Geometry 435 Final Exam Formula Sheet

Ellipse in standard form.

An ellipse in standard form has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where $a \ge b > 0$. Eccentricity: $e = \sqrt{1 - \frac{b^2}{a^2}}$ Foci: $(\pm ae, 0)$ Directrices: $x = \pm \frac{a}{c}$

Parabola in standard form.

A parabola in standard form has equation $y^2 = 4ax$ where a > 0. Eccentricity: e = 1Focus: (a, 0)Directrix: x = -a

Hyperbola in standard form.

A hyperbola in standard form has equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a, b > 0. Eccentricity: $e = \sqrt{1 + \frac{b^2}{a^2}}$ Foci: $(\pm ae, 0)$ Directrices: $x = \pm \frac{a}{a}$.

Cross Ratio in \mathbb{RP}^2 . Let $A = [\overrightarrow{a}], B = [\overrightarrow{b}], C = [\overrightarrow{c}], D = [\overrightarrow{d}]$ be distinct colinear points in \mathbb{RP}^2 . Then $(ABCD) = \frac{\beta/\alpha}{\delta/\gamma}$, where $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$ and $\overrightarrow{d} = \gamma \overrightarrow{a} + \delta \overrightarrow{b}$.

Cross ration in \mathbb{R}^2 .

Let $A, B, C, D \in \mathbb{R}^2$ be distinct colinear points. Then $(ABCD) = \frac{AC \cdot BD}{AD \cdot BC}$.

Polars and tangent pairs.

Let $E \subset \mathbb{RP}^2$ be the non-degenerate conic with equation s = 0, $\begin{aligned} s &= Ax^{2} + Bxy + Cy^{2} + Fxz + Gyz + Hz^{2}.\\ \text{Given } P_{1} &= [x_{1}, y_{1}, z_{1}] \in \mathbb{RP}^{2}, \text{ set}\\ s_{1} &= Ax_{1}x + B\frac{x_{1}y + y_{1}x}{2} + Cy_{1}y + F\frac{x_{1}z + z_{1}x}{2} + G\frac{y_{1}z + z_{1}y}{2} + Hz_{1}z. \end{aligned}$ Polar of P_1 wrt. E: $s_1 = 0$. Tangent pair to *E* from P_1 : $(s_1)^2 - s(x_1, y_1, z_1) s = 0$.

Equation for conic.

The non-degenerate conic $E \subset \mathbb{RP}^2$ through the points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [a, b, c] has equation c(a-b)xy + a(b-c)yz + b(c-a)zx = 0.

Parametrization.

Every point other than [1, 0, 0] on the projective conic xy + yz + zx = 0can be expressed as $[t^2 + t, t + 1, -t]$ for some $t \in \mathbb{R}$.