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Elliptic cohomology

The hyperbolic formal group law:

Fh(x , y) =
x + y − µ1xy

1 + µ2xy
, defined over R = Z[µ1, µ2] .

It corresponds to

I the elliptic curve (1− µ1t − µ2t
2)s = t3;

I (2-parameter) virtual generalized Todd genus of Hirzebruch.

Consider elliptic cohomology Ell∗(·) corresponding to Fh(x , y).

Remark. We specialize to

I cohomology for µ1 = µ2 = 0;

I K -theory for µ1 = 1, µ2 = 0;

I connective K -theory for µ2 = 0.
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Root systems

Roots α ∈ Φ, coroots α∨, reflections sα.

Simple roots: α1, . . . , αr ∈ Φ .

Simple reflections: si := sαi .

Weight lattice: Λ = {λ : 〈λ, α∨〉 ∈ Z for all α ∈ Φ} .

Weyl group W = 〈sα : α ∈ Φ〉 = 〈si : i = 1, . . . , r〉 .
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Background on E ∗T (G/B)

Associated formal group law F (x , y) over R := E∗(pt).

The base ring E ∗T (pt) can be identified with the formal group
algebra

S := R[[yλ]]λ∈Λ/(y0, yλ+ν − F (yλ, yν)) .

Consider the localization Q of S along all xα = yα, for α ∈ Φ.

Consider the twisted group algebra QW := Q#R[W ] with Q-basis
{δw : w ∈W }.

Definition. For all i ∈ I , we define in QW the Demazure and
push-pull element:

Xi :=
1

xαi

(δsi − 1) ,

Yi := (1 + δsi )
1

x−αi

.
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The formal Demazure algebra (generalization of the
Kostant-Kumar story)

Definition. The R-algebra DF generated by multiplication with
elements of S and {Xi}, or {Yi}, is called the formal affine
Demazure algebra.

Fact. Fixing a reduced word Iw = (i1, . . . , il) for each w ∈W ,
DF has two distinguished bases:

XIw := Xi1 . . .Xil , YIw := Yi1 . . .Yil .
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Relations in DF

These were given in general [Hoffnung, Malagón-López, Savage,
Zainoulline], but here we focus on the hyperbolic f.g.l.
Fh(x , y) = (x + y − µ1xy)/(1 + µ2xy):

(a) Y 2
i = µ1Yi .

(b) If 〈αi , α
∨
j 〉 = 0, then

YiYj = YjYi .

(c) If 〈αi , α
∨
j 〉 = 〈αj , α

∨
i 〉 = −1 (type A2), then we have twisted

braid relations:

YiYjYi − YjYiYj = µ2(Yj − Yi ) .

(d) More involved twisted braid relations in types B2 and G2.
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The GKM model of equivariant cohomology

GKM = Goresky-Kottwitz-Macpherson.

Idea: We embed E ∗T (G/B) into
⊕

w∈W S , with pointwise
multiplication:

i∗ : E ∗T (G/B)→
⊕
w∈W

E ∗T (pt) '
⊕
w∈W

S ,

We view the elements of
⊕

w∈W S as (fw )w∈W , or as functions
f : W → S .
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Goals

(1) Generalize to elliptic cohomology the formulas of
Andersen-Jantzen-Soergel/Billey (ordinary cohomology) and
Graham-Willems (K -theory) for equivariant Schubert classes;

short uniform proof.

Main tool: formal root polynomials (generalizations of those
defined by Billey and Willems).

(2) Define and calculate Schubert classes in equivariant elliptic
cohomology, independent of a reduced word (for the indexing
Weyl group element).

Main tool: the Kazhdan-Lusztig basis of a corresponding
Hecke algebra.
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Formal root polynomials and their properties

Let Iw = (i1, . . . , il), which induces a reflection order on
Φ+ ∩ wΦ−, namely

Φ+ ∩ wΦ− = {β1, . . . , βl} , where βk := si1 . . . sik−1
αik .

Definition. The formal Y -root polynomial is

RY
Iw :=

l∏
k=1

hYik (βk), where hYi (β) = 1− yβYi .

Similarly, the formal X -root polynomial is

RX
Iw :=

l∏
k=1

hXik (βk), where hXi (β) = 1 + y−βXi .
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The Yang-Baxter relation

We omit indexing by X or Y , in order to refer to both cases.

Theorem. (L.-Zainoulline) The elements hi (λ) satisfy the
Yang-Baxter relation if and only if the associated formal group law
is the hyperbolic one.

In particular, if αi , αj are the simple roots of a root system of type
A2, then

hi (λ) hj(λ+ µ) hi (µ) = hj(µ) hi (λ+ µ) hj(λ) .

Corollary. (L.-Zainoulline) The root polynomial RIw does not
depend on the choice of Iw if the underlying formal group law
F (x , y) is the hyperbolic one; so we can write Rw instead.
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Applications of root polynomials: hyperbolic case

Consider RY
w and RX

w .

Fix a reduced word Iv for each v ∈W .

Definition. The formal Kostant polynomial is given by

(∗) RY
w =

∑
v≤w

KY (Iv ,w)YIv , similarly for KX (Iv ,w) .

Consider the following change of bases formulas in the affine
Demazure algebra:

δw =
∑
v≤w

bYw ,Iv YIv , similarly for bXw ,Iv .

Note. The ordinary cohomology b-coefficients feature prominently
in the work of Kostant-Kumar, as they encode information about
the singularities of Schubert varieties.
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Applications of root polynomials (cont.)

(∗) RY
w =

∑
v≤w

KY (Iv ,w)YIv , similarly for KX (Iv ,w) .

Let ∗ be the involution on S given by yλ 7→ y−λ.

By applying a simple map to (*), we derive the result below.

Theorem. (L.-Zainoulline) In the hyperbolic case, we have in S :

bYw ,Iv = ∗(θw KY (Iv ,w)) , bXw ,Iv = ∗(KX (Iv ,w)) ,

where θw ∈ S is called the “normalizing parameter”.
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Corollaries for cohomology, K -theory and connective
K -theory

We derive the following as immediate corollaries of our previous
result:

I The formulas of Andersen-Jantzen-Soergel/Billey and
Graham-Willems for the localization of Schubert classes and
their duals at torus fixed points, in ordinary cohomology and
K -theory, respectively.

I Similar formulas in connective K -theory.

I Duality in connective K -theory (does not follow from the
Kostant-Kumar duality in ordinary K -theory; we use duality
result for generalized cohomology of
Calmès-Zainoulline-Zhong).
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The Schubert basis problem

Remark. The geometrically defined Bott-Samelson classes depend
on the chosen desingularization, and hence on a reduced word for
the corresponding Weyl group element.

Problem. Define a Schubert basis, i.e., classes which are
independent of a reduced word.

The standard topological approach only works if Xw is smooth, and

[Xw ]v =

∏
β∈Φ+

y−β∏
β∈Φ+

sβv≤w

y−β
, for v ≤ w ; otherwise [Xw ]v = 0 .



The Schubert basis problem

Remark. The geometrically defined Bott-Samelson classes depend
on the chosen desingularization, and hence on a reduced word for
the corresponding Weyl group element.

Problem. Define a Schubert basis, i.e., classes which are
independent of a reduced word.

The standard topological approach only works if Xw is smooth, and

[Xw ]v =

∏
β∈Φ+

y−β∏
β∈Φ+

sβv≤w

y−β
, for v ≤ w ; otherwise [Xw ]v = 0 .



The Schubert basis problem

Remark. The geometrically defined Bott-Samelson classes depend
on the chosen desingularization, and hence on a reduced word for
the corresponding Weyl group element.

Problem. Define a Schubert basis, i.e., classes which are
independent of a reduced word.

The standard topological approach only works if Xw is smooth, and

[Xw ]v =

∏
β∈Φ+

y−β∏
β∈Φ+

sβv≤w

y−β
, for v ≤ w ; otherwise [Xw ]v = 0 .



A Schubert basis via the Kazhdan-Lusztig basis
We propose an approach in Ell∗T (G/B), using the Kazhdan-Lusztig
basis of the corresponding Hecke algebra Hq = 〈T1,T2, . . .〉.

Set τi := tTi , t = q−1/2 , µ1 = 1 , µ2 = −(t + t−1)−2 ,
R := Z[t±1, (t + t−1)−1] .

Theorem. (Leclerc) H⊗Z[t±1] R is isomorphic to the corresponding
formal Demazure algebra DF .

Consider the Kazhdan-Lusztig basis {γw : w ∈W } of H.

For w ∈W , let Γw in DF correspond to γw via the above
isomorphism.

Definition. Consider the element (Kazhdan-Lusztig Schubert class)
Sw in Ell∗T (G/B) given by

(t + t−1)−`(w) Γw−1(ζ∅) .
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Results and a conjecture

Theorem. (L.-Zainoulline) The classes {Sw : w ∈W } form a
basis of Ell∗T (G/B).

We recover the Schubert basis in K -theory in
the limit t → 0. A parabolic version also exists (with C. Zhong).

Conjecture. If the Schubert variety Xw is smooth, then the class
[Xw ] (expressed before) coincides with Sw .

Theorem. (L.-Zainoulline) The conjecture is true as follows:

(1) in all types for w with reduced decompositions containing no
repeated simple reflections;

(2) in types An−1 and Cn, for w−1, where w is a highest coset
representative for Wn/Wn−1;

(3) (with C. Zhong) in all types for w = w◦, and the parabolic case
too, when the class of the flag variety is 1.
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A positivity conjecture
Recall that

µ1 = 1 , µ2 = −(t + t−1)−2 , u := −µ2

in the hyperbolic formal group law

Fh(x , y) =
x + y − µ1xy

1 + µ2xy
.

Conjecture. The evaluation (Sv )w , for any w ≤ v , can be
expressed as a sum of monomials in y−α, where α are positive
roots, such that the coefficient of each monomial is of the form

(−1)k−(N−`(v)) c u(m−k)/2 , where

I c is a positive integer,

I m is the degree of the monomial,

I N is the number of positive roots,

I N − `(v) ≤ k ≤ m,

I m − k is even.
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Questions / future work

We formulate the same conjecture for the corresponding
Bott-Samelson classes.

Questions / future work. (1) Geometric interpretation of the
Kazhdan-Lusztig Schubert classes and the geometric reason for the
conjectured positivity.

(2) The conjecture in the smooth case.

(3) More explicit formulas, e.g., in the maximal parabolic case
(type A Grassmannian etc.).
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