
Math 334, Solutions to selected problems

1.1(4): x1 = acres of corn; x2 = acres of soybeans; x3 = acres of oats.

Find (x1, x2, x3) ∈ R
3 that maximizes z = 40x1 + 30x2 + 20x3 subject

to the constraints:

x1 + x2 + x3 ≤ 12,

6x1 + 6x2 + 2x3 ≤ 48,

36x1 + 24x2 + 18x3 ≤ 360.

1.2(14): The slack variables are (with x = 1 and y = 2):

u1 = 10− 2x− 3y = 2,

u2 = 12− 5x− y = 5,

u3 = 15− x− 5y = 4.

Since x, y, and all slack variables are non-negative, x = (1, 2)T is a
feasible solution.

1.2(16): Let r, s ∈ R be real numbers satisfying r ≥ 0, s ≥ 0, and
r + s = 1. Then for arbitrary real numbers p, q ∈ R we have

min(p, q) ≤ rp+ sq ≤ max(p, q) .

For example, if p ≤ q, then we have min(p, q) = p = (r+s)p ≤ rp+sq ≤
(r + s)q = max(p, q).

Consider the half-space of Rn defined by the linear inequality a1x1 +
· · · + anxn ≤ b, or aTx ≤ b in vector notation. Assume that x, y ∈ R

n

are two points contained in this half-plane, and let r, s ∈ R be as above.
Set z = rx + sy ∈ R

n. Then aT z = aT (rx + sy) = r(aTx) + s(aTy) ≤
max(aTx, aTy) ≤ b shows that z belongs to the half-space. This is the
essential point in the exercise.

1.3(30): Let S1, S2, . . . , Sr ⊂ R
n be convex sets, and set T = S1∩S2∩

· · ·∩Sr. We must show that T is convex. Let x, y ∈ T be two arbitrary
points, and let z be a point on the line segment from x to y. We need
to show that z ∈ T . Since Si is convex, x, y ∈ Si, and z belongs to the
line segment from x to y, it follows that z ∈ Si for each i. This implies
that z ∈ S1 ∩ S2 ∩ · · · ∩ Sr = T , as required.

1.3(32): Let x, y ∈ Rn be points satisfying cTx = cTy = k. We must
show that cT z = k for any point z on the line segment from x to y. We
know that any such point z can be written as z = (1− λ)x + λy with
λ ∈ [0, 1]. It follows that cT z = cT ((1 − λ)x + λy) = (1 − λ)(cTx) +
λ(cTy) = (1− λ)k + λk = k.
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1.3(34): Let A be anm×nmatrix and let b ∈ R
m. The set of solutions

to Ax ≤ b is the intersection of the m half-spaces defined by

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

for 1 ≤ i ≤ m. We argued above in 1.2(16) that any half-space is
convex. It therefore follows from 1.3(30) that the intersection of all the
half-spaces is a convex set.

(Notice that the empty set satisfies the definition of ‘convex’ on page
79, so there is no need to assume that the set of solutions to Ax ≤ b is
not empty.)

1.4(16): Consider a linear problem where we must maximize z = cTx
on a set of feasible solutions S ⊂ R

n. Assume that x1, x2, . . . , xr ∈ R
n

are extreme points of S, and that z is maximal at all these points.
If we let z0 be the maximal value of z, then we have cTxi = z0 for
1 ≤ i ≤ r. Let y ∈ R

n be any convex combination of the points
x1, x2, . . . , xr. We must show that cTy = z0. Since y is a convex
combination, we can find non-negative real numbers λ1, λ2, . . . , λr such
that y = λ1x1+λ2x2+ · · ·+λrxr and λ1+λ2+ · · ·+λr = 1. It follows
that cTy = cT (λ1x1 + λ2x2 + · · ·+ λrxr) = λ1(c

Tx1) + λ2(c
Tx2) + · · ·+

λr(c
Txr) = λ1z0 + λ2z0 + · · ·+ λrz0 = (λ1 + λ2 + · · ·+ λr)z0 = z0.

1.5(6): (a) Not a solution.

(b) Not a basic solution because columns 2 and 3 of the matrix are
linearly dependent.

(c) Not a basic solution because too many entries are non-zero.

(d) Basic solution.

1.5(8): Canonical form:

Maximize z = 3x+ 2y subject to the constraints

[

2 −1 1 0
2 1 0 1

]
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=

[

6
10

]

and x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0.

Extreme feasible point Basic variables Objective function
(4, 2, 0, 0)T x, y z = 16
(3, 0, 0, 4)T x, v z = 9
(0, 10, 16, 0)T y, u z = 20
(0, 0, 6, 10)T u, v z = 0

Optimal solution: (0, 10, 16, 0)T .
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2.1(8): (a) Basic feasible solution: (4, 0, 0, 0, 4, 10, 0)T .

(b) Entering variable: x2

θ1 = 4/(4/3) = 3, θ2 = 10/(1/3) = 30, θ3 = 4/(1/3) = 12.

Departing variable: x5.

The new tableau represents the basic feasible solution (3, 3, 0, 0, 0, 9, 0)T .


