Some algebra review problems that will be needed in our course

1. (a) Use completion of squares to solve $2x^2 - 4x - 5 = 0$.

(b) Use completion of squares to find the center and radius of the circle $x^2 + y^2 - 4x + 6y - 3 = 0$.

2. For the true-or-false questions, encircle *true* or *false*; then give a reason if the assertion is true or a counterexample if the assertion is false.

(a) *True* or *False:* If A and P are 2×2 matrices with P invertible and λ is an eigenvalue for A, then λ is an eigenvalue for $P^{-1}AP$.

(b) *True* or *False*: If A and P are 2×2 matrices with P invertible and **v** is an eigenvector for A, then **v** is an eigenvector for $P^{-1}AP$.

(c) *True* or *False:* If A is an $n \times n$ matrix such that $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbf{R}^n , then $A\mathbf{x} = \mathbf{0}$ has only the zero solution $\mathbf{x} = \mathbf{0}$.

(d) *True* or *False:* If A is a 3×2 matrix whose columns \mathbf{u}, \mathbf{v} are mutually orthogonal, then $A^{\mathrm{T}}A$ is a diagonal matrix.

(e) True or False: If A and B are two $n \times n$ invertible matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.

3. Suppose A is a 3×3 matrix and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are *nonzero vectors* in \mathbf{R}^3 such that

$$A\mathbf{u} = 2\mathbf{u}, \quad A\mathbf{v} = -2\mathbf{v}, \quad A\mathbf{w} = 0.$$

(a) Let $P = [\mathbf{u} | \mathbf{v} | \mathbf{w}]$ (the 3 × 3 matrix with columns $\mathbf{u}, \mathbf{v}, \mathbf{w}$). Find a 3 × 3 matrix D so that AP = PD. Prove that your answer is correct by calculating AP and PD separately.

(b) Let $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$, where a, b, and c are scalars. Write the vectors $A\mathbf{x}$ and $A^2\mathbf{x}$ as linear combinations of \mathbf{u}, \mathbf{v} , and \mathbf{w} .

(c) Suppose a, b, and c are scalars such that $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = 0$. Prove that a = 0, b = 0, and c = 0. (HINT: Use (b) with $\mathbf{x} = 0$.)

(d) Prove that the matrix P in (a) is invertible and the matrix A is diagonalizable.

(e) Use (a) to find det A and the characteristic polynomial of A in factorized form.

4. Let *W* be the subspace of \mathbf{R}^3 spanned by the vector $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

(a) Let $\mathbf{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Find the orthogonal projection \mathbf{w} of \mathbf{v} onto W.

(b) Suppose $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is in W^{\perp} . Write down the equation satisfied by x_1, x_2, x_3 . Use this to find a basis for W^{\perp} .

5. Let W be the subspace of \mathbf{R}^4 with basis vectors

$$\mathbf{u}_{1} = \begin{bmatrix} 1\\ 1\\ -1\\ -1 \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} 2\\ 0\\ -2\\ 0 \end{bmatrix}, \quad \mathbf{u}_{3} = \begin{bmatrix} 4\\ -2\\ -2\\ 0 \end{bmatrix}.$$

(a) Apply the Gram-Schmidt process to the vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ given below to obtain an orthogonal set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ with $\mathbf{v}_1 = \mathbf{u}_1$. Fill in the table on the left as you calculate. (Don't normalize \mathbf{v}_2 and \mathbf{v}_3 .)

$\begin{array}{c c} \mathbf{v}_1 \cdot \mathbf{v}_1 \\ \hline \mathbf{u}_2 \cdot \mathbf{v}_1 \\ \hline \mathbf{v}_2 \cdot \mathbf{v}_2 \\ \hline \mathbf{u}_3 \cdot \mathbf{v}_1 \end{array}$	$\mathbf{u}_1 = \mathbf{v}_1 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix},$	$\mathbf{u}_2 = \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$
$\mathbf{u}_3 \cdot \mathbf{v}_2$	$\mathbf{v}_2 =$	

$$\mathbf{u}_3 = \begin{bmatrix} 4\\-2\\-2\\0 \end{bmatrix}, \qquad \mathbf{v}_3 =$$

(Continuation of Problem 5)

(b) Normalize the orthogonal basis for the subspace W from (a) to obtain an orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ for W.

(c) If $\mathbf{v} \in \mathbf{R}^4$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is any orthonormal basis for the subspace W, then the orthogonal projection of \mathbf{v} onto W is the vector $\mathbf{w} = c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3$, where

 $c_1 = ____ c_2 = ____ c_3 = ____$

(give a formula for the coefficients in terms of dot products).

(d) Take $\mathbf{v} = \begin{bmatrix} 6\\4\\2\\0 \end{bmatrix}$ and use the formulas from part (c) and the orthonormal basis from part

(b) to calculate the orthogonal projection of **v** onto *W*. Check your answer by calculating the vector $\mathbf{z} = \mathbf{v} - \mathbf{w}$ and showing that \mathbf{z} is perpendicular to \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 .

6. Let

$$\mathbb{A} = \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 1 \end{pmatrix}.$$

Find the eigenvalues of \mathbb{A} and prove that \mathbb{A} is diagonalizable, *i.e.*, there is an invertible matrix \mathbb{P} such that $\mathbb{P}^{-1}\mathbb{A}\mathbb{P}$ is diagonalizable. Furthermore, \mathbb{P} can be chosen to be an orthogonal matrix, *i.e.*, a matrix whose columns are unit vectors and whose distinct columns are orthogonal to each other.

7. Let A be a 3×3 symmetric matrix with real entries, and have eigenvalues $\lambda_1 = 0$, $\lambda_2 = 6$, and $\lambda_3 = 3$. Let \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 be corresponding eigenvectors (normalized to have length one).

(a) Since A is symmetric and λ_1 , λ_2 , and λ_3 are all different, it follows that

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 =$$

(b) The 3×3 matrix $P = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3]$ satisfies

 $P^{\mathrm{T}}P = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$ (fill in the entries of this 3 × 3 matrix).

(c) Let P be the matrix of normalized eigenvectors from (b). Then $A = PDP^{T}$, where

$$D = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 (fill in the entries of this 3 × 3 matrix).

(d) The characteristic polynomial of A is _____