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ABSTRACT

Let X be a non-singular variety and £y — E; — --- — E, a sequence of vector
bundles over X with maps between them. A set of rank conditions for this sequence
is a collection r = (r;;) of non-negative integers, 0 < i < j < n. The associated quiver

variety is the locus
Q. (E,) = {z € X | rank(E;(z) = Ej(z)) <1 Vi < j}.

With Fulton we recently found a formula for the cohomology class of Q,(FE,) in the
cohomology ring of X, when this locus is irreducible and of maximal codimension in
X. This formula extends the Thom-Porteous formula, and it is general enough to
give new expressions for all types of Schubert polynomials.

Our formula writes the cohomology class of €,.(F,) as a linear combination with

integer coefficients of products of Schur polynomials:

()] = 3 culr) sy (Br — Eo) - .- 5, (B — Bua).

The sum is over all sequences of partitions u = (u1,..., n). The coefficients ¢, (r)
are given by an explicit algorithm. Surprisingly, these coefficients all seem to be non-
negative. We have conjectured a generalized Littlewood-Richardson rule saying that
each coefficient is equal to the number of sequences of semistandard Young tableaux
satisfying certain properties.

In the first half of my thesis I will prove this conjecture in the special case where
the sequence E, contains four vector bundles. I will also pose a stronger but simpler
conjecture, and prove that it implies the generalized Littlewood-Richardson rule. In
contrast to the Littlewood-Richardson rule, this stronger conjecture is easy to verify
on a computer, and this has been done in 500.000 randomly chosen examples with

n < 10.
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In the second half of the thesis I will derive some applications of the quiver formula

to Stanley symmetric functions. In particular I will show that certain coefficients in
Stanley symmetric functions are special cases of the coefficients ¢,(r). I will also

give geometric proofs of some formulas describing Stanley’s symmetric function for a

product of two permutations as well as for a longest permutation.
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CHAPTER 1
INTRODUCTION

In this introductory chapter we introduce notation and recall the main results from

[1].

1.1 Degeneracy loci

Let X be a non-singular complex variety and £y - F; — Fy — -+ — FE,, a sequence
of vector bundles and bundle maps over X. A set of rank conditions for this sequence
is a collection of non-negative integers r = (r;;) for 0 < ¢ < j < n. The associated

degeneracy locus or quiver variety is the subset
Q. (E,) ={z € X | rank(E;(z) — E;(z)) <1y Vi < j}
of X. Equivalently this locus is an intersection of the zero sections of bundle maps:

O (B = (2N E; — AT E).
i<j

The later definition shows that ,(E,) has a natural structure of subscheme of X.

Let r;; denote the rank of the bundle F;. We will demand that the rank conditions
can occur, i.e. that there exists a sequence of vector spaces and linear maps V; —
Vi = --- =V, so that dim(V;) = r; and rank(V; — V) = r;;. This is equivalent to
the conditions r;; < min(r;j_1,7i41,;) for i < j, and ry; — 7 -1 — rig1,j + riy1,5-1 >0
for j —i > 2.

Let E and F be vector bundles of ranks e and f over X and let I = (ay,...,a,) be

a sequence of integers. We define the double Schur polynomial s;(F — E) as follows.
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Let hy be the coefficient of the term of degree k in the formal power series expansion

of the quotient of total Chern polynomials for the duals of £ and F"

r a(EY)  1—c(E)t+cE)t? — -4 (—1)°c.(E)te
tht S a(FY) 1—ca(F)t+e(F)2 -+ (=) ey (F)tF

k>0

Then the polynomial s;(F — E) is the determinant of the p X p matrix whose (1, )

entry is hg; i,
si(F—E) = det(haﬁ-jfi)lﬁiﬂ'ﬁp'

The expected (and maximal) codimension of the locus €, (E,) in X is

d(r) =Y (rijo —ri) - (rig1g — i)
i<j
When the locus has this codimension it is a Cohen-Macaulay subscheme of X [10]
(see also Lemma A.2 of [8]). The main result of [1] gives a formula for the cohomology

class of Q,(FE,) when it has its expected codimension:
[0 (B = culr) s (Br — Eo) -+ 5, (B — Bu_1) (1.1)
o

Here the sum is over sequences of partitions u = (1, ..., uy); the coefficients ¢, (r) are
certain integers given by an explicit combinatorial algorithm which we shall describe
in the next section.

There is no immediate geometric reason for the products of Schur polynomials
appearing in the formula. However, it is even more surprising that the coefficients
cu(r) all seem to be non-negative. Attempts to prove this has led to a conjecture
saying that these coefficients count the number of different sequences of tableaux
satisfying certain conditions [1]. This conjecture will be explained in Section 1.3, and
the main goal of Chapter 2 is to prove it in certain special cases.

The coefficients ¢, (r) are known to generalize Littlewood-Richardson coefficients

[1]. In Chapter 3 we shall prove that they also generalize the coefficients which are
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obtained when Stanley symmetric functions are expressed in the basis of Schur func-
tions. We will use this to give new proofs of some results about Stanley symmetric
functions and to obtain additional evidence for the conjectured formula for the coef-

ficients c,,(r).

1.2 Description of the algorithm

Let A = Z[hq, ho,...] be the ring of symmetric functions. The variable h; may be
identified with the complete symmetric function of degree i. If I = (ay, ag, ..., a,) is
a sequence of integers, define the Schur function s; € A to be the determinant of the
)t

p X p matrix whose (¢, )" entry is hq, ;s

sy = det(ha; j-i)1<ij<p -

(Here one sets hyp = 1 and h_, = 0 for ¢ > 0.) A Schur function is always equal to
either zero or plus or minus a Schur function s, for a partition A. This follows from
interchanging the rows of the matrix defining s;. Furthermore, the Schur functions
given by partitions form a basis for the ring of symmetric functions [14], [6]. Note
that if the coefficients of a formal power series ¢;(EY)/c;(FY) are substituted for
the variables h;, then the Schur function s; becomes the double Schur polynomial
si(F — E) defined above.

We will give the algorithm for computing the coefficients ¢, (r) by constructing an

element P, in the n'® tensor power of the ring of symmetric functions A®", such that

Pr:ZCu(r)*gm@”'@Sun-
I



It is convenient to arrange the rank conditions in a rank diagram:

Ey - E; — E, — - — E,
Too 11 22 T Tnn
To1 12 T Tn—1,n
To2 Tt Tn—2,n

Ton

In this diagram we replace each small triangle of numbers

Tz'j

by a rectangle R;; with 7, ; — r;; rows and r; j_1 — 7;; columns.

Rij — Ti+1,j — Tij

Tigj—1 = Tij

These rectangles are then arranged in a rectangle diagram:

ROI R12 o Rn—l,n
R02 e Ran,n

ROn

It turns out that the information carried by the rank conditions is very well repre-
sented in this diagram. First, the expected codimension d(r) for the locus €2,.(E,) is
equal to the total number of boxes in the rectangle diagram. Furthermore, the con-
dition that the rank conditions can occur is equivalent to saying that the rectangles
get narrower when one travels south-west, while they get shorter when one travels
south-east. Finally, the element P, depends only on the rectangle diagram.

We will define P, € A®" by induction on n. When n = 1 (corresponding to
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a sequence of two vector bundles), the rectangle diagram has only one rectangle

R = Ry;. In this case we set
P, =si € A®!

where R is identified with the partition for which it is the Young diagram. This case
recovers the Giambelli-Thom-Porteous formula.
If n > 2 we let 7 denote the bottom n rows of the rank diagram. Then 7 is a valid

set of rank conditions, so by induction we can assume that
PF:ZCM(T) Spur @ -+ Q Sppy (1.2)
u

is a well defined element of A®"~!. Now P, is obtained from P; by replacing each

basis element s,, ® ---® s,,_, in (1.2) with the sum

n—1
i |s ®--®s ®-Qs
Z (g i l) ROIJ?,—’—‘ Ri—l,i O,H—‘ Rn—l,n

Ti—1

This sum is over all partitions o1, ...,0,_1 and 71, ..., 7,—1 such that o; has fewer rows
than R; 1; and the Littlewood-Richardson coefficient chi, is non-zero. A diagram
consisting of a rectangle R;_;; with (the Young diagram of) a partition o; attached
to its right side, and 7;_; attached beneath should be interpreted as the sequence of
integers giving the number of boxes in each row of this diagram.

It can happen that the rectangle R; ;; is empty, since the number of rows or
columns can be zero. If the number of rows is zero, then ¢; is required to be empty,
and the diagram is the Young diagram of 7;_;. If the number of columns is zero, then
the algorithm requires that the length of o; is at most equal to the number of rows
7ii — i1, of R;_1;, and the diagram consists of o; in the top 74 —r;_1; rows and 7;,_;

below this, possibly with some zero-length rows in between.



1.3 A conjecture for the coefficients c,(r)

Finally we will describe the conjectured formula for the coefficients c,(r). We will
need the notions of (semistandard) Young tableaux and multiplication of tableaux,
see for example [6].

A tableau diagram for a set of rank conditions is a filling of all the boxes in the
corresponding rectangle diagram with integers, such that each rectangle I;; becomes
a tableau T;;. Furthermore, it is required that the entries of each tableau T;; are
strictly larger than the entries in tableaux above T;; in the diagram, within 45 degree
angles. These are the tableaux Ty, with i < k <[ < j and (k,1) # (4,5).

A factor sequence for a tableau diagram with n rows is a sequence of tableaux
(Wi, ...,W,), which is obtained as follows: If n = 1 then the only factor sequence
is the sequence (Tp;) containing the only tableau in the diagram. When n > 2, a
factor sequence is obtained by first constructing a factor sequence (Ui, ...,U, 1) for
the bottom n — 1 rows of the tableau diagram, and choosing arbitrary factorizations

of the tableaux in this sequence:
U=PF-Q.
Then the sequence
Wi, o Wo) =T - Pr, Qu-Tha - Poy oo, Quy - To10)

is the factor sequence for the whole tableau diagram. The conjecture from [1], which

is the theme of Chapter 2, can now be stated as follows:

Conjecture 1.1. The coefficient c,(r) is equal to the number of different factor se-
quences (Wi, ..., W,) for any fized tableau diagram for the rank conditions r, such

that W; has shape p; for each 1.

This conjecture first of all implies that the coefficients ¢, (r) are non-negative and

that they are independent of the side lengths of empty rectangles in the rectangle
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diagram. In addition it implies that the number of factor sequences does only depend

on the rectangle diagram and not on the choice of a filling of its boxes with integers.

Example 1.2. Suppose we are given a sequence of four vector bundles and the fol-

lowing rank conditions:

EO—)El—)E2—>E3
1 4 3 3

These rank conditions then give the following rectangle diagram:

1] ]

]

From the bottom row of this diagram we get
Pr = 5.
Then using the algorithm we obtain
Pr=s1®s7 + 1®SH
and

PT: 8D®SD:D®SD + 8D®SD:|®SH —+ 1®SH:D®SD +

1®SHJ®SH + 1®8m®8H + 1®Sm®8@-
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Thus the formula for the cohomology class of €2, (E,) has six terms. Now, one possible

tableau diagram for the given rank conditions is the following:

This diagram has the following six factor sequences:

% 1]1]2
([3),[2]2]2), 1)), (8, afa), 2]), (B,[3] 1)),

[w]e

1
in 1] 7]
0, 1,),(0),,),(@,,)-

Since only the rectangle diagram matters for the formula, we will often depict a
rank diagram simply as a triangle of dots in place of a triangle of numbers. This is
especially convenient when working with paths through the rank diagram, which we
shall do in Section 2.1. Such a diagram will often be decorated with the rectangles
from the rectangle diagram, or by the tableaux from a tableau diagram. When this is
done, each rectangle or tableau is put in the middle of the triangle of dots representing
the numbers that produced the rectangle. In this way the rank conditions used in the

above example would be represented by the diagram:

° ° ° °
(1] l
° ° °
| []
° °
[
°

Figure 1.1: The rectangle diagram used in Example 1.2.



CHAPTER 2
RESULTS ABOUT THE CONJECTURED FORMULA

The goal of this chapter is to prove some combinatorial results about the formula for
quiver varieties described in Section 1.2. The main result is that the conjectured for-
mula for the coefficients ¢, (r) is true in some special cases which include all situations
where the sequence F, has up to four bundles. We will also show that the conjecture
follows from a stronger but simpler conjecture, for which substantial computational
verification has been obtained. For both of these results, a sign-reversing involution
on pairs of tableaux constructed by S. Fomin plays a fundamental role.

In Section 2.1 we define a generalization of the formula P, which for many pur-
poses is easier to work with. We will also define corresponding generalizations of
factor sequences and the conjectured formula. In Section 2.2 we will prove a useful
criterion for recognizing factor sequences. Section 2.3 gives an account of Fomin’s in-
volution, which in Section 2.4 is used to formulate the stronger conjecture mentioned
above. Finally, Section 2.5 contains a proof of this stronger conjecture in special
cases. Throughout the chapter we shall make use of the row and column bumping al-
gorithms for tableau multiplication as well as the reverse versions of these algorithms.

This and more is explained in [6].

2.1 Paths through the rank diagram

In this section we will introduce a generalization of the formula P,. Define a path
through the rank diagram to be a union of line segments between neighboring rank
conditions, which form a continuous path from ryq to r,, such that any vertical line

intersects this path at most once.
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Figure 2.1: Path through the rank diagram.

The length of a path is the number of contained line segments (which is between
n and 2n). Given a path 7 of length ¢, we will define an element P, € A®‘. Tt is
convenient to identify the natural basis elements of A®* with labelings of the line
segments of v with partitions. More generally, if I, ..., I; are sequences of integers,
we will identify the labeling of the line segments in v by these sequences, left to right,
with the element s;, ® --- ® s, € A®¢. All basis elements occurring in P, will label
line segments on the side of the rank diagram with the empty partition. If v is the
highest path, going horizontally from ryy to 7,,, then P, is equal to P,.

We define P, inductively as follows. If 7 is the lowest possible path, going from
Too tO Top t0 Ty, then we set P, =1®1®---® 1 € A®*". In other words P, is equal
to the single basis element which assigns the empty partition to each line segment.
If v is any other path, then we can find a path 7' which is equal to v, except it goes

lower at one place, in one of the following ways:

Case 2:

Figure 2.2: The path ' goes lower than ~ at the indicated place.

By induction we may assume that P, is well defined.
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If we are in Case 1 we now obtain P, from P, by replacing each basis element

occurring in P, with the sum

se %)

For Case 2, let R be the rectangle associated to the triangle where v and ~' differ.

Then P, is obtained from P, by replacing each basis element

-

occurring in P, with zero if o has more rows than R, and otherwise with the element:

An easy induction shows that this definition is independent of the choice of 4'. The
element P, has geometric meaning similar to that of F,. It describes the cohomology
class of a degeneracy locus Q,(7) defined in [1].

If we are given a tableau diagram, the notion of a factor sequence can also be
extended to paths. Any factor sequence for a path v will contain one tableau for each
line segment in 7. As with basis elements of A®¢, we will often regard such a sequence
as a labeling of the line segments in v with tableaux.

If v is the lowest path from rqg to 7¢, to r,, then the only factor sequence is the

sequence (), ...,0) which assigns the empty tableau to each line segment. Otherwise
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we can find a lower path 7' as in Case 1 or Case 2 of Figure 2.2. In order to obtain a
factor sequence for v we must first construct one for 7'

If we are in Case 1, let (..., W,...) be a factor sequence for +' such that W is the
label of the displayed line segment, and let W = P - () be an arbitrary factorization
of W. Then the sequence (...,P,Q,...) is a factor sequence for 7. For Case 2,
let T be the tableau corresponding to the rectangle R. If (...,Q, P,...) is a factor
sequence for +' with () and P the tableaux assigned to the displayed line segments,
then (...,Q-T - P,...) is a factor sequence for .

Finally we define coefficients c,(y) € Z by the expression

P7=Zcu(7)8m®---®sw € A%
m

where ¢ is the length of v. Conjecture 1.1 then has the following generalization:

Conjecture 2.1. The coefficient c,(y) is equal to the number of different factor se-

quence (Wy, ..., W,) for the path vy, such that W; has shape p; for each i.

2.2 A criterion for factor sequences

In this section we will prove a simple criterion for recognizing factor sequences. We
will start by discussing this criterion for ordinary factor sequences.

Let {T};} be a tableau diagram and let (W1, ..., W,,) be a sequence of tableaux. At
first glance it would appear that to check if this sequence is a factor sequence, we would
have to find all factor sequences (Ui, ..., U, 1) for the bottom n—1 rows of the tableau
diagram, as well as all factorizations U; = P; - Q;, to see if our sequence (W1,...,W,)
is obtained from any of these, i.e. W; = Qi_1 - T;—1; - P; for all 7. Equivalently we
could find all factorizations of each W into three factors W; = Q;_1 - T;_1; - P; (with
Qo = P, = 0), and check if (P, - Q1,...,P,_1-Qn_1) is a factor sequence for any of
these choices. The criterion for factor sequences allows us to check this for just one
factorization of each W;.

Notice that if the sequence (Wi,...,W,,) is a factor sequence, obtained from an

inductive factor sequence (Ui, ...,U,_1) as above, then the conditions on the filling



13

of a tableau diagram imply that the entries of each tableau T;_; ; are strictly smaller
than the entries of ();_; and P;. This implies that W; = @Q;_; - T;_1,; - P; contains the

rectangular tableau T;_; ; in its upper-left corner.

Tiovg

We shall therefore investigate ways to factor a tableau into three pieces, one of which
is a contained rectangular tableau.

A quick way to factor any tableau is by cutting it along a horizontal or vertical
line. Let 7" be a tableau and @ > 0 an integer. Let U the top a rows of 7', and D the
rest of T. Then T'= D -U. We will call this factorization the horizontal cut through

T after the a'" row. Vertical cuts are defined similarly.

U
_ _ _ L _
T="p =D-U T = —L-R

Lemma 2.2. Let T = P - Q) be any factorization of T and let a be the number of

rows in Q. The following are equivalent:
(i) T =P -Q is a horizontal cut.
(ii) The i row of T has the same number of bozes as the i row of Q for1 <i < a.

(iii) Whenever the top row of P has a bozx in column j > 1, the a™ row of Q has a

strictly smaller box in this column (unless a =0).

Simalarly, if P has b columns, then T = P - Q s a vertical cut iff the first b columns
of T and P have the same heights, iff the boxes in the last column of P are smaller

than or equal to the bozxes in similar positions in the first column of Q).

Proof. 1t is clear that (i) implies (ii) and (iii). If (iii) is true then P and @ fit together
to form a tableau with () in the top a rows and P below. By taking a horizontal

cut through this tableau, we see that it must be the product of P and (). But then
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it is equal to 7" and (i) follows. Finally, suppose (ii) is true. When the boxes of P
are column bumped into ) to form the product 7', all of these boxes must then stay
below the a'* row. This process therefore reconstructs P below @ and (i) follows.

The statements about vertical cuts are proved similarly. O

Now let W be any tableau whose shape contains a rectangle (b)* with a rows and
b columns. We define the canonical factorization of W with respect to the rectangle
(b)@ to be the one obtained by first taking a horizontal cut through W after the o'

bth

row, and then a vertical cut through the top part of W after the column.

| T PHJ:Q-T-P
Q

Note that this definition depends on a, even when b is zero and the rectangle (b)® is

empty. When the product of three tableau (), T', and P looks like in this picture, we
shall say that the pair of tableaux (Q, P) fits around the rectangular tableau 7.

More generally, let )y be the part of W below T, P, the part of W to the right
of T', and let Z be the remaining part between @)y and F;.

T | P
W = OhlJ

Ed

LI

We define a simple factorization of W with respect to the rectangle (b)* to be any
factorization W = Q-T- P, such that Q = Qq-Q and P = P- P, for some factorization
Z=Q-P.

Note that if Z = Q - P is any factorization of Z and if we put Q = Qq - Q and
P = P-P,, then Q-T-P = W. This follows because P = P P, must be a horizontal
cut through P, and therefore - P = P - T - P,. In fact, given arbitrary tableaux Q
and P one can show that Q- T - P = W if and only if Q - P = Z, but we shall not

need this here.
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We are now ready to formulate the criterion for factor sequences. Let {R;;} be
the rectangles corresponding to the tableau diagram {T;;}. If (W;,...,W,) is a factor
sequence, a simple factorization of any W; will always be with respect to the relevant

rectangle R;_;; from the rectangle diagram.

Theorem 2.3. Let (Wy,...,W,) be a sequence of tableaux such that each W; contains
T;_1; in its upper-left corner. Let W; = Q;_1 - Ti_1,; - P; be any simple factorization
of W; with respect to the rectangle R;_ ;. Then (Wh,...,W,) is a factor sequence if
and only if Qo and P, are empty tableaux and (P; - Q1,..., Py 1 - Qn_1) is a factor

sequence for the bottom n — 1 rows of the tableau diagram {T;;}.

We shall derive this result from Proposition 2.7 below. Since this criterion can be
applied recursively to the sequence (P;-Q1, ..., P, 1-Qn_1), it gives an easy algorithm
to determine if a sequence (Wi,...,W,) is a factor sequence. Note that the easiest
way to produce the simple factorizations is to take the canonical factorization of each
W;. When this choice is made, the work required in the algorithm essentially consists
of n(n — 1)/2 tableau multiplications. Note also that this criterion makes use of the
height of any empty rectangles in the rectangle diagram.

For proving this criterion we need some definitions. Let 7" be a tableau whose
shape is the rectangle (b)* with ¢ rows and b columns. We will consider pairs of
tableaux (X,Y’) such that all entries in X and Y are strictly larger than the entries
of T. For such a pair, let X = X; - X be the vertical cut through X after the b

column, and let Y =Y - Y} be the horizontal cut after row a.

T Yo

X:EE

Figure 2.3: Ingredients for the relation |=.
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If (X',Y") is another pair of tableaux, we will write (X,Y) = (X', Y’) if either
1. for some factorization X = M - N we have X' = X,-M and Y =N -Y, or
2. for some factorization Y = M - N we have X' = X -M and Y’ = N - Y,

Note that this implies that X' -7 -Y' = X - T - Y. In in the first case this follows
because X - T = Xy -T - X and X'-T = Xo-T - M, and the second case is similar.
We will let — denote the transitive closure of the relation =. This notation depends

on the choice of T, as well as the numbers a and b if T is empty.

Lemma 2.4. Let W be a tableau containing T in its upper-left corner. Suppose that
the entries of T are smaller than all other entries in W. If W = @ -T - P is a simple
factorization of W with respect to the rectangle (b)*, and if W = X - T -Y is any
factorization, then (X,Y) — (Q, P).

Proof. Let X = X, - X be the vertical cut through X after column b, and put
Y’ =X -Y. Then let Y = Y- Y{ be the horizontal cut through Y after row a, and
put X" = X,-Y".

We claim that the pair (X", Y]) fits around 7. Using Lemma 2.2 and that the
entries of T are smaller than all other entries, it is enough to prove that the b 4 5
entry in the top row of X" is strictly larger than the j*® entry in the bottom row of
YJ. This will follow if the b+ j*® entry in the top row of X" is larger than or equal to
the 7™ entry in the top row of Y. Since X” = X,-Y" and X, has at most b columns,
this follows from an easy induction on the number of rows of Y.

It follows from the claim that W = X" .T - Y{ is the canonical factorization of W,
and therefore we have (X,Y) = (Xo,Y') E (X", Y]) E (Q, P) as required. O

Notice that if W = X -T-Y is a simple factorization and (X,Y) = (X', Y’), then
W = X"-T-Y'" must also be a simple factorization. It follows that Lemma 2.4 would

be false without the requirement that W = @ - T - P is simple.
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Lemma 2.5. Let a > 0 be an integer, and let Y and S be tableaux with product
A=Y -S. Let A=A-Ay andY =Y - Yy be the horizontal cuts through A and 'Y
after row a, and let Y = M - N be any factorization. Then N -Yy-S = A’ - Ay for
some tableau A', and M - A' = A.

Yo Ao

Y: ~ 3 A:Y‘S:

Y A

Proof. The first statement follows from the observation that the bottom rows of Y
can’t influence the top part of Y - S, which is a consequence of the row bumping
algorithm. Lemma 2.2 then shows that the factorization A = (M - A) - 4, is a
horizontal cut, so M - A’ = A as required. O

Lemma 2.6. Let vy be a path through the rank diagram, and let (..., A,B-C,...) be
a factor sequence for v such that the product B - C' is the label of a down-going line
segment. Then (..., A-B,C,...) is also a factor sequence for ~y.

N

Proof. We will first consider the case where the line segment corresponding to A goes

up. Let 7' be the path under 7 that cuts short this line segment and its successor.

A B.C

"A-B-C

Then by definition (..., A- B-C,...) is a factor sequence for ', which means that
(...,A-B,C,...) is a factor sequence for . In general 7 lies over a path like the one

above, and the general case follows from this. O

Similarly one can prove that if (..., A- B,C,...) is a factor sequence for a path,
such that A - B is the label of an up-going line segment, then (..., A,B-C,...) is

also a factor sequence for this path.
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Proposition 2.7. Let v and ' be paths related as in Case 2 of Figure 2.2, and
let (...,W,...) be a factor sequence for v such that W is the label of the displayed

horizontal line segment.

IfW =Q-T- P is any simple factorization of W, then (...,Q,P,...) is a factor

sequence for «'.

Proof. Since (..., W,...) is a factor sequence for 7, there exists a factorization W =
X -T-Y such that (..., X,Y,...) is a factor sequence for 4'. By Lemma 2.4 we
have (X,Y) — (Q, P). It is therefore enough to show that if (X,Y) = (X',Y") then
(..., X", Y' ...) is a factor sequence for 7.

Let a be the number of rows in (the rectangle corresponding to) 7', and let Y =
Y - Y; be the horizontal cut through Y after the a™ row. We will do the case where
a factor of Y is moved to X, the other case is proved using a symmetric argument.
We then have a factorization Y = M - N such that X' = X -M and Y’ = N -Y,. We
can assume that the paths v and 7' go down after they meet, and that the original
factor sequence for vy is (..., W, S,...).

Put A=Y-S. Then (..., X, A,...) is a factor sequence for the path with these labels
in the picture. Now let 7" be the rectangular tableau associated to the lower triangle,
and let A = U -T'-V be the canonical factorization of A. Since this is a simple
factorization we may assume by induction that (..., X, U, V,...) is a factor sequence.
Using Lemma 2.5 we deduce that N-Y,-S = U’-T"-V for some tableau U’, such that
M-U"=U. Since (..., X, M-U",V,...)is afactor sequence, sois (..., X-M,U",V,...)
by Lemma 2.6. This means that (..., X -M,U"-T"-V,...)= (..., X, Y-S ...)is



19

a factor sequence, which in turn implies that (..., X', Y’/ S,...) is a factor sequence

for o' as required. O
The proof of Proposition 2.7 also gives the following:

Corollary 2.8. Let (..., X,Y,...) be a factor sequence for the path ' in the propo-
sition. If (X,Y) — (X", Y') then (..., X", Y',...) is also a factor sequence for +'.

Proof of Theorem 2.3. The “if” implication follows from the definition. If the se-
quence (Wi,...,W,) is a factor sequence, then n applications of Proposition 2.7
shows that (Qo, P1, @1, Ps,...,Qn 1, P,) is a factor sequence for the path with these
labels.

|44} Wy Ws W

Vo o B Qv Py

PI'QI PQ'QQ o

It follows that Qo and P, are empty, and (P;-Q1, ..., P, 1-Qn_1) is a factor sequence

for the bottom n — 1 rows. This proves “only if”. O

2.3 An involution of Fomin

In this section we will describe a sign-reversing involution on pairs of tableaux con-
structed by Sergey Fomin. The purpose of this involution is to cancel out the dif-
ference between the coefficients ¢, (r) produced by the algorithm in Section 1.2, and
their conjectured values.

Fix a positive integer a. If P and @ are tableaux of shapes ¢ and 7 such that P
has at most a rows, we let S (g) denote the symmetric function s; € A where I is the
sequence of integers I = (01,...,0,4,71,T2,...). Let P, be the set of all pairs (Q, P)
such that S(g) # 0 and such that P and () do not fit together as a tableau with P in
the top a rows and @ below. This means that the a'* row of P must be shorter than

the top row of (), or some box in the top row of ( must be smaller than or equal to
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the box in the same position of the a'® row of P. For example, if a = 2 the following

pairs are in P,:

3[s]e]7] [1]3][7]8] 6]

([ ) [2]4 ) and (

[0 o [s
o
N
w
w
S

Lemma 2.9 (Fomin’s involution). There exists an involution of P, with the prop-

erty that if (Q, P) is mapped to (Q', P') then
(i) @-P' =@Q-P,
(ii) S(&) =—S(5), and
(iii) the first column of @' is equal to the first column of Q.

Fomin supplied the proof of this lemma in the form of the beautiful algorithm
described below. While Fomin’s original description uses path representations of
tableaux, we have translated the algorithm into notation that is closer to the rest of
this thesis.

We will work with diagrams with weakly increasing rows. These will be “Young
diagrams” for finite sequences of non-negative integers, where all boxes are filled with
integers so that the rows are weakly increasing. Empty rows are allowed as in the

following example:

7]7]

w
N
(&)
]

Figure 2.4: Diagram with weakly increasing rows.

A wviolation for such a diagram to be a tableau is a box in the second row or below,
such that there is no box directly above it, or the box directly above it is not strictly
smaller. The above diagram has 4 violations in its second row and 2 in row four.

If D is a diagram with weakly increasing rows, and if I is the sequence of row
lengths, we put S(D) = sy € A. Let rect(D) denote the tableau obtained by multi-
plying the rows of D together as tableaux, from bottom to top. We will identify a
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pair (@, P) € P, with the diagram D consisting of P in the top a rows and ) below.
For this diagram we then have @) - P = rect(D) and S(g) = S(D).

We will start by taking care of the special case where ¢ = 1 and both P and @)
have at most one row. In this case Lemma 2.9 without property (iii) is equivalent to
the identity sg = hghg — hey1hg—1 in the plactic monoid, which is a special case of a
result by Lascoux and Schiitzenberger [16], [11]. The simple proof of this result given

in [3] develops techniques which Fomin used to establish Lemma 2.9 in full generality.

Lemma 2.10. Let D be a diagram with two rows and at least one violation in the
second row. Then there exists a unique diagram D' such that rect(D') = rect(D) and
S(D'") = —=S(D). Furthermore, D' also has two rows and at least one violation in
the second row. The leftmost violations of D and D' appear in the same column and

contain the same number. The parts of D and D' to the left of this column agree.

Proof. Let p and g be the lengths of the top and bottom rows of D. The requirement
S(D'") = =S(D) then implies that D' must have two rows with ¢ — 1 boxes in the
top row and p + 1 in the bottom row. Now it follows from the Pieri formula [6, §2.2]
that the product rect(D) of the rows in D has at most two rows. Furthermore, since
D contains a violation, the second row of rect(D) has at most ¢ — 1 boxes. Using the
Pieri formula again, this implies that there is exactly one way to factorize rect(D)
into a row of length p+ 1 times another of length ¢ — 1. This establishes the existence
and uniqueness of D'.

Explicitly, one may use the inverse row bumping algorithm to obtain this factor-
ization of rect(D). This is done by bumping out a horizontal strip of ¢ — 1 boxes
which includes all boxes in the second row, working from right to left.

Let x be the leftmost violation of D, where D has the form:

A
D = B |z] r -
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Suppose the parts A and B each contain ¢ boxes. Now form the product F - E and

let ¢; and d; be the boxes of this product as in the picture:

010203\04\ ‘Ck‘
F-E=ydld,] --- d; |

Since z is a violation in D, it must be smaller than all boxes in E and F'. Therefore

we have

zllealeslea] - ol
z-F-E=ld] .. 14

Now since each d; > ¢; it follows that if a horizontal strip of length ¢—¢—1 is bumped
off this tableau, x will remain where it is. In other words we can factor z - F'- E into
x-F'- E' such that - F" and E’ are rows of lengths p—¢+1 and ¢ —t — 1 respectively.
Since the entries of A and B are no larger than z, the products B-z- F' and A - E’
are rows of lengths p + 1 and ¢ — 1. But the product of these rows is rect(D), so
they must be the rows of D’ by the uniqueness. This proves that D' has the stated
properties. O

Notice that the uniqueness also implies that the transformation of diagrams de-
scribed in the lemma is inverse to itself, i.e. an involution.

Now suppose D is any diagram with weakly increasing rows. Then Lemma 2.10
can be applied to any subdiagram of two consecutive rows, such that the second of
these rows contains a violation. If this subdiagram is replaced by the new two-row
diagram given by the lemma, we arrive at a diagram D’ satisfying S(D') = —S(D)
and rect(D’) = rect(D). We will call this an exchange operation between the two
rows of D.

We shall need an ordering on the violations in a diagram. Here the smallest of
two violations is the south-west most one. If the two violations are equally far south-
west, then the north-west most one is smaller. In other words, a violation in row
and column 75 is smaller than another in row ' and column j' iff j —i < j' — 4, or
j—i=7"—1dand i < 7.

Notice that when an exchange operation between two rows is carried out, violations
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may appear or disappear in these two rows as well as in the row below them. However,
the properties given in Lemma 2.10 imply that all of the changed violations will be
larger than the left-most violation in the second of the rows exchanged. It follows
that the minimal violation in a diagram will remain constant if any (sequence of)
exchange operations is carried out. Similarly, all boxes south-west of the minimal

violation will remain fixed.

Proof of Lemma 2.9. Given a pair (Q, P) € P,, let Dg p be the finite set of all non-
tableau diagrams D with weakly increasing rows, such that rect(D) = @ - P and
S(D) = iS(g), and so that the minimal violation in D is in row a + 1. The pair
(@, P) is then identified with one of the diagrams in this set. We will describe an
involution of the set Dy p and another of the complement of P, N Dg p in Dg p.
The restriction of Fomin’s involution to P, N Dg p is then obtained by applying the
involution principle of Garsia and Milne [9] to these involutions.

The involution of Dy p simply consists of doing an exchange operation between
the rows a and a + 1 of a diagram. This is possible because all diagrams are required
to have a violation in row a + 1.

Now note that a diagram D € Dg p is in the complement of P, N Dg p if and
only if D has a violation outside the a + 1% row. We take the involution of Dg p \ P,
to be an exchange operation between the row of the minimal violation outside row
a+1, and the row above this violation. This is indeed an involution since the minimal
violation outside row a + 1 will be the same after the exchange operation.

These involutions now combine to give an involution of P,NDg p by the involution
principle. To carry it out, start by forming the diagram with P in the top a rows
and @ below it. Then do an exchange operation between row a and row a + 1. If all
violations in the resulting diagram are in row a + 1 we are done. P’ is then the top a
rows of this diagram and @' is the rest. Otherwise we continue by doing an exchange
operation between the row of the minimal violation outside row a + 1 and the row
above it, followed by another exchange operation between row a and row a + 1. We
continue in this way until all violations are in row a + 1.

Finally, the properties of P' and @' follow from the properties of exchange opera-
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tions. In particular, the requirement S (%) =-S5 (g) follows because we always carry
out an odd number of exchange operations. O
3[5]6]7] 1[3[7]8]

Example 2.11. The pair (P,Q) = ([4] , 2la ) in P, gives the following

sequence of exchange operations:

1]3]7]8] 1]3[7]8] 1]3 1]3
2[4 ~ 2]a]7] ., [2]4|7]7]8] ., [2]4
3]/5]6]7] 3[5]6 3[5]6 3[5]6]7]7]8]
4] 4] 4] 4]
L 3[s[e[7[7[8] [1]3 .
This pair therefore corresponds to (P', Q') = (4 , [2[4]) by Fomin’s involu-

tion.

There are examples of pairs (Q, P) for which the set P, NDg p has more than two
diagrams, all with the same first column. This means that the involution constructed
above is not the only one that satisfies the conditions of Lemma 2.9. One way
to produce different involutions is to use another ordering among violations. The
only property of the order that we have used is that when an exchange operation
is performed, any appearing and disappearing violations must be larger than the
leftmost violation in the second of the rows being exchanged. For example, given
any irrational parameter £ € (0,1), we obtain a new order by letting a violation in

position (i, j) be smaller than another in position (¢', j') if and only if j — & < j'— &',

2.4 The stronger conjecture

In this section we will present a simple conjecture which implies Conjecture 2.1. Let
v be a path through the rank diagram which at some triangle has an angle pointing

down:

Let T be the rectangular tableau associated to this triangle, and suppose the corre-

sponding rectangle has a rows and b columns.
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If X and Y are tableaux whose entries are strictly larger than the entries of T,

and if Y has at most a rows, we will let

T Y
Ty
T_JX_,_IJ

denote the diagram with weakly increasing rows consisting of 7Y in the top a rows

and X below. The sequence of row lengths of this diagram then gives an element
S(T|7Y) in the ring of symmetric functions A. Note that (X,Y) fits around 7" if and
only if the diagram T‘TY is a tableau.

Suppose that (X, Y") does not fit around 7" and S(T‘TY) is non-zero. Let X = Xp-X
be the vertical cut through X after the o™ column. Then (X,Y") is an element of the
set P, defined in the previous section. Let (X', Y”) be the result of applying Fomin’s
involution to this pair, and set X’ = X, - X’. Since the first columns of X and X’
agree, X' consists of X, with X’ attached to its right side by Lemma 2.2. It follows
that S(L2") = —S(T‘TY). (Note that one could also get from (X,Y) to (X', Y’) by

X
applying Fomin’s involution to the pair (X,7-Y).)

Conjecture 2.12. Let (..., X,Y,...) be a factor sequence for v with X and Y the
labels of the displayed line segments, such that'Y has at most a rows. Suppose (X,Y)
does not fit around T and S(T)lf—y) #0. If X" and Y" are obtained from X and Y by
applying Fomin’s involution as described above, then (..., X', Y' ...) is also a factor

sequence for .

If we fix the location of the down-pointing angle of 7 (i.e. the location of 7" in the
tableau diagram), then the strongest case of this conjecture is when the rest of v goes
as low as possible. If Conjecture 2.12 is true for all locations of the down-pointing

angle, then the conjectured formula for the coefficients ¢, () is correct.
Theorem 2.13. Conjecture 2.1 follows from Conjecture 2.12.

Proof. 1f Wy, ..., W, are diagrams with weakly increasing rows, e.g. tableaux, we will
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write S(Wy,..., W) = S(W1)®---®@S(W,) € A®. With this notation we must prove
that if v is a path of length ¢, then

P, =) " S(Wh,...,Wy) (2.1)

(Wi)

where the sum is over all factor sequences (W;) for ~.
Let 7' be a path under v as in Case 1 or Case 2 of Figure 2.2. By induction we

can assume that Conjecture 2.1 is true for 7/, i.e.
,_ZS U,...,Up) (2.2)

where this sum is over the factor sequences for 7. We must prove that the right
hand side of (2.1) is obtained by replacing each basis element of (2.2) in the way
prescribed by the definition of P,. If we are in Case 1 then this follows from the
Littlewood-Richardson rule [6, §5.1]: If U is a tableau of shape p and o and 7 are
partitions, then there are c#._ ways to factor U into a product U = P - () such that P
has shape o and () has shape 7.

Assume we are in Case 2. By induction we then have Py = Y S(...,X,Y,...)
where the sum is over all factor sequences (..., X,Y,...) for 4/; X and Y are the
labels of the two line segments where 7' is lower than . Let T be the rectangular
tableau of the corresponding triangle, and let a be the number of rows in its rectangle.

Then by definition we get

P,= > 5 ) (2.3)

(0 X,Y,..)

where the sum is over all factor sequences (..., X,Y,...) for 7/ such that ¥ has at

most a rows.

Now suppose we have a factor sequence (..., X,Y,...) such that the diagram — y

is a tableau. Then this tableau must be the product X -T-Y, and so (..., 22X, ...)

,T,...
T|Y

~---) matches one of the terms

is a factor sequence for . Thus the term S(...,
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of (2.1). On the other hand it follows from Proposition 2.7 that every term of (2.1)
is matched in this way.

We conclude from this that the terms in (2.1) is the subset of the terms in (2.3)
which come from factor sequences such that (X,Y) fits around 7. We claim that
the sum of the remaining terms in (2.3) is zero. In fact, if (..., X,Y,...) is a factor
sequence for 7' such that (X,Y) doesn’t fit around 7" and S (T|7Y) # 0, then we may
apply Fomin’s involution in the way described above to get tableaux X' and Y’. If

Conjecture 2.12 is true, then the sequence (..., X', Y’ ...) is also a factor sequence,

and since S (T)‘g') =-S (T|TY), the terms of (2.3) given by these two factor sequences
cancel each other out. O

The number of factor sequences for a tableau diagram can be extremely large.
For this reason it is almost impossible to verify Conjecture 1.1 or Conjecture 2.1 by
computing both sides of their equations. In contrast, instances of Conjecture 2.12 can
be tested easily even on large examples. Given a tableau diagram and a path, one
can generate a factor sequence for this path by choosing factorizations of tableaux by
random. Then one can apply Fomin’s involution to the sequence, and use the criterion
of Proposition 2.7 to check that the result is still a factor sequence. Such checks have
been carried out repeatedly for each of 500,000 randomly chosen tableau diagrams
with up to 10 rows of tableaux, without finding any violations of Conjecture 2.12. To-
gether with the results in the next section, we consider this to be convincing evidence

for the conjectures.

2.5 Proof in a special case

In this final section we will show that Conjecture 2.12 is true in certain special cases.
These cases will be sufficient to prove the conjectured formula for ¢,(r) when all
rectangles in the fourth row of the rectangle diagram are empty, and when no two
non-empty rectangles in the third row are neighbors. This covers all situations with
at most four vector bundles.

Let v be a path through the rank diagram with a down-pointing angle as in the
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previous section. Let R be the rectangle of the corresponding triangle.

We will describe two cases where Conjecture 2.12 can be proved. Both cases require
a special configuration of the rectangles surrounding R. Suppose R is the rectangle
R;; in the rectangle diagram. We will say that a different rectangle R' = Ry, is below
Rifk <i<j<I R'is strictly below Rif k <i < j <.

Proposition 2.14. Conjecture 2.12 is true for vy if all rectangles strictly below R are
empty.

[] []

empty
rectangles

Figure 2.5: Rectangles strictly below R are empty.

Note that this covers all rectangles on the side of the rectangle diagram.

Proof. Let T be the tableau corresponding to R, and suppose (..., X,Y,...) is a
factor sequence for . Since all tableau on the line going south-west from 7" in the
tableau diagram are narrower than 7', it follows that also X has fewer columns than
T. Similarly Y has fewer rows than 7. But this means that (X,Y’) fits around 7" and

the statement of Conjecture 2.12 is trivially true. O

In the other situation we shall describe, we allow three non-empty tableaux below
T as shown in Figure 2.6. All other tableaux below T are required to be empty. Let
v be the higher and +' the lower of the two paths in the diagram.
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Figure 2.6: All but three of the tableaux below 7T are empty.

Lemma 2.15. Let (..., X,Y,...) be a labeling of the line segments of v' with tab-

leauz. The following are equivalent:
(1) (..., X,Y,...) is a factor sequence for ~'.

(2) (...,X-T-Y,...) is a factor sequence for vy and the part of X that is wider
than T and the part of Y that is taller than T have entries only from C.

Proof. Tt is clear that (1) implies (2). For the other implication, put W = X - T -Y
and let W = X'-T -Y' be the canonical factorization of W. Then it follows from
Proposition 2.7 that (..., X’ Y’ ...) is a factor sequence for +'. Since (X,Y) —
(X', Y") by Lemma 2.4, we may assume that (X,Y) = (X', Y").

We will handle the case where a factor of the bottom part of Y is moved to X, the
other case being symmetric. This means that for some tableau M we have X' = X -M
and Y = M -Y’. Since the bottom part of Y has entries only from C, this is also true
for M.

We may assume that v and +' go down outside the displayed angle and that our
factor sequence is (..., U, X", Y,V . ..).

w

U V
X' Y’

Then by definition there exists a factorization C' = C] - C} such that A-C] =U - X'
and C)- B =Y'-V. Since U - X - M consists of A with C] attached on its right

side, and since all entries of M are strictly larger than the entries of A, it follows that
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U - X consists of A with some tableau C; attached on the right side. Furthermore
Cy-M = Cf by Lemma 2.2.

Put Cy = M - C}. Then we have C; - Co, =C, A-C;=U-X,and C,-B=Y - V.
It follows that (...,U, X,Y,V,...) is a factor sequence as required. O

Proposition 2.16. Conjecture 2.12 is true for the path ~' in Figure 2.6.

Proof. Let (..., X,Y,...) be a factor sequence for v' which satisfies the conditions
in Conjecture 2.12, and let X' and Y’ be the tableaux obtained from X and Y using
Fomin’s involution. Since the part of X that is wider than 7" has entries only from C,
the same will be true for X’ by Lemma 2.9 (iii). Since Y’ has fewer rows than 7" and
since (..., X"-T-Y',...)=(...,X-T-Y,---) is a factor sequence for v, it follows
from Lemma 2.15 that (..., X', Y’ ...) is a factor sequence for 7. O

Corollary 2.17. Conjecture 1.1 is true if all rectangles in the fourth row of the
rectangle diagram are empty, and if no two non-empty rectangles in the third row are

neighbors.

Proof. When the rectangle diagram satisfy these properties, then all instances of
Conjecture 2.12 follow from either Proposition 2.14 or Proposition 2.16. The corollary

therefore follows from Theorem 2.13. O

In Section 1.2 we defined a rectangle diagram to be any diagram which can be ob-
tained by replacing the small triangles of numbers in a rank diagram with rectangles.
However, everything we have done is still true if one defines a rectangle diagram to be
any diagram of rectangles, each given by a number of rows and columns, such that the
number of rows decreases when one moves south-east while the number of columns
decreases when one moves south-west. This definition is slightly more general because
the side lengths of the rectangles in a rectangle diagram obtained from rank condi-
tions satisfy certain relations. Although we don’t know any geometric interpretation
of the more general rectangle diagrams, they seem to be the natural definition for

combinatorial purposes.



CHAPTER 3
STANLEY SYMMETRIC FUNCTIONS

3.1 Introduction

The purpose of this chapter is to show a connection between Stanley symmetric func-
tions and the formula for quiver varieties given in [1]. Recall that a simple reflection
in the symmetric group 5,, is a transposition that interchanges two consecutive in-
tegers. A reduced word for a permutation w € S, is a tuple of simple reflections
(11,72, .., 7¢) with £ = £(w) the length of w, such that w = 7179 -- - 74. Stanley asked
how many reduced words does a permutation w have.

To answer this question, Stanley [17] defined a power series F,,(z) in infinitely
many variables x1,Zs,...; it is homogeneous of degree ¢ = /(w), has non-negative
integer coefficients, and the number of reduced words for w is the coefficient in F,(z)
of the monomial z;z5 - - - x,. Stanley then proved that this power series is symmetric.

This implies that it can be written in the basis of Schur functions:

F,(x) = Zaw,\ sx(x) (3.1)

ARL
where the sum is over all partitions A of £ and the coefficients o, are integers. Since
the coefficient of z125- -z, in a Schur function s,(z) is equal to the number f* of
standard Young tableaux of shape A (see e.g. [14] or [6]), it follows that the number

of reduced words for w is given as

Za’w)\f)\-

AL

The constants f* are considered well understood, so only a description of the coef-
ficients a,) remained to be found. Stanley credits Edelman and Greene for proving

that these coefficients are non-negative [2] (see also [13]). Fomin and Greene have

31
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shown that o, is equal to the number of semistandard Young tableaux 7" of shape
A, such that the column word of T is a reduced word for w [3]. Another useful fact is
that -1y = oy where X' is the conjugate of A [13], [15, (7.22)].

Stanley’s symmetric function is known to be a limit of Schubert polynomials &,,(z)
defined by Lascoux and Schiitzenberger [12], [15]. For n € N, let 1" x w € Spim
denote the shifted permutation which acts as the identity on 1,...,n and maps i to
w(i—mn)+n forn+1 <i<n+m. Ifone specializes to finitely many variables

Z1,%9,...,TN, then
Fw(:rl, c. ,.CEN,O, 0, .. ) = 61an71(.’El, .. ,$N,0,0, .. ) (32)

for all n > N [15, (7.18)].
The formula (1.1) for quiver varieties specializes to a formula for the double Schu-

bert polynomial &, (x;y) for the permutation w € S,,:

Cuw(z;y) = ch(a, by A\)ys? - -yt (—xg)b2 e (—alﬁm_l)b"“1 sx(z/y) . (3.3)

The sum is over exponents as,...,an_1 and bs,...,b,_1 and a partition A. The
coefficients ¢, (a, b, \) are special cases of the coefficients ¢, ().

The main result in this chapter is that the coefficient ¢, (0,0, \) (corresponding
to zero exponents) is equal to Stanley’s coefficient «,,-15. In this way, (3.3) writes a
Schubert polynomial S,,(z) as a symmetric polynomial equal to Stanley’s symmetric
function for w=?! plus a non-symmetric polynomial.

In Section 3.2 we recall from [1] how to apply the quiver formula (1.1) to calculate
Schubert polynomials. In Section 3.3 we prove the identity a,,-1y = ¢,(0,0, ) and
use this to give a new proof of Stanley’s result [17] that the symmetric function
F,(x) for the longest permutation wy in Sy, is equal to the Schur function s,(z) for
the staircase partition A = (m — 1,m — 2,...,1). In Section 3.4 we use geometry
of degeneracy loci to prove the well known formula for a Schubert polynomial of a
product of two permutations. Finally, in Section 3.5, we discuss the relations to the

conjectured Littlewood-Richardson rule stated in Conjecture 1.1.
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3.2 Schubert polynomials

Let w € S;,+1 be a permutation, and let E, be a sequence of bundles over X
FCcFC---CF,—>G,—»Gh_1—» - —>G
consisting of a full flag with a general map to a dual full flag. Define the locus
Qy ={z € X | rank(Fy(z) = G,(z)) < ry(p, q) Vp,q}

where 7, (p,q) = #{i < p | w(i) < ¢}. Fulton has proved [5] that the cohomology
class of this locus is given by the double Schubert polynomial defined by Lascoux and
Schiitzenberger [12]:

(0] = Gu(@1, -, Tm; Y1, - - -5 Ym)

where z; = ci(ker(G; — G;_1)) and y; = ¢ (F;/Fi—1). Now Q, = Q.(E,) where
r = (ri;) are the obvious rank conditions. This means that the double Schubert

polynomial becomes a special case of the quiver formula:

Su(z;y) = [ (E.)]
= ZC“(T) Spy (Fo = F) -+ 8y (B = Frnc1) = 81 (G — Fip) -
Spmi1 (Gm—l - Gm) © Spamo (Gl - GQ)

As noted in [1], significant simplifications can be made by using the equalities

yi, if A = (a) is a row with a boxes
S,\(Fz'+1 - Fz) = Sx(yz‘+1) =
0 otherwise

and

(—z;41)° if A = (1°) is a column with b boxes
sx\(Gi — Giy1) = sx(0/zi41) =

0 otherwise.
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Using this and the fact that sy(Gp, — Fi,) is the super-symmetric Schur polynomial

sx(z/y) in the variables z1, ...,z and 41, ..., Yn, we obtain a formula

Gu(iy) = cwl(a, b A) ys> - yor (=) -+ (—zm)'™ sa(z/y) . (34)

The sum is over exponents as,...,a,, and by,...,b,, and a single partition )\, and

cw(a, b, A) is the coefficient ¢, (r) for the sequence of partitions

p=((a2), .., (am), \, (1%7),..., (1?)) .

Example 3.1. For the permutation w = 2431 we get the rank diagram

F1CF2CF3—)G3—»G2—»G1

1 2 3 3 2 1
1 2 2 2 1
1 1 1 1
0 1 1
0 1
0

which in turn gives the rectangle diagram:

| e
e
]

The bottom three rows of this rectangle diagram gives

Pr=s1®1®1;
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using the algorithm we then get
PF:SD®SD®SD®1+1®SH®SD®1
and
Po=sq®s0®sm®1®1 + s®@sq®s®@sq®1 +
SD®1®SB:‘®1®1+8D®1®SH®SD®1+
1®SH®8D:‘®1®1+1®SH®SD®SD®1+

1®SD®SHH®1®1 + 1®SD®SH®SD®1 +

1®1®8HJ®1®1 + 1®1®8E®SD®1.
This gives the formula

6w(ﬂﬁ; y) = Y2 Y3 Sm(x/y) —T3Y2Y3 Sm(x/y) + Y2 SB](@"/?J) — T3Y2 SH(SE/Q)

+Ys SHJ(x/y) — Z3Y3 SH(QE/?J) + Sﬁj(x/y) — X3 8@(95/.@) .

In general, the rectangle diagram associated to a permutation w € S,,,; contains
only empty rectangles and 1 x 1 rectangles, and all of the non-empty ones are located
in a diamond below the rectangle R, 1 ,. In other words, if R;; is not empty then
i <m—1and j > m. In fact, R;; is non-empty if and only if the diagram D'(w) from
[5] has a box in position (2m—j, i+ 1), and this happens exactly when w(2m+1—7) <
i+1and wt(i+2) <2m—j[1].

3.3 Stable Schubert polynomials

In this section we will apply the quiver formula for Schubert polynomials to calculate
Stanley symmetric functions. Let w € Sp+1 be a permutation and r = (r;;) the
corresponding rank conditions. Notice at first that the rank diagram for the one step

shifted permutation 1 x w is obtained by adding one to each number r;; in the rank
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diagram for w, and putting an extra row of ones on the sides of this diagram. For

example, if w = 312, this looks like:

1 2 2 1 1 2 3 3 2 1
1 1 1 1 2 2 2 1
1 0 1 2 1 1
~
0 1 1 1
1 1
1

Figure 3.1: Rank diagram for a shifted permutation.

This means that the rectangle diagram for 1 x w is obtained by adding a rim of

empty rectangles to the sides of the rectangle diagram for w.

Figure 3.2: Rectangle diagram for a shifted permutation.

Similarly, one obtains the rectangle diagram for 1" x w by adding n rims of empty

rectangles to the rectangle diagram for w.
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Let P, € A®?™ 1 be the element associated to the rank conditions r = (r;;) for w.
The above comparison of rectangle diagrams then shows that 1™ x w corresponds to

the element

1 --QlQP,®1Q---® 1 A®?mtin-1,
—_——— —_————

n n

By (3.4) this gives us

Grrxa (@i y) = Y cuw(a, b, N) Y3, - Yo, (=T24n)” -+ (—Zmsn)"™ 52 (/)

where sy(z/y) is in variables 1, ..., Zmin and Y1, - ., Ymin-

Now restrict to two fixed sets of variables z1,...,zy and yy, ...,y setting x; =
y; = 0 for s > N and j > M. When n > max(N — 1, M — 1), the only non-zero
terms in the above expression for Gin,, are those with all exponents a; and b; equal
to zero. Since this Schubert polynomial is homogeneous of degree equal to the length

of w, the partitions A occurring in these terms all have weight ¢(w). This proves:

Theorem 3.2. Let w € Sy,,11 and fix two sets of variables x1,...,xn and yi, ..., Yn-
Whenn > max(N—1, M —1), the double Schubert polynomial S1n ., in these variables

s given by

Groxw(®1, - TN, 00, 05y, -y, 0,0, 0) = ) u(0,0,4) sx(z/y) -
AR £4(w)

Comparing with equations (3.1) and (3.2) we obtain (since qu,\ = qy-1x):
Corollary 3.3. Stanley’s coefficient au,y is equal to ¢, (0,0, \').

Thus the formula (3.3) writes a Schubert polynomial as a symmetric part equal
to Stanley’s symmetric function plus additional non-symmetric terms. For example,
if w=2431 as in the above example, we have F,(z) = SHJJ(JL‘)

The identity auy = ,-1) becomes a special case of the identity c,-1(b,a, \') =
cw(a,b, \), which in turn follows from the formula c,v (") = ¢,(r) of [1]. Here r" are

the rank conditions obtained by mirroring the rank diagram for » = (r;;) in a vertical
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line, s0 75 = Tn_jn—, and pu" is the sequence (i, ..., ;) of conjugate partitions in

the opposite order.

Example 3.4. Let wyg = m---21 be the longest permutation in S,,. Then we have
Two (P, q) = max(p + g — m,0). The rectangle diagram associated to wy therefore has
exactly 7 non-empty rectangles in the 7*® row for 1 <4 < m—1, and these are centered

around the middle. All other rectangles are empty.

Figure 3.3: Rectangle diagram for a longest permutation.

We will use this diagram to compute Stanley’s symmetric function for wy. The
idea is that in order for the algorithm to produce a contribution to F,, all boxes
must travel north-west until they meet the last non-empty rectangle in this direction,
and from that point they must travel north-east.

Let P*) denote the element in A®2m=3=F given by this rectangle diagram with the
top k rows removed. In particular PO = P, is the element associated to the whole
diagram. The terms sy in Stanley’s symmetric function £, are in 1-1 correspondence

with terms in P, of the form

1 ®lRs)H1110---®1.
—_——— —_————

m—2 m—2

One may check that, in order for a term
Sup @ @ Sppy 5y,

in P to contribute to F,,, the partition y; must be empty if the ! rectangle in the
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k + 1" row of the rectangle diagram is empty, while it must have length at most one

1th

unless the i*® rectangle is the leftmost non-empty rectangle in the k + row. To

be precise, the term s, ® --- ® s, contributes to Fy,, only if u; has length at

—3-k
most one for + # m — 1 — k, and is empty when ¢ < m — 2 — k and when 7 > m. The
reason is that all rectangles in the diagram have height at most one, which means
that any o; in the algorithm can have length at most one. So if any u; has two or
more rows, boxes are forced to the right, creating a new partition with too many rows
ifi#m-—1-k.

An examination of the algorithm then shows that P™ contains only one such
term, with coefficient 1. This term has pu,,_1_x equal to the staircase partition with
m—1—k rows, tim_1-r = (m—1—£k,...,2,1), while any other non-empty partitions
; is a single row with m — 1 — & boxes, yu; = (m — 1 — k).

Taking k = 0, we see that Fi,) = S(;m—1,m—2,..,2,1)- This was first proved by Stanley
[17], and implies that the number of reduced words for wy is equal to the number of

standard tableaux on the staircase partition with m — 1 rows.

3.4 Redundant rank conditions and products of

permutations

Suppose we are given a sequence of bundles £y — Ey — -+ — E, and a set of
rank conditions 7 = {r;;} for this sequence. The degeneracy locus €, (E,) is then the

subset of points x € X over which the maps on fibers satisfy all of the inequalities
rank(F;(z) — Ej(x)) < 1y

for 7 < 7. Some of these inequalities may be redundant in the sense that they follow
from other inequalities. It is easy to see that the inequality involving the number 7;;
is redundant if and only if this number is equal to one of 7;;_; or r;11 ;. In other
words, the inequality involving r;; is necessary if and only the rectangle R;; is not
empty.

Now suppose there are integers 0 < p < ¢ < n such that the rectangle I2;; is empty
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whenever exactly one of ¢ and j is in the interval [p, ¢]. In this case the degeneracy
locus Q,(E,) is the (scheme-theoretic) intersection of two larger loci €,/(E!) and
Q. (EY) for the sequences E! : E, - Epyy =+ = Ejand E! : By = --- > E, 1 —
E¢41 — --- — E,, where v’ and 7" are the restrictions of the rank conditions r = {r;;}
to these sequences. We will say that E! is an independent subsequence. Note that if
p = ¢, the bundle E), is redundant and can be removed from the sequence E, without
changing Q,.(E,). This special case was described in [1].

When E! is an independent subsequence, the rectangle diagram for the rank con-
ditions 7' simply consists of the rectangles R;; for p < i < j < ¢, while the rectangle

diagram for "’ contains the remaining non-empty rectangles.

Rectangle diagram for r Rectangle diagram for 7’

O Z 7 O
N O = = 7 []

\ \ . - — Rectangle diagram for r”
| | - -
| K — k3
K K K K
k3 k3

Figure 3.4: Rectangle diagrams for an independent subsequence.

This in particular means that the expected codimensions of €,.(E’) and Q. (E”)
add up to that of Q,(FE,). If all of these loci have their expected codimensions, then
we get the equality [Q,.(E,)] = [Qn (E!)] - [ (E!)] in the cohomology ring of X. To
see this, note at first that both ,/(E!) and §,»(E!) are Cohen-Macaulay [10] (see
also [8, Lemma A.2]). If f: Q,/(E!) — X is the inclusion, we therefore get

[ (B)] = fulf Qe (BEI)] = £of [0 (B))] = [ (EL)] - [ Qe (EY)]
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This means that the formula P, satisfies

P=(1®  Q1LP®1® - -®1) 01 ?2(P.)
N——— —_———— p

p n—q

where multiplication is performed factor-wise, and CIJI; denotes the k-fold coproduct

expansion of the p*® factor of its arguments, i.e.

(s, @ @8y, ®-+-®sy,) =
Do s ® @Sy, ®Se, @ ® Sy, @S, @ DSy,
O1yeesOk
We will apply this to study the Schubert polynomial of a product of two permu-
tations. If w € S, and u € §,, are permutations, define the product w x u € S, 1,
to be the permutation which maps i to w(i) if 1 < i < m, while m + 4 is mapped to
m + u(i) for 1 < i < n. The rank diagram for this permutation is equal to that of
1™ X u, except the bottom 2m — 2 rows are replaced by the rank diagram for w. The
diamond of non-empty rectangles in the rectangle diagram for w x u is therefore split
into a top part containing the diamond of rectangles for v and a bottom part with

the diamond of rectangles for w.

empty ) empty
rectangles .- rectangles . rectangles
. foru

“‘rectangles ,
for w

Figure 3.5: Rectangle diagram for a product of permutations

Given a sequence of bundles consisting of a full flag of length m + n — 1 followed
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by a full dual flag of the same length as in Section 3.2, we deduce that the locus €2,
is the intersection of the loci €2, and Qmy,. We therefore recover the well known

formula [15, (4.6)]
6w><u = Gw : GImxu

for the Schubert polynomial of a product of two permutations. This immediately
implies Stanley’s identity F,,«, = F,, - F, [17]. Note that the same method also gives

a formula for Fulton’s universal Schubert polynomial [7] for a product of permutations.

3.5 Relations to a conjectured Littlewood-Richardson rule

In this final section we will discuss relations with Stanley symmetric functions of the
generalized Littlewood-Richardson rule for the coefficients ¢, (r).

Let r = (r;;) be the rank conditions given by a permutation w, and fix a tableau
diagram for these rank conditions. Then Conjecture 1.1 implies that Stanley’s co-
efficient «,y is equal to the number of different tableaux W of shape )\, for which
@,...,0,W,0,...,0) is a factor sequence. Thus a proof of the general conjecture will
give a new proof that Stanley’s coefficients are non-negative, as well as an interesting

way to compute them.

Example 3.5. Let w = 2143...(2p) (2p — 1) € Sy, for some p > 0. Then the
rectangle diagram for w has a 1 x 1 rectangle in the middle of row 47+ 1 for 0 <7 <

p — 1. All other rectangles are empty.
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Figure 3.6: Rectangle diagram for the permutation w =2143...(2p) (2p — 1)

A tableau diagram is obtained by filling the numbers 1,2, ..., p in these boxes. It is
easy to see that a sequence (0,...,0,W,0,...,0) is a factor sequence for this diagram
if and only if W is a standard tableau with p boxes. Therefore the conjecture predicts

that Stanley’s symmetric function is given by

Fy=) f*s.
Abp
This can be confirmed using Stanley’s formula F,«, = F,, - F}, [17]. Let 0 =21 € S,.

Then w =0 X --- X o (p times), which implies that

Fw:(Fa)p:(SD)p:Zf)‘sz\-

Abp
We thank F. Sottile for showing us a different proof of this fact.

Using the criterion for factor sequences of Theorem 2.3, one may also prove that
the conjectured Littlewood-Richardson rule gives the correct prediction for Stanley’s
symmetric function of a longest permutation wy.

In general, Stanley’s symmetric function F,, is known to have a minimal term
Sx(w) and a maximal term s,(,), both occurring with coefficient one. If w € S,
define

rp(w) = #{q | ¢ < p and w(qg) > w(p)}
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for 1 <p <m+1, and let A\(w) be the partition obtained by arranging the numbers
ri(w), ..., rme1(w) in decreasing order. Let p(w) be the conjugate of the partition
AMw™!). Then uyaw) = G puw) = 1, and any partition A with a,y # 0 is between
Aw) and p(w) in the dominance order [17].

Let {T;;}1<i<j<om be a tableau diagram for (the rank conditions given by) w.
There are two extremal ways to form a factor sequence (@,...,0,W,0,....0) for
this diagram. The first is to make all factorizations of inductive factor sequences
(Ui, ...,Ux) be “rightward” whenever possible. This means that when factoring U;
into U; = P; - Q;, we take P; = () and Q; = U; for i # m while we take P,, = U, and
Qm = 0 (if £ > m). The middle tableau in the final factor sequence then is

Wright = Tm . Tm+1 et T2m71
where
E:TOj'le'---'Tm—l,j-

Note that each tableau T has only one column. If we set p = 2m + 1 — j and
g =w™'(i+2) then Tj; is non-empty if and only if ¢ < p and w(g) > w(p). It follows
that T} has exactly r,(w) boxes.

We claim that Wign: has shape A(w)’, corresponding to the maximal term of F,-1.
It is enough to show that the if 7; and 7; both have a box in row ¢ and [ < j, then the
box in 7; is smaller than the one in Tj. To prove this, let the ¢™ box in 7} come from
Ty, and the ¢ box in T; come from Tj;. If the box in T}; is not smaller than the box
in Tj; then k < 4. Now since the tableau Tj; must be as wide as Tj; and as tall as T,
this tableau Tj can’t be empty. Similarly, if T}; corresponds to a box over T;; in T},
then T}, gives a corresponding box in 7;. This shows that the boxes corresponding to

T}, and T;; in T; and T} was not in the same row, a contradiction.
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Similarly one can show that the tableau obtained by “leftward” factorizations,

Wiets = (To,m “Toms1 - 'TO,mel) : (T1,m .- 'T1,2m71) s (qu,m - 'Tmfl,mel) )

has shape p(w)'.
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