GROTHENDIECK-RIEMANN-ROCH THEOREM

ANDERS SKOVSTED BUCH

1. The topic

This is a proposal for a first topic in Intersection Theory. The goal in the topic is to understand the Grothendieck-Riemann-Roch theorem and Prof. William Fulton's proof of it. The topic has been worked out under Prof. Madhav Nori's supervision. In doing the topic I have read F.A.C. [3], most of chapters 1-3 in Hartshorne's book [2], and chapters 1-8 plus chapter 15 in Fulton's book [1]. Furthermore I used Borel and Serre's article on Grothendieck-Riemann-Roch theorem [4], and chapter 5 in Altman and Kleiman's book on Grothendieck duality [5]. Of these, Fulton's book has been the main reference.

During the topic I have done a number of exercises in Hartshorne's book. Fulton's book does not contain exercises, however it has taken a lot of work to understand and verify most of the examples. I also plan to do exercises from J. Harris' book [6] to see more examples of algebraic varieties.

2. Intersection Theory

A very simple problem in Intersection Theory is the following: If $f(X) \in \mathbb{C}[X]$ is a nonzero polynomial of degree d, then how many solutions $a \in \mathbb{C}$ exist to the equation

$$f(a) = 0$$
?

The answer is simple: If you count properly, then there are d solutions. The above problem has a natural generalization to several variables. If $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$ are polynomials of degrees d_1, \ldots, d_n , then how many solutions $a = (a_1, \ldots, a_n) \in \mathbb{A}^n = \mathbb{C}^n$ exist to the set of equations

$$f_i(a) = f_i(a_1, \dots, a_n) = 0$$

for $1 \leq i \leq n$? Given that the number of solutions is finite, the answer to this question is almost as simple as in the above case. If you include solutions in the enlargement \mathbb{P}^n of \mathbb{A}^n and furthermore count properly, then there are exactly $\prod_i d_i$. This is a special case of Bézout's Theorem.

Date: April 13, 2001.

Intersection Theory is a branch of Algebraic Geometry, of which Bézout's Theorem is a particularly nice example. The basic question in Intersection Theory is what do you get when you intersect two subvarieties of an algebraic variety.

3. The group of cycle classes on a scheme

Let k be a field. In the following a scheme will mean a Noetherian scheme of finite type over k.

If X is a scheme, a cycle on X is an element of the free Abelian group generated by all subvarieties of X. The cycle of X is defined as $[X] = \sum \operatorname{ord}_V(X)[V]$, where the sum is over all irreducible components of X, and $\operatorname{ord}_V(X)$ is the length of the local ring of V in X. Note that if W is a closed subscheme of X, then [W] may be considered as a cycle on X.

On the group of cycles on X, we define rational equivalence. Two cycles are rationally equivalent, if their difference lie in the subgroup generated by the cycles $[\operatorname{div}(f)]$ for all subvarieties V of X and rational functions $f \in k(V)$. The group A(X) of cycle classes on X is defined to be the group of cycles modulo rational equivalence. If X is pure dimensional, A(X) has a natural grading, where the degree of a subvariety is equal to its codimension in X.

Certain types of morphisms of schemes $f: X \to Y$ give rise to homomorphisms between A(X) and A(Y). If f is proper one may define a push-forward $f_*: A(X) \to A(Y)$. If V is a subvariety of X, we put $f_*[V] = \deg(V/W)[W]$, where W = f(V) and $\deg(V/W)$ is nonzero only if $\dim(V) = \dim(W)$, in which case it is defined as $\deg(V/W) = [k(V):k(W)]$.

If f is a flat morphism (of some relative dimension), or an l.c.i. morphism, or if Y is a non-singular variety (and X is pure-dimensional), one may define a pull-back homomorphism $f^*: A(Y) \to A(X)$. If f is flat, this is given by $f^*[V] = [f^{-1}(V)]$ for a subvariety $V \subset Y$.

4. The Chow ring of a non-singular variety

Let X be a non-singular variety with subvarieties V and W of codimensions c_1 and c_2 . One may define an intersection product $V \cdot W$ in A(X), which is the class of a cycle on $V \cap W$, of degree $c_1 + c_2$. This intersection product makes A(X) into a graded ring with unit element [X].

In very nice situations, $V \cdot W$ is merely $[V \cap W]$. For example this is true if W is a hypersurface, not containing V. In general the formula is more likely to hold, if V and W meet transversally at their points

of intersection, and when all components of $V \cap W$ have the expected codimension $c_1 + c_2$.

The intersection product commutes with pull-back homomorphisms, so A(-) is a contravariant functor from non-singular varieties to commutative rings.

Bézout's Theorem may be reformulated as $A(\mathbb{P}^n) = \mathbb{Z}[t]/(t^{n+1})$, where t^i is the class of a subspace of codimension i in \mathbb{P}^n . To see that this version implies the above statement, let $f_1, \ldots, f_n \in k[X_0, \ldots, X_n]$ be homogeneous polynomials of degrees d_1, \ldots, d_n , and let S_i be the hypersurface $V(f_i)$. Assume that the intersection $W = S_1 \cap \cdots \cap S_n$ is a finite set of points. Then we have

$$[S_1] \cdot \dots \cdot [S_n] = [W]$$

= $\sum_{P \in W} \operatorname{ord}_P(W)[P]$.

On the other hand $[S_i] = d_i t$ in $A(\mathbb{P}^n)$, so the above product is also equal to $(\prod_i d_i)t^n$. As t^n is the class of any rational point in \mathbb{P}^n , we see that W contains $\prod_i d_i$ points, if we count properly.

Bézout's theorem also has applications to counting solutions in more complicated situations. For example it predicts that the number of lines intersecting four given lines in \mathbb{P}^3 is two or infinite.

5. Chern classes

If L is a line bundle on a non-singular variety X, we define the Chern class of L to be the class $c_1(L) = [D]$ in A(X), where D is the divisor corresponding to L.

Now let E be a vector bundle of rank r on X with a filtration

$$E = E_r \supset E_{r-1} \supset \cdots \supset E_0 = 0$$
,

such that the quotients $L_i = E_i/E_{i-1}$ are line bundles. Then we define the Chern roots of E to be the classes $\alpha_1 = c_1(L_1), \ldots, \alpha_r = c_1(L_r)$. We define the *i*'th Chern class $c_i(E)$ of E to be *i*'th symmetric polynomial in the α_j . With the notation $A(X)_{\mathbb{Q}} = A(X) \otimes \mathbb{Q}$, we define the classes in $A(X)_{\mathbb{Q}}$

$$ch(E) = \sum_{j} exp(\alpha_{j})$$

$$td(E) = \prod_{j} Q(\alpha_{j}),$$

where $Q(x) = x/(1-e^{-x}) = 1 + \frac{1}{2}x + \frac{1}{12}x^2 + \cdots$. Here $\operatorname{ch}(E)$ is called the Chern character of E, $\operatorname{td}(E)$ the Todd class.

If E does not have a filtration as above, the Chern classes of E may still be defined. The Chern character and Todd class of E can then be defined as a polynomials in the Chern classes. If $c_i = c_i(E)$ is the i'th Chern class, then

$$ch(E) = r + c_1 + \frac{1}{2}(c_1^2 - 2c_2) + \frac{1}{6}(c_1^3 - 3c_1c_2 + 3c_3) + \cdots$$

$$td(E) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \cdots$$

The Chern character satisfies $\operatorname{ch}(E \otimes F) = \operatorname{ch}(E) \cdot \operatorname{ch}(F)$ for E and F vector bundles on X, and $\operatorname{ch}(E) = \operatorname{ch}(E') + \operatorname{ch}(E'')$ for $0 \to E' \to E \to E'' \to 0$ an exact sequence of vector bundles. By this we can define a ring homomorphism from the Grothendieck group of vector bundles on X,

$$\operatorname{ch}: K(X) \to A(X)_{\mathbb{Q}}$$
.

6. Grothendieck-Riemann-Roch Theorem

Let $f: X \to Y$ be a proper morphism of non-singular varieties. Then f gives rise to a homomorphism of Grothendieck groups $f_*: K(X) \to K(Y)$, defined by

$$f_*[E] = \sum_{i>0} (-1)^i [R^i f_* E].$$

f also gives rise to a morphism $f_*:A(X)\to A(Y)$ as defined above. Grothendieck-Riemann-Roch theorem states that for any vector bundle E on X we have in $A(Y)_{\mathbb{Q}}$

$$f_*(\operatorname{ch}(E) \cdot \operatorname{td}(T_X)) = \operatorname{ch}(f_*[E]) \cdot \operatorname{td}(T_Y).$$

If X is complete, we may take $Y = \operatorname{Spec}(k)$ to be a point, and we use the notation $\int_X \alpha = f_*(\alpha) \in A(Y) = \mathbb{Z}$ for any $\alpha \in A(X)$. Furthermore $K(Y) = \mathbb{Z}$, $\operatorname{td}(T_Y) = 1$, and $[R^i f_* E] = \dim_k H^i(X, E)$ in K(Y). It follows that $f_*[E] = \chi(X, E)$. In this case Grothendieck-Riemann-Roch implies Hirzebruch's formula

$$\chi(X, E) = \int_X \operatorname{ch}(E) \cdot \operatorname{td}(T_X).$$

7. Applications to non-singular curves

Let X be a complete non-singular curve, $g = \dim_k H^1(X, \mathcal{O}_X)$ the genus of X, and $K = c_1(\omega_X)$ a canonical divisor. For any divisor D on X we define $\deg(D) = \int_X D$ and $\ell(D) = \dim_k H^0(X, L(D))$. Note that $\ell(D) > 0$ if and only if D is equivalent to an effective divisor. It

follows from Serre duality that $\chi(X, L(D)) = \ell(D) - \ell(K - D)$. Since $T_X = \omega_X^{\vee}$, we get $\operatorname{td}(T_X) = 1 - \frac{1}{2}K$, and so by Hirzebruch's formula

$$1 - g = \chi(X, \mathcal{O}_X) = \int_X \operatorname{ch}(\mathcal{O}_X) \operatorname{td}(T_X) = -\frac{1}{2} \operatorname{deg}(K).$$

In particular K has even degree. Applying Hirzebruch to L(D), we get

$$\ell(D) - \ell(K - D) = \int_X \exp(D)(1 - \frac{1}{2}K) = \deg(D) + 1 - g.$$

This is known as Riemann-Roch theorem for curves.

Not that if $\deg(D) < 0$, D can't be equivalent to an effective divisor, and so $\ell(D) = 0$. It follows that if $\deg(D) > \deg(K) = 2g - 2$, we have $\ell(D) = \deg(D) + 1 - g$.

8. Applications to non-singular surfaces

Let X be a complete non-singular surface, and let $c_i = c_i(T_X)$. Then $\chi(X, \mathcal{O}_X) = \frac{1}{12} \int_X (c_1^2 + c_2)$. If E is a vector bundle of rank r on X with Chern classes $d_i = c_i(E)$, we get

$$\chi(X, E) = \int_X \operatorname{ch}(E) \operatorname{td}(T_X) = \frac{1}{2} \int_X (d_1^2 - 2d_2 + d_1c_1) + r\chi(X, \mathcal{O}_X).$$

In case E = L(D) is a line bundle, this says

$$\chi(X, L(D)) = \frac{1}{2} \int_{X} (D \cdot D - D \cdot K) + \chi(X, \mathcal{O}_X),$$

where $K = c_1(\omega_X) = -c_1$ is a canonical divisor.

If D is an effective Cartier divisor, we have a short exact sequence $0 \to L(-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0$. We get the following formula for the arithmetic genus of D:

$$p_a(D) = 1 - \chi(X, \mathcal{O}_X) + \chi(X, L(-D)) = \frac{1}{2} \int_X (D \cdot D + D \cdot K) + 1.$$

In the special case $X = \mathbb{P}^2$ we have $\omega_X = \mathcal{O}(-3)$, so K = -3h, where h is the class of a hyperplane. We get

$$\chi(\mathbb{P}^2, \mathcal{O}(n)) = \frac{1}{2}(n^2 + 3n) + 1 = \frac{1}{2}(n+1)(n+2).$$

If C is a curve of degree n on \mathbb{P}^2 , we get

$$p_a(C) = \frac{1}{2}(n^2 - 3n) + 1 = \frac{1}{2}(n-1)(n-2)$$

If $X = \mathbb{P}^1 \times \mathbb{P}^1$, we have $A(X) = \mathbb{Z}[s,t]/(s^2,t^2)$, where $s = [0 \times \mathbb{P}^1]$ and $t = [\mathbb{P}^1 \times 0]$. From $T_X = \operatorname{pr}_1^*(T_{\mathbb{P}^1}) \oplus \operatorname{pr}_2^*(T_{\mathbb{P}^1}) = L(2s) \oplus L(2t)$, we

find
$$K=-2(s+t)$$
 and $\operatorname{td}(T_X)=\operatorname{td}(L(2s))\cdot\operatorname{td}(L(2t))=(1+s)(1+t)=1+s+t+st,$ and so $\chi(X,\mathcal{O}_X)=\int_X\operatorname{td}(T_X)=1.$ We find

$$\chi(\mathbb{P}^1 \times \mathbb{P}^1, L(ms + nt)) = mn + m + n + 1 = (m+1)(n+1).$$

If C is a curve on X of bidegree (m, n), we have [C] = ms + nt, and so

$$p_a(C) = \frac{1}{2} \int_X (C \cdot C + C \cdot K) + 1 = mn - m - n + 1 = (m - 1)(n - 1).$$

References

- [1] William Fulton. Intersection Theory
- [2] Robin Hartshorne. Algebraic Geometry
- [3] J-P. Serre. Faisceaux algébriques cohérents
- [4] A. Borel, J-P. Serre. Le théorème de Riemann-Roch (d'aprés Grothendieck)
- [5] A. B. Altman, S. L. Kleiman. Introduction to Grothendieck duality theory
- [6] J. Harris. Algebraic Geometry