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1. The topic

This is a proposal for a first topic in Intersection Theory. The goal
in the topic is to understand the Grothendieck-Riemann-Roch theorem
and Prof. William Fulton’s proof of it. The topic has been worked out
under Prof. Madhav Nori’s supervision. In doing the topic I have read
F.A.C. [3], most of chapters 1-3 in Hartshorne’s book [2], and chapters
1-8 plus chapter 15 in Fulton’s book [1]. Furthermore I used Borel
and Serre’s article on Grothendieck-Riemann-Roch theorem [4], and
chapter 5 in Altman and Kleiman’s book on Grothendieck duality [5].
Of these, Fulton’s book has been the main reference.

During the topic I have done a number of exercises in Hartshorne’s
book. Fulton’s book does not contain exercises, however it has taken
a lot of work to understand and verify most of the examples. I also
plan to do exercises from J. Harris’ book [6] to see more examples of
algebraic varieties.

2. Intersection Theory

A very simple problem in Intersection Theory is the following: If
f(X) ∈ C[X] is a nonzero polynomial of degree d, then how many
solutions a ∈ C exist to the equation

f(a) = 0 ?

The answer is simple: If you count properly, then there are d solutions.
The above problem has a natural generalization to several variables.

If f1, . . . , fn ∈ C[X1, . . . , Xn] are polynomials of degrees d1, . . . , dn,
then how many solutions a = (a1, . . . , an) ∈ An = Cn exist to the set
of equations

fi(a) = fi(a1, . . . , an) = 0

for 1 ≤ i ≤ n? Given that the number of solutions is finite, the answer
to this question is almost as simple as in the above case. If you include
solutions in the enlargement Pn of An and furthermore count properly,
then there are exactly

∏
i di. This is a special case of Bézout’s Theorem.
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Intersection Theory is a branch of Algebraic Geometry, of which
Bézout’s Theorem is a particularly nice example. The basic question
in Intersection Theory is what do you get when you intersect two sub-
varieties of an algebraic variety.

3. The group of cycle classes on a scheme

Let k be a field. In the following a scheme will mean a Noetherian
scheme of finite type over k.

If X is a scheme, a cycle on X is an element of the free Abelian
group generated by all subvarieties of X. The cycle of X is defined as
[X] =

∑
ordV (X)[V ], where the sum is over all irreducible components

of X, and ordV (X) is the length of the local ring of V in X. Note that
if W is a closed subscheme of X, then [W ] may be considered as a cycle
on X.

On the group of cycles on X, we define rational equivalence. Two
cycles are rationally equivalent, if their difference lie in the subgroup
generated by the cycles [div(f)] for all subvarieties V of X and ra-
tional functions f ∈ k(V ). The group A(X) of cycle classes on X is
defined to be the group of cycles modulo rational equivalence. If X is
pure dimensional, A(X) has a natural grading, where the degree of a
subvariety is equal to its codimension in X.

Certain types of morphisms of schemes f : X → Y give rise to
homomorphisms between A(X) and A(Y ). If f is proper one may
define a push-forward f∗ : A(X) → A(Y ). If V is a subvariety of
X, we put f∗[V ] = deg(V/W )[W ], where W = f(V ) and deg(V/W )
is nonzero only if dim(V ) = dim(W ), in which case it is defined as
deg(V/W ) = [k(V ) : k(W )].

If f is a flat morphism (of some relative dimension), or an l.c.i.
morphism, or if Y is a non-singular variety (andX is pure-dimensional),
one may define a pull-back homomorphism f ∗ : A(Y )→ A(X). If f is
flat, this is given by f ∗[V ] = [f−1(V )] for a subvariety V ⊂ Y .

4. The Chow ring of a non-singular variety

Let X be a non-singular variety with subvarieties V and W of codi-
mensions c1 and c2. One may define an intersection product V ·W in
A(X), which is the class of a cycle on V ∩W , of degree c1 + c2. This
intersection product makes A(X) into a graded ring with unit element
[X].

In very nice situations, V ·W is merely [V ∩W ]. For example this is
true if W is a hypersurface, not containing V . In general the formula
is more likely to hold, if V and W meet transversally at their points
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of intersection, and when all components of V ∩W have the expected
codimension c1 + c2.

The intersection product commutes with pull-back homomorphisms,
so A(−) is a contravariant functor from non-singular varieties to com-
mutative rings.

Bézout’s Theorem may be reformulated as A(Pn) = Z[t]/(tn+1),
where ti is the class of a subspace of codimension i in Pn. To see that
this version implies the above statement, let f1, . . . , fn ∈ k[X0, . . . , Xn]
be homogeneous polynomials of degrees d1, . . . , dn, and let Si be the
hypersurface V (fi). Assume that the intersection W = S1 ∩ · · · ∩ Sn is
a finite set of points. Then we have

[S1] · · · · · [Sn] = [W ]

=
∑
P∈W

ordP (W )[P ] .

On the other hand [Si] = dit in A(Pn), so the above product is also
equal to (

∏
i di)t

n. As tn is the class of any rational point in Pn, we see
that W contains

∏
i di points, if we count properly.

Bézout’s theorem also has applications to counting solutions in more
complicated situations. For example it predicts that the number of
lines intersecting four given lines in P3 is two or infinite.

5. Chern classes

If L is a line bundle on a non-singular variety X, we define the Chern
class of L to be the class c1(L) = [D] in A(X), where D is the divisor
corresponding to L.

Now let E be a vector bundle of rank r on X with a filtration

E = Er ⊃ Er−1 ⊃ · · · ⊃ E0 = 0 ,

such that the quotients Li = Ei/Ei−1 are line bundles. Then we define
the Chern roots of E to be the classes α1 = c1(L1), . . . , αr = c1(Lr).
We define the i’th Chern class ci(E) of E to be i’th symmetric polyno-
mial in the αj. With the notation A(X)Q = A(X) ⊗ Q, we define the
classes in A(X)Q

ch(E) =
∑
j

exp(αj)

td(E) =
∏
j

Q(αj) ,

where Q(x) = x/(1− e−x) = 1 + 1
2
x+ 1

12
x2 + · · · . Here ch(E) is called

the Chern character of E, td(E) the Todd class.
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If E does not have a filtration as above, the Chern classes of E may
still be defined. The Chern character and Todd class of E can then be
defined as a polynomials in the Chern classes. If ci = ci(E) is the i’th
Chern class, then

ch(E) = r + c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2 + 3c3) + · · ·

td(E) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 + · · ·

The Chern character satisfies ch(E⊗F ) = ch(E) ·ch(F ) for E and F
vector bundles on X, and ch(E) = ch(E ′)+ch(E ′′) for 0→ E ′ → E →
E ′′ → 0 an exact sequence of vector bundles. By this we can define a
ring homomorphism from the Grothendieck group of vector bundles on
X,

ch : K(X)→ A(X)Q .

6. Grothendieck-Riemann-Roch theorem

Let f : X → Y be a proper morphism of non-singular varieties. Then
f gives rise to a homomorphism of Grothendieck groups f∗ : K(X)→
K(Y ), defined by

f∗[E] =
∑
i≥0

(−1)i[Rif∗E] .

f also gives rise to a morphism f∗ : A(X) → A(Y ) as defined above.
Grothendieck-Riemann-Roch theorem states that for any vector bundle
E on X we have in A(Y )Q

f∗(ch(E) · td(TX)) = ch(f∗[E]) · td(TY ) .

If X is complete, we may take Y = Spec(k) to be a point, and
we use the notation

∫
X
α = f∗(α) ∈ A(Y ) = Z for any α ∈ A(X).

Furthermore K(Y ) = Z, td(TY ) = 1, and [Rif∗E] = dimkH
i(X,E)

in K(Y ). It follows that f∗[E] = χ(X,E). In this case Grothendieck-
Riemann-Roch implies Hirzebruch’s formula

χ(X,E) =

∫
X

ch(E) · td(TX) .

7. Applications to non-singular curves

Let X be a complete non-singular curve, g = dimkH
1(X,OX) the

genus of X, and K = c1(ωX) a canonical divisor. For any divisor D
on X we define deg(D) =

∫
X
D and `(D) = dimkH

0(X,L(D)). Note
that `(D) > 0 if and only if D is equivalent to an effective divisor. It
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follows from Serre duality that χ(X,L(D)) = `(D)− `(K −D). Since
TX = ω∨X , we get td(TX) = 1− 1

2
K, and so by Hirzebruch’s formula

1− g = χ(X,OX) =

∫
X

ch(OX) td(TX) = −1

2
deg(K) .

In particular K has even degree. Applying Hirzebruch to L(D), we get

`(D)− `(K −D) =

∫
X

exp(D)(1− 1

2
K) = deg(D) + 1− g .

This is known as Riemann-Roch theorem for curves.
Not that if deg(D) < 0, D can’t be equivalent to an effective divisor,

and so `(D) = 0. It follows that if deg(D) > deg(K) = 2g−2, we have
`(D) = deg(D) + 1− g.

8. Applications to non-singular surfaces

Let X be a complete non-singular surface, and let ci = ci(TX). Then
χ(X,OX) = 1

12

∫
X

(c21 + c2). If E is a vector bundle of rank r on X with
Chern classes di = ci(E), we get

χ(X,E) =

∫
X

ch(E) td(TX) =
1

2

∫
X

(d21 − 2d2 + d1c1) + rχ(X,OX) .

In case E = L(D) is a line bundle, this says

χ(X,L(D)) =
1

2

∫
X

(D ·D −D ·K) + χ(X,OX) ,

where K = c1(ωX) = −c1 is a canonical divisor.
If D is an effective Cartier divisor, we have a short exact sequence

0 → L(−D) → OX → OD → 0. We get the following formula for the
arithmetic genus of D:

pa(D) = 1− χ(X,OX) + χ(X,L(−D)) =
1

2

∫
X

(D ·D +D ·K) + 1 .

In the special case X = P2 we have ωX = O(−3), so K = −3h,
where h is the class of a hyperplane. We get

χ(P2,O(n)) =
1

2
(n2 + 3n) + 1 =

1

2
(n+ 1)(n+ 2) .

If C is a curve of degree n on P2, we get

pa(C) =
1

2
(n2 − 3n) + 1 =

1

2
(n− 1)(n− 2) .

If X = P1 × P1, we have A(X) = Z[s, t]/(s2, t2), where s = [0 × P1]
and t = [P1 × 0]. From TX = pr∗1(TP1)⊕ pr∗2(TP1) = L(2s)⊕ L(2t), we
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find K = −2(s+t) and td(TX) = td(L(2s))·td(L(2t)) = (1+s)(1+t) =
1 + s+ t+ st, and so χ(X,OX) =

∫
X

td(TX) = 1. We find

χ(P1 × P1, L(ms+ nt)) = mn+m+ n+ 1 = (m+ 1)(n+ 1) .

If C is a curve on X of bidegree (m,n), we have [C] = ms+nt, and so

pa(C) =
1

2

∫
X

(C ·C +C ·K) + 1 = mn−m− n+ 1 = (m− 1)(n− 1) .
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