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k: field

h: an oriented cohomology theory in the sense of Levine-Morel
R = h(Spec(k)): the coefficient ring

G: a split semisimple linear algebraic group

B D T: Borel subgroup and maximal torus
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k: field

h: an oriented cohomology theory in the sense of Levine-Morel
R = h(Spec(k)): the coefficient ring

G: a split semisimple linear algebraic group

B D T: Borel subgroup and maximal torus

N = T7*: the group of characters of T

Y, N ={a,...,an}: the sets of roots and simple roots
W: the Weyl group, generated by s; = s,,,i =1,...,n.
Jcn

W; < W: the subgroup generated by J

P, D B: the parabolic subgroup
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To construct the following diagram:
hr(pt) — hr(G/B) 2 hr(G/P;) " hr(G/B)

P s

5 D; (D)W D;
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To construct the following diagram:

hr(pt) —— hr(G/B) —2 hr(G/PJ) —2— hr(G/B)

P s

s D; (D} D

The work follows Demazure (Chow group), Bernstein—Gelfand—Gelfand
(singular cohomology), Arabia (equivariant cohomology), Kostant—Kumar

(equivariant cohomology and equivariant Grothendieck group), and many
others.
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Formal group laws

Definition

A formal group law (FGL) F over a ring R is a power series
F(x,y) € R[[x, y]] satisfying:

F(x,0)=x, F(x,y)=F(y,x), F(F(x,y),2) = F(x,F(y,2)).
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Formal group laws

Definition

A formal group law (FGL) F over a ring R is a power series
F(x,y) € R[[x, y]] satisfying:

F(x,0)=x, F(x,y)=F(y,x), F(F(x,y),2) = F(x,F(y,2)).

@ The additive FGL: F, = x + .
@ The multiplicative FGL: F,, = x + y — xy

@ The universal FGL: Fy over the Lazard ring L.
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Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with
push-forward for projective morphisms.
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Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with
push-forward for projective morphisms.

Examples of oriented cohomology are Chow group, Grothendieck group
and the algebraic cobordism.
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Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with
push-forward for projective morphisms.

Examples of oriented cohomology are Chow group, Grothendieck group
and the algebraic cobordism.

The push-forward can be used to define characteristic classes.

Moreover, it defines a FGL F over R := h(k)

cf (L1 ® L2) = F(cp(La), cf (L2)),

L1, Ly are line bundles.

CH ~ F,, Ko~ Fn, algebraic cobordism ~~ F,,.
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The formal group algebra: h7(Spec(k))

[Calmes—Petrov—Zainoulline]
Let R[[xa]] = R[[xx|X € A]], and define

S = RINIF = RIDT)/ (o — Flxn ) 0).
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The formal group algebra: h7(Spec(k))

[Calmes—Petrov—Zainoulline]
Let R[[xa]] = R[[xx|X € A]], and define

S = RINIF = RIDT)/ (o — Flxn ) 0).

RI[AllE, = Sk(N)",  RI[AllF, = RIA".

RIA]F = R[[t1, ..., ta]]-
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The formal group algebra: hr(Spec(k))

[Calmes—Petrov—Zainoulline]
Let R[[xa]] = R[[xx|X € A]], and define

S = RINIF = RIDT)/ (o — Flxn ) 0).

RI[AllE, = Sk(N)",  RI[AllF, = RIA".

RIA]F = R[[t1, ..., ta]]-

Difficulty for generalization

@ S is not (Laurent) polynomial ring but power series ring.

@ The Bott-Samelson classes depend on the choices of reduced
sequences.
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Formal affine Demazure algebra

For each root «, define Demazure operators (divided difference operators,
or BGG operators)
A== cg e

Xo
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Formal affine Demazure algebra

For each root «, define Demazure operators (divided difference operators,
or BGG operators)

A== cg e

Xo

Object to study
The subring of End(S) generated by S and A,,a € ¥.
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Define
1
Q= S[X—]a €Y], Qw=QxR[W], Sw=3SxR[W]
Qw has Q-basis {0, }wew and the product is

qow - qléw’ = qW(q/)(sWW/) q, ql €Q,w, w'e W.
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Define
Q= S[Xla]a €5], Qw=QxR[W], Sw=SxR[W]|
Qw has Q-basis {0, }wew and the product is
9w - 90w = qw(q)oww', 9,4 € Q,w,w € W.
Qw acts on @ by

qow - (') =qw(q'), ¢ .9 Q,we W.
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Define
Q= S[Xiya €5], Qw=QxR[W], Sw=SxR[W]|

Qw has Q-basis {0, }wew and the product is
9w - 90w = qw(q)oww', 9,4 € Q,w,w € W.
Qw acts on @ by
9w - (q') =qw(q), ¢, g€ Qwe W.

We define the Demazure element

1
Xo=—(1-6s,).

Xa

Then
Xo -z = Du(2).

Denote X; = X,,.
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Q X,-2 = k;X;, where k; = % +-L €5

X—aj
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Q X,-2 = k;X;, where k; = % + i €S.
Q@ Xig=si(q)Xi+Ai(q),q9 € Q.
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Q X,-2 = k;X;, where kj = L + L € S.
Xa X—aj

Q@ Xig=si(q)Xi+Ai(q),q9 € Q.
Q@ XiXjXi---— XXX - = extra terms, where (s;s;)™i = 1.

mj; mj
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The formal affine Demazure algebra

Definition (Hoffnung—MalagénLépez—Savage—Zainoulline)

We define the formal affine Demazure algebra

DE=R< S5 X,la€eX >C Qw.
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The formal affine Demazure algebra

Definition (Hoffnung—MalagénLépez—Savage—Zainoulline)

We define the formal affine Demazure algebra

DE=R< S5 X,la€eX >C Qw.

DF:R<5,X,"I':1,...,I7.>.
0sy =1 —xXo € DF = W CD¢f.
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The formal affine Demazure algebra

Definition (Hoffnung—MalagénLépez—Savage—Zainoulline)

We define the formal affine Demazure algebra

DE=R< S5 X,la€eX >C Qw.

DF:R<5,X,"I':1,...,I7.>.
0sy =1 —xXo € DF = W CD¢f.

For each w =s;, - - -, let I, = (i, ..., ix) and

XIW:Xil"'XI

PR

It depends on the choice of I, unless F is F, or F,.

Theorem (Calmeés-Zainoulline-Z.)

Dr is a free S-module with basis { X, } wew
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@ Dg£, = affine nil-Hecke algebra
@ D, = affine 0-Hecke algebra

Both were constructed by Kostant-Kumar
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hr(G/B)

Recall that Sy = S x R[W].

Definition

Dy = Homs(Df, S) and S}, = Homs(Sw, S) = Hom(W, S).
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hr(G/B)

Recall that Sy = S x R[W].

Definition

Dy = Homs(Df, S) and S}, = Homs(Sw, S) = Hom(W, S).

Let {f, }wew be the standard basis of Sy}, with product

fva:(Sv va, V,WE W.

)
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Recall that Sy = S x R[W].

Definition

Dy = Homs(Df, S) and S}, = Homs(Sw, S) = Hom(W, S).

Let {f, }wew be the standard basis of Sy}, with product

fufw =0vwf, v,weW.

Theorem (Calmes-Zainoulline-Z.)

ht(G/B) = Dy, and the embedding Dy — Sy;,, corresponds to
hr(G/B) = h7r(G/T) = hr((G/T)") = hr(W) = S;;,. Moreover,

F=A1 Z qwiw € Sfjv|qwj<¢ for all a € X}
weWw o

v
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hr(G/B)

For J C I, define

Xy = :[I Xq € S,

€Y
1
Y, = ow— €D
J 2{: WXJ € DFr
weW,
[pt] = xnfe € DE C Sy,

1=> f,eDFCSy
wew
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hr(G/B)

For J C I, define

Xy = :[I Xq € S,

€Y
1
Y= > dw— € DF
weW, J

[pt] = xnfe € DE C Sy,
1=> f,eDFCSy

weW )
Via D% = hy(G/B),
[pt] = the class of the identity point
1 = [G/B].
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7(G/B)

DF acts on DE by

(zef)(Z)=f(Zz), 2z Z €D

(pdy) @ (afi) = qwv Y (p)fyup1, w,vEW,p,g€S.
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hr(G/B)

DF acts on DE by
(zef)(Z)=f(Zz), 2z Z €D

(pdy) @ (afi) = qwv Y (p)fyup1, w,vEW,p,g€S.

Theorem (Calmes-Zainoulline-Z.)
@ (Dp)" = hr(G/Py)
@ Y,e_:D: — (DE)"s C DL gives ht(G/B) — hr(G/Py).
© Dj is a free DE-module via the e-action, with basis [pt].
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hr(G/B)

DF acts on DE by
(zef)(Z)=f(Zz), 2z Z €D

(pdy) @ (afi) = qwv Y (p)fyup1, w,vEW,p,g€S.

Theorem (Calmes-Zainoulline-Z.)
@ (Dp)" = hr(G/Py)
@ Y,e_:D: — (DE)"s C DL gives ht(G/B) — hr(G/Py).
© Dj is a free DE-module via the e-action, with basis [pt].

The Bott—Samelson class is

X1 #[pt] € D} = hr(G/B).
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Theorem (Calmes-Zainoulline-Z.)

The equivariant characteristic map ht(Spec(k)) — hr(G/B) is

¢cs:S—Df, g+ qel.
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Theorem (Calmes-Zainoulline-Z.)

The equivariant characteristic map ht(Spec(k)) — hr(G/B) is

¢cs:S—Df, g+ qel.

We define

p:S®@swS — DE,q1®q — qics(q2) € DE.

Theorem (Calmes-Zainoulline-Z.)

If R D Q, or for type A, C, or if F = Fp,, p is an isomorphism.
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We define another action of D on D¢ by

qéw © (pfy) = qw(p)fww, q,p€S,w,ve W,

For z € Dp,
S®sw S ——Dx S®sw S —— D
(z~—)®1J{ Jz@— 1®(z-—)l Jzo—
S®ew S —— D% S @sw S ——Dx.
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We define another action of D on D¢ by

qéw © (pfy) = qw(p)fww, q,p€S,w,ve W,

For z € Dp,
S®sw S ——Dx S®sw S —— D
(z~—)®1J{ lz@— 1®(z-—)l Jzo—
S®ew S —L— Dt S®ew S —L—DE.

e commutes with © .

@ eo: the right Hecke action

@ ©: the left Hecke action.
The ®-action for singular cohomology was studied by Brion, Knutson,
Peterson, Tymoczko.
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Theorem (Lenart—Zainoulline-Z.)

(DE)W2 is a De-module via the ® action, generated by Y, e pt € (D).
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Theorem (Lenart—Zainoulline-Z.)

(DE)WI is a De-module via the ® action, generated by Y, e pt € (D%)

Wy

The Bott-Samelson class of h1(G/Py) is given by

XIW © (YJ b [pt]) = YJX/MTI i [pt]’ w € WJ'
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@ There is an isomorphism (ht(G/B), o) = Dg, which gives some
relation between some integral representation category of Dr and the
category of Chow motives (Neshitov-Petrov-Semenov-Zainoulline).

o We are trying to generalize the above construction to the Kac-Moody
setting (Calmes-Zainoulline-Z.)

@ There is a parallel construction of formal affine Hecke algebra Hg for
F, which generalizes the affine degenerate Hecke algebra (for F,) and
the affine Hecke algebra (for Fp,). It is isomorphic to hgxg, (Z)
where Z is the Steinberg variety. (G. Zhao-Z. )

@ For elliptic formal group law, Hg is isomorphic to the stalk of
Ginzburg-Kapranov-Vasserot's elliptic Hecke algebra. (G. Zhao—Z. )
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[Deodhar(1987), Lenart-Zainoulline-Z (to appear soon).]
There is chain complex of Dg-modules

0— hr(G/B) =% @5 hr(G/P)) =% @D hr(G/P)) -
JI=1 JI=2

d; is alternating sum of

hT(G/PJ) — hT(G/PJ/) — hT(G/PJ),J c /.
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[Deodhar(1987), Lenart-Zainoulline-Z (to appear soon).]
There is chain complex of Dg-modules

0— hr(G/B) =% @5 hr(G/P)) =% @5 hr(G/P)) —
=1 JI=2

d; is alternating sum of
hT(G/PJ) — hT(G/PJ/) — hT(G/PJ),J c /.

It is exact except at h7(G/B), whose cohomology is a free S-module of
rank 1 in “some" cases, generated by X, ® [pt].
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