p, q \in A(X)$ such that $q(a) \neq 0$ and f(a) = p(a)/q(a) for all $a \in U$.

Problem 11. Let X be an affine variety such that the affine coordinate ring A(X) is a unique factorization domain. Let $U \subset X$ be an open subset. Show that if $f: U \to k$ is any regular function, then there exist $p, q \in A(X)$ such that $q(x) \neq 0$ and f(x) = p(x)/q(x) for all $x \in U$.

Problem 12. (a) $k[\mathbb{A}^n \setminus \{0\}] = k[x_1, \dots, x_n]$ for $n \ge 2$.

- (b) $\mathbb{A}^n \setminus \{0\}$ is not an affine variety for $n \geq 2$.
- (c) Every global regular function on \mathbb{P}^n is constant, i.e. $k[\mathbb{P}^n] = k$.
- (d) \mathbb{P}^n is not quasi-affine for $n \geq 1$.

Problem 13. Let $\varphi: \mathbb{A}^1 \to V(y^2 - x^3) \subset \mathbb{A}^2$ be the morphism given by $\varphi(t) = (t^2, t^3)$. Show that φ is bijective, but not an isomorphism.

Problem 14. Let $X \subset \mathbb{A}^n$ be a closed subvariety. Identify \mathbb{A}^n with $D_+(x_0) \subset \mathbb{P}^n$ and let \bar{X} be the closure of X in \mathbb{P}^n . Show that $I(\bar{X}) = I(X)^* \subset k[x_0, \dots, x_n]$. $(I(X)^*$ is defined in the notes for 9/18.)

Problem 15. Let $X \subset \mathbb{P}^n$ be a projective variety with projective coordinate ring $R = k[x_0, \ldots, x_n]/I(X)$. Let $f \in R$ be a non-constant homogeneous element. Show that $D_+(f) \subset X$ is an open affine subvariety with affine coordinate ring $k[D_+(f)] = R_{(f)}$.

Problem 16. Show that if R is a finitely generated reduced k-algebra then the space with functions $\operatorname{Spec-m}(R)$ is an affine variety.

Problem 17. Let X be any space with functions. A map $\varphi : \mathbb{P}^n \to X$ is a morphism if and only if $\varphi \circ \pi : \mathbb{A}^{n+1} \setminus \{0\} \to X$ is a morphism.

Problem 18. Prove that the Segre map $s: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ gives an isomorphism of $\mathbb{P}^n \times \mathbb{P}^m$ with a closed subvariety of P^N , where N = nm + n + m.

Problem 19. Let $\varphi: X \to Y$ be a morphism of spaces with functions and suppose $Y = \bigcup V_i$ is an open covering such that each restriction $\varphi: \varphi^{-1}(V_i) \to V_i$ is an isomorphism. Then φ is an isomorphism.

Problem 20. Assume that the characteristics of k is not 2. If $C = V_+(f) \subset \mathbb{P}^2$ is any curve defined by an irreducible homogeneous polynomial $f \in k[x, y, z]$ of degree 2, then $C \cong \mathbb{P}^1$.

Problem 21. Let X and Y be spaces with functions and let (P, π_X, π_Y) and (P', π'_X, π'_Y) be two products of X and Y. Show that there is a unique isomorphism $\varphi: P \xrightarrow{\sim} P'$ such that $\pi_X = \pi'_X \circ \varphi$ and $\pi_Y = \pi'_Y \circ \varphi$.

Problem 22. (a) Any subspace of a separated space with functions is separated. (b) A product of separated spaces with functions is separated.

Problem 23. Let X be a pre-variety such that for each pair of points $x, y \in X$ there is an open affine subvariety $U \subset X$ containing both x and y.

- (a) Show that X is separated.
- (b) Show that \mathbb{P}^n has this property.

Problem 24. [Hartshorne II.2.16 and II.2.17]

Let X be any variety and $f \in k[X]$ a regular function.

- (a) If h is a regular function on $D(f) \subset X$ then $f^n h$ can be extended to a regular function on all of X for some n > 0. [Hint: Let $X = U_1 \cup \cdots \cup U_m$ be an open affine cover. Start by showing that some $f^n h$ can be extended to U_i for each i.]
 - (b) $k[D(f)] = k[X]_f$.
- (c) Let R be a k-algebra and let $f_1, \ldots, f_r \in R$ be elements that generate the unit ideal, $(f_1, \ldots, f_r) = R$. If R_{f_i} is a finitely generated k-algebra for each i, then R is a finitely generated k-algebra.
- (d) Suppose $f_1, \ldots, f_r \in k[X]$ satisfy $(f_1, \ldots, f_r) = k[X]$ and $D(f_i)$ is affine for each i. Then X is affine.

Problem 25. Let E be the elliptic curve $V_+(y^2z-x^3+xz^2)\subset \mathbb{P}^2$ and let f,g: $E \longrightarrow \mathbb{P}^1$ be the rational maps defined by f(x:y:z) = (x:z) and g(x:y:z) =(y:z). (These are just projections to the x and y axis on the open subset $D_+(z)$.)

- (a) Find the maximal open sets in E where f and g are defined as morphisms.
- (b) Find the degrees of the field extensions $k(t) \subset k(E)$ induced by f and g.
- (c) Find the cardinality of $f^{-1}(p)$ and $g^{-1}(p)$ when $p \in \mathbb{P}^1$ is a typical point. (Part of the exercise is to define what "typical" means.)

Problem 26. Let X be a projective variety and $\varphi: \mathbb{P}^1 \dashrightarrow X$ any rational map. Show that φ is defined as a morphism on all of \mathbb{P}^1 .

Problem 27. (a) If X has components X_1, \ldots, X_m then $\dim(X) = \max \dim(X_i)$. (b) $\dim(X \times Y) = \dim(X) + \dim(Y)$.

Problem 28. The commutative algebra result *lying over* states that if $R \subset S$ is an integral extension of commutative rings and $P \subset R$ is a prime ideal, then there is some prime $Q \subset S$ such that $Q \cap R = P$.

- (a) Use lying over to show that if $\varphi: X \to Y$ is a dominant morphism of irreducible varieties, then $\varphi(X)$ contains a dense open subset of Y.
- (b) If $\varphi: X \to Y$ is any morphism of varieties, then its image $\varphi(X)$ is constructible, i.e. a finite union of locally closed subsets of Y.

Problem 29. [Hartshorne I.5.2]

Assume char(k) $\neq 2$. Locate the singular points of the surfaces $X = V(xy^2 - z^2)$, $Y = V(x^2 + y^2 - z^2)$, and $Z = V(xy + x^3 + y^3)$ in \mathbb{A}^3 . (Take a look at the nice pictures in Hartshorne!)

Problem 30. Assume char(k) = 0. Let $X = V_+(f) \subset \mathbb{P}^n$ be a hypersurface given by a square-free homogeneous polynomial $f \in k[x_0, \ldots, x_n]$. (a) Show that $X_{\text{sing}} = V_+(\frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n})$. (b) Show that $X_{\text{sing}} \neq X$.

Problem 31. [Shafarevich II.1.13]

- (a) Show that an intersection of r hypersurfaces in \mathbb{P}^r is never empty.
- (b) Let $X \subset \mathbb{P}^n$ be a hypersurface of degree at least two, such that X contains a linear subspace $L \subset \mathbb{P}^n$ of dimension $r \geq n/2$. Prove that X is singular. [Hint: Choose the coordinates on \mathbb{P}^n such that $L = V_+(x_{r+1}, x_{r+2}, \dots, x_n) \subset \mathbb{P}^n$.

Problem 32. [Shafarevich II.1.10].

Let $X \subset \mathbb{P}^n$ be a hypersurface of degree three. If X has two different singular points, then X contains the line joining them.

Problem 33. If X is a variety and $x \in X$, we define the Zariski cotangent space to X at x to be $\mathfrak{m}_x/\mathfrak{m}_x^2$. The Zariski tangent space is the dual vector space $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$. Show that if $f: X \to Y$ is a morphism of varieties with f(x) = y, then f induces linear maps $\mathfrak{m}_y/\mathfrak{m}_y^2 \to \mathfrak{m}_x/\mathfrak{m}_x^2$ and $(\mathfrak{m}_x/\mathfrak{m}_x^2)^* \to (\mathfrak{m}_y/\mathfrak{m}_y^2)^*$.

Problem 34. [Mostly Hartshorne I.6.3]

Give examples of varieties X and Y, a point $P \in X$, and a morphism $\varphi : X \setminus \{P\} \to Y$ such that φ can't be extended to a morphism on all of X in each of the cases:

- (a) X is a non-singular curve and Y is not projective.
- (b) X is a curve, P is a singular point on X, Y is projective.
- (c) X is non-singular of dimension at least two, Y is projective.

Problem 35. Let X and Y be curves and $\varphi: X \to Y$ a birational morphism.

- (a) X_{sing} is a proper closed subset of X.
- (b) $\varphi(X_{\text{sing}}) \subset Y_{\text{sing}}$.
- (c) If $y \in Y$ is a non-singular point, then $\varphi^{-1}(y)$ contains at most one point.

Problem 36. Two non-singular projective curves are isomorphic if and only if they have the same function field.

Problem 37. Resolution of singularities for curves.

Let X be a curve with smooth locus $U = X - X_{\rm sing}$. Prove that there exists a non-singular curve \tilde{X} with a finite morphism $\varphi: \tilde{X} \to X$ such that the restriction $\varphi: \varphi^{-1}(U) \to U$ is an isomorphism. (For resolution of singularities in higher dimension, one can only hope for a "proper" morhism φ .)

Problem 38. Let $E = V(y^2 - x^3 + x) \subset \mathbb{A}^2$. Show that if $P \in E$ is any point then $E \setminus \{P\}$ is affine.

Problem 39. [Hartshorne I.6.2]

Let
$$E = V(y^2 - x^3 + x) \subset \mathbb{A}^2$$
, $\operatorname{char}(k) \neq 2$.

- (a) E is a non-singular curve.
- (b) The units in k[E] are the non-zero elements of k. [Hints: Define an automorphism $\sigma: k[E] \to k[E]$ fixing x and sending y to -y. Then define a norm $N: k[E] \to k[x]$ by $N(a) = a \sigma(a)$. Show that N(1) = 1 and N(ab) = N(a)N(b).]
 - (c) k[E] is not a unique factorization domain.
 - (d) Show that E is not rational.

Problem 40. Let $m_0, m_1, \ldots, m_N \in k[x_0, \ldots, x_n]$ be all the monomials of degree d. The *Veronese embedding* is the map $v_d : \mathbb{P}^n \to \mathbb{P}^N$ defined by

$$v_d(x_0:\cdots:x_n) = (m_0(x_0,\ldots,x_n):\cdots:m_N(x_0,\ldots,x_n)).$$

- (a) Show that v_d is an isomorphism of \mathbb{P}^n with a closed subvariety in \mathbb{P}^N .
- (b) Let $S \subset \mathbb{P}^n$ be a hypersurface of degree d, i.e. $S = V_+(f)$ where $f \in k[x_0, \ldots, x_n]$ is a form of degree d. Show that $S = v_d^{-1}(H)$ for a unique hyperplane $H \subset \mathbb{P}^N$.

Problem 41. Let L_1 , L_2 , and L_3 be lines in \mathbb{P}^3 such that none of them meet.

- (a) There exists a unique quadric surface $S \subset \mathbb{P}^3$ containing L_1 , L_2 , and L_3 . [Hint: Start by applying an automorphism of \mathbb{P}^3 to make the lines nice.]
 - (b) S is the disjoint union of all lines $L \subset \mathbb{P}^3$ meeting L_1 , L_2 , and L_3 .
- (c) Let $L_4 \subset \mathbb{P}^3$ be a fourth line which does not meet L_1 , L_2 , or L_3 . Then the number of lines meeting L_1 , L_2 , L_3 , and L_4 is equal to the number of points in $L_4 \cap S$, which is one, two, or infinitely many.

Problem 42. An algebraic group is a pre-variety G together with morphisms $m: G \times G \to G$ and $i: G \to G$, and an identity element $e \in G$, such that G is a group in the usual sense when m is used to define multiplication and i maps any element to its inverse element.

- (a) Show that $GL_n(k)$ is an algebraic group.
- (b) Show that any algebraic group is separated.
- (c) Show that \mathbb{P}^1 is not an algebraic group, i.e. it is not possible to find morphisms $m: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ and $i: \mathbb{P}^1 \to \mathbb{P}^1$ satisfying the group axioms.
 - (d) Challenge: How about \mathbb{P}^n for $n \geq 2$?

Problem 43. Let G be an irreducible algebraic group acting on a variety X, i.e. we have a morphism $G \times X \to X$ such that the axioms for a group action are satisfied.

- (a) Show that each orbit in X is locally closed.
- (b) Each orbit is a non-singular variety.

Problem 44. Let $GL_n(k)$ act on Gr(d,n) by $g.V = \{g(x) \mid x \in V\}$. Show that for any points $V_1, V_2 \in Gr(d,n)$ there exists an element $g \in GL_n(k)$ such that $g.V_1$ and $g.V_2$ are both in $U_{\{1,\ldots,d\}} \subset Gr(d,n)$. Conclude that Gr(d,n) is separated.

Problem 45. (a) Let $0 be integers and <math>E = k^n$. Show that the set $\{(V, W) \in Gr(p, E) \times Gr(q, E) \mid V \subset W\}$ is closed in $Gr(p, E) \times Gr(q, E)$.

(b) Let $0 < d_1 < d_2 < \cdots < d_m < n$ be integers and let $\mathrm{F}\ell(d_1, \ldots, d_m; E)$ be the set of flags of subspaces $V_1 \subset V_2 \subset \cdots \subset V_m \subset E$ such that $\dim V_i = d_i$. Give this set a structure of projective variety.

Problem 46. Set $E = k^n$, X = Gr(d, E), and let $F_1 \subset F_2 \subset \cdots \subset F_n = E$ be a flag of subspaces such that dim $F_i = i$. Given a sequence of integers $a = (0 < a_1 < a_2 < \cdots < a_d \le n)$, let $\Omega_a^{\circ}(F_{\bullet})$ be the set of all $V \in X$ such that dim $(V \cap F_p) = i$ whenever $a_i \le p < a_{i+1}$, $0 \le i \le d$. (We set $a_0 = 0$ and $a_{d+1} = n + 1$.)

- (a) Show that $\Omega_a^{\circ}(F_{\bullet}) \cong \mathbb{A}^m$ where $m = \sum a_i {d+1 \choose 2}$.
- (b) Show that the orbits for the action of the upper triangular matrices on X are the sets $\Omega_a^{\circ}(F_{\bullet})$ for all sequences a where $F_i = \text{span}\{e_1, \dots, e_i\}$.
- (c) The Schubert varieties in X are the closures $\Omega_a(F_{\bullet}) = \overline{\Omega_a^{\circ}(F_{\bullet})}$. Find a singular Schubert variety in some Grassmannian.

Problem 47. Let $X \subset \mathbb{P}^5$ be the subset of points $(x_0 : \cdots : x_5)$ such that the matrix

$$\begin{bmatrix} x_0 & x_1 & x_2 \\ x_3 & x_4 & x_5 \end{bmatrix}$$

has rank one. Show that X is a non-singular rational closed subvariety of \mathbb{P}^5 , and find its dimension and degree.

Problem 48. [Mostly Hartshorne I.7.1] In this problem, just find the numbers and give an argument why they are correct that *could* be expanded into a proof.

- (a) Find the degree of $v_d(\mathbb{P}^n)$ in \mathbb{P}^N where v_d is the Veronese embedding.
- (b) Find the degree of the Segre embedding of $\mathbb{P}^n \times \mathbb{P}^m$ in \mathbb{P}^{nm+n+m} .
- (c) Challenge: Find the degree of Gr(2,5) in \mathbb{P}^9 .

Problem 49. [Hartshorne I.5.3 and I.5.4]

Let $X \subset \mathbb{P}^2$ be a curve and $P \in \mathbb{P}^2$ any point. Let $I_{X,P} \subset \mathcal{O}_{\mathbb{P}^2,P}$ be the ideal of functions $f \in \mathcal{O}_{\mathbb{P}^2,P}$ such that $f|_{U\cap X} = 0$ for some open set U containing P. The multiplicity $\mu_P(X)$ of X at P is the largest number r such that $I_{X,P} \subset \mathfrak{m}_P^r$ where $\mathfrak{m}_P \subset \mathcal{O}_{\mathbb{P}^2,P}$ is the maximal ideal.

- (a) $P \in X \Leftrightarrow \mu_P(X) \geq 1$.
- (b) P is a non-singular point of X iff $\mu_P(X) = 1$.
- (c) Let $Y \subset \mathbb{P}^2$ be another curve such that $X \cap Y$ is a finite set. Show that if $P \in X \cap Y$ then $I(X \cdot Y; P) = \dim_k \mathcal{O}_{\mathbb{P}^2, P}/(I_{X,P} + I_{Y,P})$.
- (d) $I(X \cdot Y; P) = 1$ iff P is a non-singular point of both X and Y, and the tangent directions at P are different.
 - (e) $I(X \cdot Y; P) \ge \mu_P(X) \cdot \mu_P(Y)$.
- (f) For all but a finite number of lines $L \subset \mathbb{P}^2$ through P we have $\mu_P(X) = I(X \cdot L; P)$.

Problem 50. Let \mathcal{F} be a sheaf on X and $p \in X$ a point. Prove the following from the definition of the stalk \mathcal{F}_p :

- (a) Each element of \mathcal{F}_p has the form s_p for some section $s \in \mathcal{F}(U)$, $p \in U$.
- (b) Let $s \in \mathcal{F}(U)$, $p \in U$. Then $s_p = 0 \Leftrightarrow s|_V = 0$ for some $p \in V \subset U$.
- (c) Let $s \in \mathcal{F}(U)$. Prove that s = 0 if and only if $s_p = 0 \ \forall \ p \in U$.

Problem 51. [Hartshorne II.1.2]

Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subset X$, and for every $s \in \mathcal{G}(U)$, there is a covering $U = \bigcup V_i$ of U and sections $t_i \in \mathcal{F}(V_i)$ such that $\varphi_{V_i}(t_i) = s|_{V_i}$ for all i.

Problem 52. [Hartshorne II.1.14]

Let \mathcal{F} be a sheaf on X and $s \in \mathcal{F}(X)$ a global section. Show that the set $\{p \in X \mid s_p \neq 0\}$ is a closed subset of X.

Problem 53. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of abelian sheaves on X. Show that $\ker(\varphi)_p = \ker(\varphi_p)$ and $\operatorname{Im}(\varphi)_p = \operatorname{Im}(\varphi_p)$ for all $p \in X$.

Problem 54. Let $f: X \to Y$ be a continuous map and \mathcal{G} a sheaf on Y. Show that $(f^{-1}\mathcal{G})_p = \mathcal{G}_{f(p)}$ for all $p \in X$.

Problem 55. Let $f: X \to Y$ be a continuous map, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y. Show that the map $\operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$ constructed in class is bijective.

Problem 56. (a) Let X be an affine variety, M a k[X]-module, and \mathcal{F} an \mathcal{O}_X -module. Show that $\operatorname{Hom}_{k[X]}(M,\Gamma(X,\mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M},\mathcal{F})$.

- (b) If X is affine and M and N are k[X]-modules then $M \otimes_{\mathcal{O}_X} N = (M \otimes_{k[X]} N)^{\sim}$.
- (c) If $f: X \to Y$ is a morphism of varieties and \mathcal{G} is a (quasi-) coherent \mathcal{O}_{Y} -module, then $f^*\mathcal{G}$ is a (quasi-) coherent \mathcal{O}_{X} -module.

- **Problem 57.** (a) X is a ringed space, \mathcal{F} and \mathcal{G} are \mathcal{O}_X -modules. Then the assignment $U \mapsto \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U, \mathcal{G}|_U)$ defines an \mathcal{O}_X -module. It is denoted $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$.
- (b) Let \mathcal{L} be an invertible \mathcal{O}_X -module. Show that $\mathcal{L}^{-1} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$ is also invertible and that $\mathcal{L}^{-1} \otimes_{\mathcal{O}_X} \mathcal{L} \cong \mathcal{O}_X$.
- **Problem 58.** Let X be a scheme of characteristic p > 0, $F : X \to X$ the Frobenius morphism, and \mathcal{L} an invertible \mathcal{O}_X -module. Show that $F^*\mathcal{L} \cong L^{\otimes p}$.
- **Problem 59.** A morphism $f: X \to Y$ of varieties is called *affine* if for every open affine set $V \subset Y$ the inverse image $f^{-1}(V)$ is also affine. f is called *finite* if it is affine and $k[f^{-1}(V)]$ is a finitely generated k[V]-module for all open affine $V \subset Y$. Let $Y = \bigcup V_i$ be an open affine covering of Y such that $f^{-1}(V_i)$ is affine $\forall i$. Show that f is affine. If $k[f^{-1}(V_i)]$ is a finitely generated $k[V_i]$ -module for all i then
- **Problem 60.** (a) Let X be a complete variety and $f: X \to Y = \operatorname{Spec-m}(k)$ the unique morphism to a point. Show that $f^*: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is an isomorphism.

f is finite.

- (b) Find a projective variety X and a birational morphism $f: X \to Y$ such that $f_*\mathcal{O}_X$ is not locally free on Y.
- **Problem 61.** (a) $Y \subset \mathbb{P}^n$ is a hypersurface of degree d with ideal sheaf $\mathcal{I}_Y \subset \mathcal{O}_{\mathbb{P}^n}$. Show that $\mathcal{I}_Y \cong \mathcal{O}(-d)$.
- (b) Let $v_d: \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese embedding, $N = \binom{n+d}{n} 1$. Show that $(v_d)^*(\mathcal{O}_{\mathbb{P}^N}(1)) = \mathcal{O}_{\mathbb{P}^n}(d)$.
- **Problem 62.** Let $\varphi: \mathbb{P}^n \to \mathbb{P}^m$ be any non-constant morphism. Then $\dim \varphi(\mathbb{P}^n) = n$. Furthermore, φ is the composition of a Veronese embedding $v_d: \mathbb{P}^n \to \mathbb{P}^{N-1}$, a projection $\mathbb{P}(k^N) \mathbb{P}(L) \to \mathbb{P}(k^N/L)$ for some linear subspace $L \subset k^N$, and an inclusion of a linear subspace $\mathbb{P}(k^N/L) \subset \mathbb{P}^m$.
- **Problem 63.** (a) Let $\varphi: X \to Y$ be an affine morphism of pre-varieties. Show that if Y is separated then so is X.
- (b) X is an irreducible affine variety, $U \subset X$ an open affine subset, $\bar{U} \subset \bar{X}$ their normalizations, and $\pi : \bar{X} \to X$ the normalization map. Show that $\pi^{-1}(U) = \bar{U}$.
- (c) If X is any irreducible variety then $\pi: \bar{X} \to X$ is a finite morphism. Conclude that \bar{X} is separated.
- **Problem 64.** (a) If Y is a normal variety and $f: Y \to X$ a dominant morphism, then there exists a unique morphism $\bar{f}: Y \to \bar{X}$ such that $f = \pi \circ \bar{f}$.
 - (b) Give a counter example to (a) when f is not dominant.
- **Problem 65.** $X = V(xy-z^2) \subset \mathbb{A}^3$ is normal. [Hint: $k[X] = k[x,xt,xt^2] \subset k(x,t)$ where t = z/x.]
- **Problem 66.** If X is any normal rational variety then $C\ell(X)$ is a finitely generated Abelian group.
- **Problem 67.** (a) Let $X \subset \mathbb{P}^2$ be a non-singular curve of degree 3 and $P \in X$ a point. Show that $\dim_k \Gamma(X, \mathcal{L}(n[P])) \geq n$ for all n.
 - (b) Any proper open subset of X is affine.

- **Problem 68.** (a) Let $F, G, H \in k[x, y, z]$ be forms such that $V_+(G, H, z) = \emptyset$ in \mathbb{P}^2 . Show that if $zF \in (G, H)$ then $F \in (G, H)$. [Hint: Use that $G_0 = G(x, y, 0)$ and $H_0 = H(x, y, 0)$ are relatively prime.]
- (b) Let $C \subset \mathbb{P}^2$ be a curve, and set $\mathcal{O}_C(n) = \mathcal{O}_{\mathbb{P}^2}(n)|_C$. Then $\Gamma(C, \mathcal{O}_C(n)) = (k[x,y,z]/I(C))_n$ for all $n \geq 0$. [Hint: If $C = V_+(H) \subset D_+(y) \cup D_+(z)$ and if σ is a global section of $\mathcal{O}_C(n)$ then $\sigma/y^n = F(x,y,z)/y^m$ and $\sigma/z^n = A(x,y,z)/z^m$ for forms $F, A \in k[x,y,z]$ of degree $m \geq n$. Now use part (a).]
- (c) Define the arithmetic genus of C to be $1-P_C(0)$ where $P_C(m)$ is the Hilbert polynomial of $C \subset \mathbb{P}^2$. Show that $p_a = \frac{(d-1)(d-2)}{2}$ where d is the degree of C and that $\dim_k \Gamma(C, \mathcal{O}_C(n)) = nd + 1 p_a$ for all large integers n.
- **Problem 69.** (a) Let $C \subset \mathbb{P}^2$ be a non-singular curve and $Y \subset \mathbb{P}^2$ an irreducible curve different from C. Set $Y.C = \sum_P I(Y \cdot C; P) P \in \text{Div}(C)$. Show that $\mathcal{L}([Y])|_C \cong \mathcal{L}(Y.C)$ on C.
- (b) Let $L = V_+(f)$ and $M = V_+(g) \subset \mathbb{P}^2$ be lines (not equal to C) where $f, g \in k[x, y, z]$ are linear forms. Then the divisor of $f/g \in k(C)$ is (f/g) = L.C M.C.
- **Problem 70.** Let $E \subset \mathbb{P}^2$ be an elliptic curve and $P_0 \in E$ any point. Show that the map $E \to \mathbb{C}\ell^{\circ}(E)$ given by $P \mapsto P P_0$ is bijective.
- **Problem 71.** Let $D: S \to M$ be an R-derivation and $p(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$ a polynomial. Then $D(p(a_1, \ldots, a_n)) = \sum_{i=1}^n \frac{\partial p}{\partial x_i}(a_1, \ldots, a_n)D(a_i)$ for all elements $a_1, \ldots, a_n \in S$.
- **Problem 72.** Let $E = V_+(zy^2 x^3 + z^2x) \subset \mathbb{P}^2$, char $(k) \neq 2$. Show that $\Omega_E \cong \mathcal{O}_E$. [Hint: Compute the divisor of the section d(x/z) of Ω_E .]