Some algebra review problems that will be needed in our course

1. (a) Use completion of squares to solve $2x^2 - 4x - 5 = 0$.

(b) Use completion of squares to find the center and radius of the circle $x^2 + y^2 - 4x + 6y - 3 = 0$.

2. For the true-or-false questions, encircle true or false; then give a reason if the assertion is true or a counterexample if the assertion is false.

(a) True or False: If A and P are 2×2 matrices with P invertible and λ is an eigenvalue for A, then λ is an eigenvalue for $P^{-1}AP$.

(b) True or False: If A and P are 2×2 matrices with P invertible and v is an eigenvector for A, then **v** is an eigenvector for $P^{-1}AP$.

(c) True or False: If A is an $n \times n$ matrix such that $A\mathbf{x} = \mathbf{b}$ is consistent for every vector **b** in \mathbf{R}^n , then $A\mathbf{x} = \mathbf{0}$ has only the zero solution $\mathbf{x} = \mathbf{0}$.

(d) True or False: If A is a 3×2 matrix whose columns **u**, **v** are mutually orthogonal, then A^TA is a diagonal matrix.

(e) True or False: If A and B are two $n \times n$ invertible matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.

3. Suppose A is a 3×3 matrix and **u**, **v**, **w** are *nonzero vectors* in \mathbb{R}^3 such that

$$
A\mathbf{u} = 2\mathbf{u}, \quad A\mathbf{v} = -2\mathbf{v}, \quad A\mathbf{w} = 0.
$$

(a) Let $P = [$ **u** $| \mathbf{v} | \mathbf{w}]$ (the 3 × 3 matrix with columns **u**, **v**, **w**). Find a 3 × 3 matrix D so that $AP = PD$. Prove that your answer is correct by calculating AP and PD separately.

(b) Let $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$, where a, b, and c are scalars. Write the vectors Ax and $A^2\mathbf{x}$ as linear combinations of u, v, and w.

(c) Suppose a, b, and c are scalars such that $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = 0$. Prove that $a = 0, b = 0$, and $c = 0$. (HINT: Use (b) with $\mathbf{x} = 0$.)

(d) Prove that the matrix P in (a) is invertible and the matrix A is diagonalizable.

(e) Use (a) to find det A and the characteristic polynomial of A in factorized form.

4. Let W be the subspace of \mathbb{R}^3 spanned by the vector $\mathbf{u} =$ $\sqrt{ }$ $\overline{1}$ 1 2 1 1 $\vert \cdot$

(a) Let
$$
\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$
. Find the orthogonal projection **w** of **v** onto *W*.

(b) Suppose $x =$ $\sqrt{ }$ $\overline{1}$ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_3}$ 1 is in W^{\perp} . Write down the equation satisfied by x_1, x_2, x_3 . Use this to find a basis for W^{\perp} .

5. Let W be the subspace of \mathbb{R}^4 with basis vectors

$$
\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 4 \\ -2 \\ -2 \\ 0 \end{bmatrix}.
$$

(a) Apply the Gram-Schmidt process to the vectors ${u_1, u_2, u_3}$ given below to obtain an orthogonal set of vectors $\{v_1, v_2, v_3\}$ with $v_1 = u_1$. Fill in the table on the left as you calculate. (Don't normalize \mathbf{v}_2 and \mathbf{v}_3)

$$
\mathbf{u}_3 = \begin{bmatrix} 4 \\ -2 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 =
$$

(Problem 5 continues on next page)

(Continuation of Problem 5)

(b) Normalize the orthogonal basis for the subspace W from (a) to obtain an orthonormal basis $\{w_1, w_2, w_3\}$ for W.

(c) If $\mathbf{v} \in \mathbb{R}^4$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is any orthonormal basis for the subspace W, then the orthogonal projection of **v** onto W is the vector $\mathbf{w} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$, where

 $c_1 =$ $c_2 =$ $c_3 =$ $c_4 =$

(give a formula for the coefficients in terms of dot products).

(d) Take $v =$ \lceil $\Big\}$ 6 4 2 0 1 \parallel and use the formulas from part (c) and the orthonormal basis from part

(b) to calculate the orthogonal projection of \bf{v} onto W. Check your answer by calculating the vector $z = v - w$ and showing that z is perpendicular to u_1, u_2 , and u_3 .

6. Let

$$
\mathbb{A} = \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 1 \end{pmatrix}.
$$

Find the eigenvalues of A and prove that A is diagonalizable, *i.e.*, there is an invertible matrix \mathbb{P} such that \mathbb{P}^{-1} AP is diagonalizable. Furthermore, P can be chosen to be an orthogonal matrix, *i.e.*, a matrix whose columns are unit vectors and whose distinct columns are orthogonal to each other.

7. Let A be a 3×3 symmetric matrix with real entries, and have eigenvalues $\lambda_1 = 0$, $\lambda_2 = 6$, and $\lambda_3 = 3$. Let $\mathbf{u}_1, \mathbf{u}_2,$ and \mathbf{u}_3 be corresponding eigenvectors (normalized to have length one).

(a) Since A is symmetric and λ_1 , λ_2 , and λ_3 are all different, it follows that

$$
\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 = \underline{\hspace{2cm}}
$$

(b) The 3×3 matrix $P = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3]$ satisfies

$$
P^{T}P = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \quad \text{(fill in the entries of this 3 × 3 matrix)}.
$$

(c) Let P be the matrix of normalized eigenvectors from (b). Then $A = PDP^{T}$, where

$$
D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
 (fill in the entries of this 3 × 3 matrix).

(d) The characteristic polynomial of A is .