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The main reference for the first two parts are [5]. We refer the interested readers to Chapter 3 in [4] for
a general definition of stable envelope in a much more general setting.

1. definition of stalbe basis

Let G be a semisimple linear algebraic group. Let A ⊂ B ⊂ G be a maximal torus and a Borel subgroup
respectively. Let B be the flag variety G/B. Let us first define the stable basis in T ∗B.

1.1. Fixed point set. The A-fixed points of T ∗B is in one-to-one correspondence with the Weyl group W .
The fixed point corresponds to w ∈ W is denoted by wB. For any cohomology class α ∈ H∗T (T ∗B), let α|w
denote the restriction of α to the fixed point wB.

1.2. Chamber decomposition. The cocharacters

σ : C∗ → A

form a lattice. Let

aR = cochar(A)⊗Z R.
Define the torus roots to be the A-weights occurring in the normal bundle to (T ∗B)A. Then the root

hyperplanes partition aR into finitely many chambers

aR \
⋃
α⊥i =

∐
Ci.

It is easy to see in this case that the torus roots are just the roots for G. Let + denote the chamber such
that all roots in R+ are positive on it, and − the opposite chamber.

1.3. Stable leaves. Let C be a chamber. For any fixed point yB, define the stable leaf of yB by

LeafC(yB) =
{
x ∈ T ∗B

∣∣∣ lim
z→0

σ(z) · x = yB
}

where σ is any cocharacter in C; the limit is independent of the choice of σ ∈ C. In the T ∗B case, Leaf+(yB) =
T ∗ByB/BB, and Leaf−(yB) = T ∗B−yB/BB, where B− is the opposite Borel subgroup.

Define a partial order on the fixed points as follows:

wB �C yB if LeafC(yB) ∩ wB 6= ∅.

By the description of Leaf+(yB), the order �+ is the same as the Bruhat order ≤, and �− is the opposite
order. Define the slope of a fixed point yB by

SlopeC(yB) =
⋃

wB�CyB

LeafC(wB).

1.4. Stable basis. For each y ∈ W , let T ∗yB and Ty(T ∗B) denote T ∗yBB and TyB(T ∗B) respectively, and

define εy = eA(T ∗yB). Here, eA denotes the A-equivariant Euler class. Let Ny denote the normal bundle of
T ∗B at the fixed point yB. The chamber C gives a decomposition of the normal bundle

Ny = Ny,+ ⊕Ny,−
into A-weights which are positive and negative on C respectively. The sign in ±e(Ny,−) is determined by
the condition

±e(Ny,−)|H∗
A(pt) = εy.
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Theorem 1.1. There exists a unique map of H∗T (pt)-modules

stabC : H∗T ((T ∗B)A)→ H∗T (T ∗B)

such that for any y ∈W , Γ = stabC(y) satisfies:

(1) supp Γ ⊂ SlopeC(yB),
(2) Γ|y = ±e(N−,y), with sign according to εy,
(3) Γ|w is divisible by ~, for any wB ≺C yB,

where y in stabC(y) is the unit in H∗T (yB).

Remark 1.2.

(1) The map is defined by a Lagrangian correspondence between (T ∗B)A × T ∗B, hence maps middle
degree to middle degree.

(2) From the characterization, the transition matrix from {stabC(y)|y ∈W} to the fixed point basis is a
triangular matrix with nontrivial diagonal terms. Hence, after localization, {stabC(y)|y ∈ W} form
a basis for the cohomology, which we call the stable basis.

(3) Maulik and Okounkov prove that {stabC(y)|y ∈ W} and {(−1)n stab−C(y)|y ∈ W} are dual bases,
i.e.,

(stabC(y), (−1)n stab−C(w)) = δy,w.

Here n = dimC B.

2. Restriction formulas

Let ± denote the positive/negative chamber. Then the formula I proved is:

Theorem 2.1. Let y = σ1σ2 · · ·σl be a reduced expression for y ∈W . Then

(1) stab−(w)|y = (−1)l(y)
∏

α∈R+\R(y)

(α− ~)
∑

1≤i1<i2<···<ik≤l
w=σi1σi2 ...σik

~l−k
k∏
j=1

βij ,

where σi is the simple reflection associated to a simple root αi, βi = σ1 · · ·σi−1αi, R(y) = {βi|1 ≤ i ≤ l},
and stab−(w)|y denotes the restriction of stab−(w) to the fixed point yB.

For the positive chamber, we have

Theorem 2.2. Let y = σ1σ2 · · ·σl be a reduced expression for y ∈W , and w ≤ y. Then

stab+(y)|w =
∑

1≤i1<i2<···<ik≤l
w=σi1σi2 ...σik

(−1)l
k∏
j=1

σi1σi2 . . . σijαij − ~
σi1σi2 . . . σijαij

~l−k
k∏
j=0

∏
ij<r<ij+1

σi1σi2 . . . σijαr

∏
α∈R+

α.

The proof is very similar to the proof of the restriction formula of Schubert variety. The basic idea is the
following. I learned this from [3], which is a very good reference if you want to learn equivariant cohomology
and Schubert calculus.

Let Q be the quotient field of H∗T (pt), and F (W,Q) be the functions from W to Q. Restriction to fixed
points gives a map

H∗T (T ∗B)→ H∗T ((T ∗B)T ) =
⊕
w∈W

H∗T (wB)

and embeds H∗T (T ∗B) into F (W,Q).
For each simple root α ∈ ∆, let Yα be the orbit corresponding to the reflection σα. Then

Yα = B ×Pα B

where Pα = G/Pα and Pα is the minimal parabolic subgroup corresponding to the simple root α. Let
T ∗
Yα

(B × B) be the conormal bundle to Yα. This is a Lagrangian correspondence in T ∗B × T ∗B, and defines
a map

Dα : H∗T (T ∗B)→ H∗T (T ∗B).
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Define an operator A0 : F (W,Q)→ F (W,Q) by the formula

(A0ψ)(w) =
ψ(wσα)− ψ(w)

wα
(wα− ~).

Then we have the following important commutative diagram.

Proposition 2.3. The diagram

H∗T (T ∗B)
� � //

Dα

��

F (W,Q)

A0

��
H∗T (T ∗B)

� � // F (W,Q)

commutes.

Apply this diagram to stable basis, we get some recursive formulas for the restriction, which finally lead
to the proof of Theorems 2.1 and 2.2.

3. Applications

This is joint work with Leonardo C Mihalcea.

3.1. First relation with CSM classes. Let c∗ : LC∗(T ∗(G/B)) → H∗(G/B) be the map define by
Ginzburg in the appendix of [2] between the Lagrangian cycles in the cotangent bundle of the flag manifold
G/B and the homology of G/B. We found

c∗(stab+(w)) = ±CSM(X(w)◦).

This is essentially due to Ginzburg.

3.2. Second relation with CSM classes. With the formula proved in [1], we proved the following Theo-
rem:

Theorem 3.1. Let i be the inclusion of X into T ∗X, then

(2) (−1)dimX i∗(stab+(y))|~=1 = CSM(X(y)◦).

In particular, let y = σ1σ2 · · ·σl be a reduced expression for y ∈W , and w ≤ y. Then

CSM(X(y)◦)|w = (−1)dimX+`(y)
∑

1≤i1<i2<···<ik≤l
w=σi1σi2 ...σik

k∏
j=1

σi1σi2 . . . σijαij − 1

σi1σi2 . . . σijαij

1
k∏
j=0

∏
ij<r<ij+1

σi1σi2 . . . σijαr

∏
α∈R+

α.

With this formula, we can check in some simple cases the conjecture in [1].
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