You are encouraged to draw pictures to illustrate all the problems!

Let $E \subset \mathbb{R}^2$ be the non-degenerate conic with equation s = 0, where $s = x^2 + 2xy + y^2 + 2x - y - 3$.

4.2 (3). For the point $P_1 = (2, 1) \in \mathbb{R}^2$ we compute: $s_1 = 2x + 2\frac{2y+1x}{2} + y + 2\frac{x+2}{2} - \frac{y+1}{2} - 3 = 4x + \frac{5}{2}y - \frac{3}{2}$ and $s_{11} = 9$. The tangent pair to E from P_1 has equation $(s_1)^2 - s_{11}s = 0$. We are told that one of the tangent lines has equation y - 2x + 3 = 0. This is possible only if y - 2x + 3 is a factor of $(s_1)^2 - s_{11}s$. A calculation gives $\frac{(s_1)^2 - s_{11}s}{y - 2x + 3} = \frac{1}{4}(-14x - 11y + 39)$. So the other tangent line to E through P_1 has equation 14x + 11y - 39 = 0. **4.2 (4).** (a) For the point $P_2 = (0, \frac{3}{5})$ we compute $s_2 = \frac{8x}{5} + \frac{y}{10} - \frac{33}{10}$. The polar of P_2 wrt. E has equation $s_2 = 0$. The point $P_1 = (2, 1)$ satisfies this equation.

(b) The polar of P_1 wrt. E has equation $s_1 = 0$. The point P_2 satisfies this equation.

4.2 (5). Let $E \subset \mathbb{RP}^2$ be the projective conic with equation s = 0, where $s = x^2 + y^2 - 2z^2 + 2xy - yz + 4zx.$ (a) Let $P_1 = [0, 1, -1]$, and notice that $P_1 \in E$. We compute $s_1 = -x + \frac{3y}{2} + \frac{3z}{2}$. The tangent to E at P_1 has equation $s_1 = 0$. The point $P_2 = [3, 0, 2]$ satisfies this equation. (b) For the point $P_2 = [3, 0, 2]$ we compute $s_2 = 7x + 2y + 2z$ and $s_{22} = 25$. The tangent pair from P_2 wrt. E has equation $(s_2)^2 - s_{22}s = 0$. Since one of the tangents has equation $s_1 = 0$, s_1 is a divisor of $(s_2)^2 - s_{22}s$. A calculation gives $\frac{(s_2)^2 - s_{22}s}{s_1} = -24x - 14y + 36z.$ The other tangent line to E through P_2 has equation 12x + 7y - 18z = 0.(c) The polar of P_2 wrt. E has equation $s_2 = 0$. **4.3** (1). Let $E \subset \mathbb{RP}^2$ be the non-degenerate conic through the points [1,0,0], [0, 1, 0], [0, 0, 1], [1, -1, 1], [4, -1, -3].Then E has an equation $Ax^2 + Bxy + Cy^2 + Fxz + Gyz + Hz^2 = 0.$ Since $[1, 0, 0] \in E$, we have A = 0. Since $[0, 1, 0] \in E$, we have C = 0. Since $[0, 0, 1] \in E$, we have H = 0. So the equation of E is Bxy + Fxz + Gyz = 0. Since $[1, -1, 1] \in E$, we have -B + F - G = 0. (*) Since $[4, -1, -3] \in E$, we have -4B - 12F + 3G = 0. (**) Add 3 times (*) to (**) to get -7B - 9F = 0. If we take B = 9, then we get F = -7 and G = F - B = -16. Equation for E: 9xy - 7xz - 16yz = 0.

4.3 (2). Let *ABCD* be a quadrilateral in \mathbb{RP}^2

Let $E \subset \mathbb{RP}^2$ be a projective conic through A, B, C, D.

- Set $P = AB \cap CD$, $Q = AC \cap BD$, $R = AD \cap BC$.
- We must prove that:
- (a) The tangent to E at A, the tangent to E at B, and the line QR are concurrent.(b) The line PQ is the polar of R wrt. E.

According to the three points theorem, there exists a projective transformation $t : \mathbb{RP}^2 \to \mathbb{RP}^2$ such that t(A) = [1, 0, 0], t(B) = [0, 1, 0], t(C) = [0, 0, 1], and the image t(E) has equation xy + yz + zx = 0. Since (a) and (b) are projective statements, it is enough to prove these statements for the images of E and the four points. So we may assume without loss of generality that:

E has equation xy + yz + zx = 0, and A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1].Since $D \in E$ and $D \neq A$, we may choose $d \in \mathbb{R}$ such that $D = [d^2 + d, d + 1, -d]$. Now compute the following points and lines: $AB: \ z = 0.$ CD: x = dy. $P = AB \cap CD = [d, 1, 0].$ AC: y = 0.*BD*: x = -(d+1)z. $Q = AC \cap BD = [d + 1, 0, -1].$ AD: dy + (d+1)z = 0*BC*: x = 0. $R = AD \cap BC = [0, d+1, -d].$ QR: x + dy + (d+1)z = 0.Tangent to E at A: y + z = 0Tangent to E at B: x + z = 0. Intersection of tangents at A and B: [1, 1, -1]. This point lies on QR, which proves (a). Polar of R: x - dy + (d+1)z = 0. Both P and Q lie on this line, which proves (b). **4.3 (4).** Let $E \subset \mathbb{RP}^2$ be the projective conic with equation xy + yz + zx = 0.

Let A = [1, 0, 0], B = [0, 1, 0], C = [2, 2, -1], D = [0, 0, 1].Let $T \in E$ be any other point. Set $B' = TB \cap AD$ and $C' = TC \cap AD$. We must compute the cross ratio (A B' C' D). Then we may choose $t \in \mathbb{R}$ such that $T = [t^2 + t, t + 1, -t]$. AD: y = 0. TB: x + (t + 1)z = 0. $TC: (t - 1)x + (t^2 - t)y + (2t^2 - 2)z = 0$. $B' = TB \cap AD = [t + 1, 0, -1]$. $C' = TC \cap AD = [2t^2 - 2, 0, 1 - t] = [2t + 2, 0, -1]$. $(A D B' C') = \frac{-1/(t + 1)}{-1/(2t + 2)} = 2$. (A B' D C') = 1 - (A D B' C') = 1 - 2 = -1. $(A B' C' D) = (A B' D C')^{-1} = -1$.

 $\mathbf{2}$

4.3 (6). Let $E \subset \mathbb{RP}^2$ be the conic with equation $-2x^2 + 3xy + 3y^2 + 6xz + 6yz + 2z^2 = 0$.

Set P = [1, -1, 1], Q = [1, -2, 2], and R = [1, -2, 1]. These points lie on E. Let $A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Then $A^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -2 & 2 \\ 1 & 2 & -1 \end{bmatrix}$. Define $t : \mathbb{RP}^2 \to \mathbb{RP}^2$ by t([v]) = [Av]. (c) Find the equation for t(E). $[x, y, z] \in t(E) \Leftrightarrow$ $t^{-1}([x, y, z]) \in E \Leftrightarrow$ $[x + y - z, -x - 2y + 2z, x + 2y - z] \in E \Leftrightarrow$ xy + 3xz + 2yz = 0. This shows that t(E) has equation xy + 3xz + 2yz = 0. (d) Define $t' : \mathbb{RP}^2 \to \mathbb{RP}^2$ by t'([x, y, z]) = [x/2, y/3, z]. Then t'(t(E)) has equation xy + yz + zx = 0. The transformation $t' \circ t$ has associated matrix given by: $\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & 0 \\ -1/3 & 0 & 1/3 \\ 0 & 1 & 1 \end{bmatrix}$

4.3 (7). Let $E \subset \mathbb{RP}^2$ be a non-degenerate conic, let $P \in \mathbb{RP}^2$ be a point outside E, and let ℓ be a line through P that meets E in the points C and D. Let the tangent pair from P to E meet E in the points A and B, and let $Q = AB \cap \ell$. We must show that (PQCD) = -1.

By using the three point theorem, we may assume that E has equation xy + yz + zx = 0 and that A = [1, 0, 0], B = [0, 1, 0], and C = [0, 0, 1].

Then the tangent to E at A has equation y + z = 0. And the tangent to E at B has equation x + z = 0. Since P belongs to both of these tangents, we have P = [1, 1, -1].

Since ℓ contains P and C, ℓ has equation x = y.

The line AB has equation z = 0.

We obtain $Q = AB \cap \ell = [1, 1, 0].$

By solving the system of equations $\{xy + yz + zx = 0, x = y\}$, we find that $\ell \cap E = \{[0, 0, 1], [2, 2, -1]\}$. This implies that D = [2, 2, -1].

It is easy to compute:
$$\frac{1}{1}$$

$$(Q C P D) = \frac{-1/1}{-1/2} = 2$$

We obtain

(Q P C D) = 1 - 2 = -1 and

$$(P Q C D) = (Q P C D)^{-1} = -1.$$