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Abstract. We prove that Schubert varieties in flag manifolds are uniquely

determined by their equivariant cohomology classes, as well as a stronger result

that replaces Schubert varieties with closures of Bialynicki-Birula cells under
suitable conditions. This is used to prove a conjecture from [BCP23], stating

that any two-pointed curve neighborhood representing a quantum cohomology

product with a Seidel class is a Schubert variety.

1. Introduction

A Schubert variety Ω in a flag manifold X = G/P is called rigid if it is uniquely
determined by its class [Ω] in the cohomology ring H∗(X). More precisely, if Z ⊂ X
is any irreducible closed subvariety such that [Z] is a multiple of [Ω] in H∗(X), then
Z is a G-translate of Ω. This problem has been studied in numerous papers, see
e.g. [Hon05, Hon07, Cos11, RT12, CR13, Cos14, Cos18, HM20] and the references
therein.

In this paper we show that all Schubert varieties are equivariantly rigid. In other
words, if T ⊂ G is a maximal torus, Ω ⊂ X is a T -stable Schubert variety, and
Z ⊂ X is a (non-empty) T -stable closed subvariety such that the T -equivariant
class [Z] ∈ H∗

T (X) is a multiple of [Ω], then Z = Ω. We use this result to prove
a conjecture from [BCP23], stating that a two-pointed curve neighborhood corre-
sponding to a quantum cohomology product with a Seidel class, is an explicitly
determined Schubert variety. This conjecture was known in some cases when X is
cominuscule, in all cases when X is a flag variety of type A [LLSY22, Tar23], and
for X = SG(2, 2n) [BPX]

More generally, let T be an algebraic torus over an algebraically closed field, let
X be a non-singular projective T -variety with finite fixed point set XT , and assume
that all fixed points p ∈ XT are fully definite, in the sense that all T -weights of the
Zariski tangent space TpX belong to a strict half-space of the character lattice of T .
Assume also that XT = XGm holds for some 1-parameter subgroup Gm ⊂ T , such
that the associated Bialynicki-Birula decomposition X =

⋃
X+

p is a stratification,

in the sense that each cell closure X+
p is a union of cells. In this situation we prove

the following result.

Theorem. Let Z ⊂ X be a T -stable closed subvariety such that the T -equivariant

Chow class of Z is a multiple of the class of a cell closure X+
p . Then Z = X+

p .
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In addition to flag varieties, this result applies to a class of horospherical varieties,
which includes all non-singular horospherical varieties of Picard rank 1 [Pas09]. If
X is defined over the field of complex numbers, the Chow class of Z may be replaced
with its class in the T -equivariant singular cohomology ring H∗

T (X). In fact, we
only use the restrictions [Z]p ∈ H∗

T (point) of this class to T -fixed points p ∈ XT ,
which do not depend on the chosen cohomology theory.

To prove the theorem, we first show that the fixed point set of Z is given by
ZT = {p ∈ XT : [Z]p ̸= 0}. Under the assumptions of the theorem, this implies

that Z and X+
p have the same T -fixed points. We then observe that ZT ⊂ X+

p

implies Z ⊂ X+
p when the Bialynicki-Birula decomposition of X is a stratification.

Our paper is organized as follows. In Section 2 we recall some basic facts and
notation related to torus actions. In Section 3 we prove that the restricted class [Z]p
is non-zero for each fixed point p ∈ ZT , and more generally that the equivariant
local class ηpZ is non-zero when p is a fully definite T -fixed point of Z. This is
used to prove the above theorem in Section 4. Section 5 interprets the theorem
for flag varieties, which is used in Section 6 to prove the conjecture about curve
neighborhoods from [BCP23]. Finally, Section 7 interprets our theorem for certain
horospherical varieties.

2. Torus actions
sec:actions

We work with varieties over a fixed algebraically closed field K. Varieties are
reduced but not necessarily irreducible. A point will always mean a closed point.
The multiplicative group of K is denoted Gm = K∖ {0}. An (algebraic) torus is a
group variety isomorphic to (Gm)r for some r ∈ N.

Let T = (Gm)r be an algebraic torus. Any rational representation V of T is a
direct sum V =

⊕
λ Vλ of weight spaces Vλ = {v ∈ V | t.v = λ(t)v ∀t ∈ T} defined

by characters λ : T → Gm. The weights of V are the characters λ for which Vλ ̸= 0.
The group of all characters of T is called the character lattice and is isomorphic to
Zr. Given a T -variety X, we let XT ⊂ X denote the closed subvariety of T -fixed
points. A subvariety Z ⊂ X is called T -stable if t.z ∈ Z for all t ∈ T and z ∈ Z. In
this case Z is itself a T -variety.

The T -equivariant (operational) Chow cohomology ring of X will be denoted
H∗

T (X), see [Ful98, Ch. 17] and [AF24]. This is an algebra over the ring H∗
T (point),

which may be identified with the symmetric algebra of the character lattice of T .
Given a class σ ∈ H∗

T (X) and a T -fixed point p ∈ XT , we let σp ∈ H∗
T (point)

denote the pullback of σ along the inclusion {p} → X. When X is defined over
K = C, Chow cohomology can be replaced with singular cohomology. In fact, our
arguments will only depend on equivariant classes [Z]p ∈ H∗

T (point) obtained by
restricting the class of a T -stable closed subvariety Z ⊂ X to a fixed point, and
these restrictions are independent of the chosen cohomology theory. Similarly, we
can use cohomology with coefficients in either Z or Q.

defn:extremal Definition 2.1. The T -fixed point p ∈ X is non-degenerate in X if T acts with
non-zero weights on the Zariski tangent space TpX. The point p is fully definite if
all T -weights of TpX belong to a strict half-space of the character lattice of T .

Equivalently, p ∈ XT is fully definite inX if and only if there exists a 1-parameter
subgroup ρ : Gm → T such that Gm acts with strictly positive weights on TpX
though ρ. For example, if X = G/P is a flag variety and T ⊂ G is a maximal torus,
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then all points of XT are fully definite in X (see Section 5). Any non-degenerate
T -fixed point must be isolated in XT .

Remark 2.2. If X is a normal quasi-projective T -variety, then XGm = XT holds
for all general 1-parameter subgroups ρ : Gm → T . Here a 1-parameter subgroup is
called general if it avoids finitely many hyperplanes in the lattice of all 1-parameter
subgroups. This follows because X admits an equivariant embedding X ⊂ P(V ),
where V is a rational representation of T [Kam66, Mum65, Sum74].

3. Equivariant local classes
sec:local

Let Z be a T -variety, fix p ∈ ZT , and let m ⊂ OZ,p be the maximal ideal in the
local ring of p. Then the tangent cone CpZ = Spec(

⊕
mi/mi+1) is a T -stable closed

subscheme of the Zariski tangent space TpZ = (m/m2)∨ = Spec(Sym(m/m2)). The
local class of Z at p is defined by (see [AF24, §17.4])

(1) ηpZ = [CpZ] ∈ H∗
T (TpZ) = H∗

T (point) .

When p is a non-singular point of Z, we have ηpZ = 1.

prop:local Proposition 3.1. Let Z be a T -variety and let p ∈ ZT be fully definite in Z. Then
ηpZ ̸= 0 in H∗

T (point).

Proof. We may assume that p is a singular point of Z, so that CpZ has positive
dimension. Choose Gm ⊂ T such that Gm acts with positive weights on TpZ. It
suffices to show that the class of CpZ is non-zero in H∗

Gm
(TpZ). Let {v1, . . . , vn}

be a basis of TpZ consisting of eigenvectors of Gm. Then the action of Gm is given
by t.vi = taivi for positive integers a1, . . . , an > 0. Set A =

∏n
i=1 ai, and let Gm

act on U = Kn by t.u = tAu. Then the map ϕ : TpZ → U defined by

ϕ(c1v1 + · · ·+ cnvn) = (c
A/a1

1 , . . . , cA/an
n )

is a finite Gm-equivariant morphism. By [EG98, Thm. 4] we obtain

H∗
Gm

(U ∖ {0})⊗Q = H∗(PU)⊗Q ,

where PU = (U ∖ {0})/Gm
∼= Pn−1 is the projective space of lines in U , and

ϕ∗[CpZ] |U∖{0} = deg(ϕ) [ϕ(CpZ ∖ {0})/Gm] ∈ H∗(PU)⊗Q .

The result now follows from the fact that every non-empty closed subvariety of
projective space defines a non-zero Chow class. □

cor:local Corollary 3.2. Let X be a T -variety, Z ⊂ X a T -stable closed subvariety, and
p ∈ ZT a T -fixed point of Z. If p is non-singular and non-degenerate in X, and p
is fully definite in Z, then [Z]p ̸= 0 ∈ H∗

T (point).

Proof. By [AF24, Prop. 17.4.1] we have [Z]p = cm(TpX/TpZ) · ηpZ, where m =
dimTpX − dimTpZ. The result therefore follows from Proposition 3.1, noting that
T acts with non-zero weights on TpX/TpZ. □

The following example rules out some potential generalizations of Corollary 3.2.

Example 3.3. Let Gm act on A4 by

t.(a, b, c, d) = (ta, tb, t−1c, t−1d) .

Set Z = V (ad − bc) ⊂ A4, and let p = (0, 0, 0, 0) be the origin in A4. Then
TpZ = TpA4 = A4 and CpZ = Z. Since Gm acts trivially on the equation ad− bc,
we have ηpZ = [Z] = 0 in H∗

Gm
(A4) (see [AF24, §2.3]).
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4. Rigidity of Bialynicki-Birula cells
sec:rigidity

The multiplicative group Gm is identified with the complement of the origin in
A1. Given a morphism of varieties f : Gm → X, we write limt→0 f(t) = p if f can
be extended to a morphism f̄ : A1 → X such that f̄(0) = p. This limit is unique
when it exists, and it always exists when X is complete.

Let X be a non-singular projective Gm-variety such that XGm is finite. Then
each fixed point p ∈ XGm defines the (positive) Bialynicki-Birula cell

X+
p = {x ∈ X | lim

t→0
t.x = p} .

A negative cell is similarly defined by X−
p = {x ∈ X | limt→0 t

−1.x = p}. By
[BB73, Thm. 4.4], these cells give a locally closed decomposition of X,

eqn:bbdecompeqn:bbdecomp (2) X =
⋃

p∈XGm

X+
p ,

that is, a disjoint union of locally closed subsets. In addition, each cell X+
p is

isomorphic to an affine space.

lemma:include Lemma 4.1. For any Gm-stable closed subset Z ⊂ X, we have Z ⊂
⋃

p∈ZGm

X+
p .

Proof. For any point x ∈ Z, we have x ∈ X+
p , where p = lim

t→0
t.x ∈ ZGm . □

Definition 4.2. A locally closed decomposition X =
⋃

Xi will be called a stratifi-
cation if each subset Xi is non-singular and its closure Xi is a union of subsets Xj

of the decomposition.

The Bialynicki-Birula decomposition (2) typically fails to be a stratification, for
example when X is the blow-up of P2 at the point [0, 1, 0], where Gm acts on P2

by t.[x, y, z] = [x, ty, t2z], see [BB73, Ex. 1]. Lemma 4.1 shows that the Bialynicki-

Birula decomposition is a stratification if and only if X+
q ⊂ X+

p holds for each fixed

point q ∈ (X+
p )Gm . It was proved in [BB73, Thm. 5] that the decomposition is a

stratification when each positive cell X+
p meets each negative cell X−

q transversally.
In particular, this holds when X = G/P is a flag variety and Gm ⊂ G is a general
1-parameter subgroup, see [McG02, Ex. 4.2] or Lemma 5.1. On the other hand, if
both the positive and negative Bialynicki-Birula decompositions are stratifications,
then all cells X+

p and X−
q of complementary dimensions meet transversally, hence

the positive and negative cell closures form a pair of Poincare dual bases of the
cohomology ring H∗(X). In this paper we utilize the following application, which
follows from Lemma 4.1.

cor:include Corollary 4.3. Assume that the Bialynicki-Birula decomposition of X is a strati-

fication. If Z ⊂ X is a Gm-stable closed subvariety such that ZGm ⊂ X+
p for some

p ∈ XGm , then Z ⊂ X+
p .

The following result says that, under suitable assumptions, the Bialynicki-Birula
cell closures are determined by their equivariant cohomology classes.

thm:rigid Theorem 4.4. Let T be an algebraic torus and X a non-singular projective T -
variety such that all fixed points p ∈ XT are fully definite in X. Assume that XT =
XGm for some Gm ⊂ T , such that the associated Bialynicki-Birula decomposition



RIGIDITY OF EQUIVARIANT SCHUBERT CLASSES 5

of X is a stratification. If Z ⊂ X is any T -stable closed subvariety such that

[Z] = c [X+
p ] holds in H∗

T (X) for some p ∈ XT and 0 ̸= c ∈ Q, then Z = X+
p .

Proof. The cell X+
p is T -stable because T is commutative and p ∈ XT . It follows

from Corollary 3.2 that ZT = (X+
p )T = {p ∈ XT : [Z]p ̸= 0}, after which Corol-

lary 4.3 shows that Z ⊂ X+
p . The result follows from this, as the assumptions imply

that Z and X+
p have the same dimension. □

Question 4.5. We do not know whether Corollary 4.3 and Theorem 4.4 are true
without the assumption that the Bialynicki-Birula decomposition of X is a strati-
fication. It would be very interesting to settle this question.

Example 4.6. Let X be a non-singular projective toric variety, with torus T ⊂ X,
and choose Gm ⊂ T such that XT = XGm . We show that the conclusion of
Theorem 4.4 holds, even though the Bialynicki-Birula decomposition is rarely a
stratification. The T -orbits Oτ ⊂ X correspond to the cones τ of the fan definingX,
and we have Oσ ⊂ Oτ if and only if τ is a face of σ, see [Ful93, §3.1]. In particular,
the T -fixed points in X correspond to the maximal cones σ. Since X is complete,
each cone τ is the intersection of the maximal cones σ corresponding to the T -fixed

points in Oτ . Since all cell closures X+
p are T -orbit closures, it suffices to show

that each orbit closure Oτ is determined by its equivariant class. All fixed points
p ∈ XT are fully definite in X, as the weights of TpX form a basis of the character
lattice of T . It is therefore enough to prove that, if Z ⊂ X is a T -stable closed
subvariety such that ZT ⊂ Oτ , then Z ⊂ Oτ . We may assume that Z is irreducible,
in which case Z = Oκ is also a T -orbit closure. The claim now follows because κ is
the intersection of the maximal cones given by the fixed points in ZT , hence τ ⊂ κ.
Now assume that X has dimension two. By [BB73, Cor. 1 of Thm. 4.5], there is
a unique repulsive fixed point b ∈ XGm with X+

b = {b}, and a unique attractive
fixed point a ∈ XGm such that X+

a is a dense open subset of X. For all other
fixed points p ∈ XGm ∖ {a, b}, the cell X+

p
∼= A1 is a line. If the Bialynicki-Birula

decomposition of X is a stratification, then b ∈ X+
p for all p ∈ XGm . The T -fixed

point b corresponds to a maximal cone σ, and b is connected to exactly two T -stable
lines corresponding to the rays forming the boundary of this cone. We deduce that
X contains at most four T -fixed points. Higher dimensional toric varieties for which
the Bialynicki-Birula decomposition is not a stratification can be constructed by
taking products. We do not know if the conclusion of Corollary 4.3 holds for toric
varieties.

5. Rigidity of Schubert varieties
sec:schubert

Let X = G/P = {g.P | g ∈ G} be a flag variety defined by a connected reductive
linear algebraic group G and a parabolic subgroup P . Fix a maximal torus T and
a Borel subgroup B such that T ⊂ B ⊂ P ⊂ G. The opposite Borel subgroup
B− ⊂ G is defined by B− ∩ B = T . Let Φ be the root system of non-zero weights
of T1G, the tangent space of G at the identity element. The positive roots Φ+

are the non-zero weights of T1B. Let W = NG(T )/T be the Weyl group of G,
WP = NP (T )/T the Weyl group of P , and let WP ⊂ W be the subset of minimal
representatives of the cosets in W/WP . The set of T -fixed points in X is given by
XT = {w.P | w ∈ W}, where each point w.P depends only on the coset wWP
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in W/WP . Each fixed point w.P defines the Schubert varieties Xw = Bw.P and

Xw = B−w.P . For w ∈ WP we have dim(Xw) = codim(Xw, X) = ℓ(w). Any
G-translate of a Schubert variety will be called a Schubert variety.

Recall that a cocharacter ρ : Gm → T is strongly dominant if ⟨α, ρ⟩ > 0 for all
positive roots α ∈ Φ+, where ⟨α, ρ⟩ ∈ Z is defined by α(ρ(t)) = t⟨α,ρ⟩ for t ∈ Gm.
The following lemma is well known, see e.g. [McG02, Ex. 4.2] or [BP, Cor. 3.14].

lemma:flagvar Lemma 5.1. Let ρ : Gm → T be a strongly dominant 1-parameter subgroup. Then
the associated Bialynicki-Birula cells of X are given by X+

p = B.p, for p ∈ XT .

Proof. Let Gm act on G by conjugation through ρ. The fixed point set for this
action is [Spr98, (7.1.2), (7.6.4)]

T = {g ∈ G | tgt−1 = g ∀ t ∈ Gm} ,

and the corresponding Bialynicki-Birula cell is [Spr98, (8.2.1)]

B = {g ∈ G | lim
t→0

tgt−1 ∈ T} .

This implies B.p ⊂ X+
p for any fixed point p ∈ XGm . We deduce from (2) that the

positive Bialynicki-Birula cells in X are the B-orbits. □

cor:rigidschub Corollary 5.2. Let X = G/P be a flag variety, T ⊂ G a maximal torus, Ω ⊂ X
a T -stable Schubert variety, and Z ⊂ X a T -stable closed subvariety.

(a) We have ZT = {p ∈ XT : [Z]p ̸= 0 ∈ H∗
T (point)}.

(b) If ZT ⊂ Ω, then Z ⊂ Ω.

(c) If [Z] = c [Ω] holds in H∗
T (X), with 0 ̸= c ∈ Q, then Z = Ω.

Proof. The B-fixed point p = 1.P is fully definite in X because the weights of TpX
are a subset of the negative roots of G. Since W acts transitively on XT , this
implies that all T -fixed points are fully definite in X. The result now follows from
Corollary 3.2, Corollary 4.3, Theorem 4.4, and Lemma 5.1, noting that the Bruhat
decomposition X =

⋃
w Bw.P is a stratification. □

The Bruhat order on the Weyl group W is defined by u ≤ w if and only if
Xu ⊂ Xw. Any element u ∈ W has a unique factorization u = uPuP for which
uP ∈ WP and uP ∈ WP , called the parabolic factorization with respect to P . This
factorization is reduced in the sense that ℓ(u) = ℓ(uP ) + ℓ(uP ). The parabolic
factorization of the longest element w0 ∈ W is w0 = wP

0 w0,P , where wP
0 and w0,P

are the longest elements in WP and WP , respectively. Since w0 and w0,P are self-
inverse, we have w0,P = w0w

P
0 . As preparation for the next section, we prove the

following identity of Schubert varieties.

lemma:dualpoint Lemma 5.3. Let Q ⊂ G be a parabolic subgroup containing B and set w = wQ
0 .

Then w−1.Xw = Xw0w.

Proof. It follows from Corollary 5.2(b) that Xw0,Q
= w0,Q.Xw0,Q

, as the T -fixed
points of both Schubert varieties are {u.P | u ∈ WQ}. By translating both sides by

w = wQ
0 , we obtain w.Xw0w = w0.Xw0w = Xw, as required. □
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6. Seidel Neighborhoods
sec:seidel

In this section we prove a conjecture about curve neighborhoods from [BCP23].
Since this conjecture and its proof relies on the moduli space of stable maps, we will
restrict our attention to varieties defined over the field K = C of complex numbers.
As in Section 5, we let X = G/P denote a flag variety.

For any effective degree d ∈ H2(X,Z), we let M0,3(X, d) denote the Kontsevich
moduli space of 3-pointed stable maps to X of degree d and genus zero (see [FP97]).
The evaluation map evi : M0,3(X, d) → X, defined for 1 ≤ i ≤ 3, sends a stable
map to the image of the i-th marked point in its domain. Given two opposite
Schubert varieties Xv and Xu, the (two-pointed) curve neighborhood Γd(Xv, X

u)
is the union of all stable curves of degree d in X connecting Xv and Xu:

Γd(Xv, X
u) = ev3(ev

−1
1 (Xv) ∩ ev−1

2 (Xu)) .

Let Z[q] = SpanZ{qd : d ∈ H2(X,Z) effective} be the semigroup ring defined by
the effective curve classes on X. The equivariant quantum cohomology ring of X is
an algebra over H∗

T (point)⊗Z Z[q], which is defined by QHT (X) = H∗
T (X)⊗Z Z[q]

as a module. The quantum product of two classes σ1, σ2 ∈ H∗
T (X) is given by

σ1 ⋆ σ2 =
∑
d

(σ1 ⋆ σ2)d q
d

where we set

(σ1 ⋆ σ2)d = ev3,∗(ev
∗
1 σ1 · ev∗2 σ2) ,

using the evaluation maps from M0,3(X, d).
A simple root γ ∈ Φ+ is called cominuscule if, when the highest root is written

in the basis of simple roots, the coefficient of γ is one. The flag variety G/Q is
cominuscule if Q is a maximal parabolic subgroup corresponding to a cominuscule
simple root γ, that is, sγ is the unique simple reflection in WQ. Let W comin ⊂ W
be the subset of point representatives of cominuscule flag varieties of G, together
with the identity element:

W comin = {wQ
0 | G/Q is cominuscule} ∪ {1} .

This is a subgroup of W , which is isomorphic to the quotient of the coweight lattice

of Φ modulo the coroot lattice [Bou81, Prop. VI.2.6]. The isomorphism sends wQ
0

to the class of the fundamental coweight ω∨
γ corresponding to Q. Notice that γ is

the unique simple root for which wQ
0 sγ < wQ

0 .
The Seidel representation of W comin on QH(X)/⟨q − 1⟩ is defined by w.[Xu] =

[Xw] ⋆ [Xu] for w ∈ W comin and u ∈ W [Sei97, Bel04, CMP09]. In fact, we have

eqn:seideleqn:seidel (3) [Xw] ⋆ [Xu] = qd [Xwu]

in the (non-equivariant) quantum ring QH(X), where d = ω∨
γ −u−1.ω∨

γ ∈ H2(X,Z).
Here we identify the group H2(X,Z) with a quotient of the coroot lattice, by map-
ping each simple coroot β∨ to the curve class [Xsβ ] if sβ ∈ WP , and to zero
otherwise. The identity (3) also holds in the quantum K-theory ring QK(X)
when X is cominuscule [BCP23], and an equivariant version of (3) was proved
in [CMP09, CP23].

It follows from (3) and the definition of the quantum cohomology ring QH(X)
that [Γd(Xw0w, X

u)] = [Xwu] holds in the cohomology ringH∗(X). Conjecture 3.11
from [BCP23] asserts that Γd(Xw0w, X

u) is in fact equal to the translated Schubert
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variety w−1.Xwu. This is proved below as a consequence of Corollary 5.2 and
the equivariant version of (3) from [CMP09, CP23]. This result was known when
X = G/P is cominuscule and w = wP

0 [BCP23], when X is a Grassmannian of type
A and [Xw] is a special Seidel class [LLSY22, Cor. 4.6], when X is any flag variety
of type A [Tar23], and when X is the symplectic Grassmannian SG(2, 2n) [BPX,
Thm. 8.1].

thm:seidelnbhd Theorem 6.1. Let X = G/P be a complex flag variety. Let u ∈ W , w ∈ W comin,
let γ be the simple root defined by wsγ < w, and set d = ω∨

γ − u−1.ω∨
γ ∈ H2(X,Z).

Then Γd(Xw0w, X
u) = w−1.Xwu.

Proof. By the definition of the quantum product, we have

([Xw0w] ⋆ [X
u])d = c [Γd(Xw0w, X

u)]

in H∗
T (X), where c is the degree of the map ev3 : ev−1

1 (Xw0w) ∩ ev−1
2 (Xu) →

Γd(Xw0w, X
u), interpreted as zero if the general fibers of this map have positive

dimension. On the other hand, by [CP23, Thm. 1.1] we have

[Xw] ⋆ [w.Xu] = qd [Xwu] .

By applying w−1 and using Lemma 5.3, we obtain

[Xw0w] ⋆ [X
u] = qd [w−1.Xwu] .

We deduce that c [Γd(Xw0w, X
u)] = [w−1.Xwu] holds in H∗

T (X). The result there-
fore follows from Corollary 5.2(c). □

7. Horospherical varieties of Picard rank 1
sec:horospherical

In this section we interpret Theorem 4.4 for a class of horospherical varieties that
includes all non-singular projective horospherical varieties of Picard rank 1 (except
flag varieties) by Pasquier’s classification [Pas09]. Let G be a connected reductive
linear algebraic group, B ⊂ G a Borel subgroup, and T ⊂ B a maximal torus. Let
V1 and V2 be irreducible rational representations of G, and let vi ∈ Vi be a highest
weight vector of weight λi, for i ∈ {1, 2}. We assume that λ1 ̸= λ2. Define

X = G.[v1 + v2] ⊂ P(V1 ⊕ V2) .

If X is normal, then X is a horospherical variety of rank 1, see [Tim11, Ch. 7].
We will assume that X is non-singular and K = C, even though many claims hold
more generally; this implies that X is fibered over a flag variety G/P12 with non-
singular horospherical fibers of Picard rank 1, see Remark 7.4. Any G-translate of
a B-orbit closure in X will be called a Schubert variety. Our next result uses the
action of T × Gm on X defined by (t, z).[u1 + u2] = t.[u1 + zu2], for ui ∈ Vi. We
have XT×Gm = XT .

thm:horo Theorem 7.1. Let Ω ⊂ X be a T -stable Schubert variety, and let Z ⊂ X be a
T -stable closed subvariety.

(a) We have ZT = {p ∈ XT : [Z]p ̸= 0 ∈ H∗
T×Gm

(point)}.
(b) If ZT ⊂ Ω, then Z ⊂ Ω.

(c) If [Z] = c [Ω] holds in H∗
T×Gm

(X), with 0 ̸= c ∈ Q, then Z = Ω.
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Before proving Theorem 7.1, we sketch elementary proofs of some basic facts
about X, which are also consequences of general results about spherical varieties,
see [Tim11, Per14, Pas09] and the references therein.

Given an element [u1+u2] ∈ P(V1⊕V2), we will always assume ui ∈ Vi, and i will
always mean an element from {1, 2}. We consider P(Vi) as a subvariety of P(V1⊕V2).
Let πi : P(V1 ⊕ V2) ∖ P(V3−i) → P(Vi) denote the projection from V3−i, defined
by πi([u1 + u2]) = [ui]. Set X0 = G.[v1 + v2] ⊂ P(V1 ⊕ V2), Xi = G.[vi] ⊂ P(Vi),
and X12 = G.([v1], [v2]) ⊂ P(V1) × P(V2). Since vi is a highest weight vector,
the stabilizer Pi = G[vi] is a parabolic subgroup containing B. It follows that
Xi

∼= G/Pi and X12
∼= G/(P1 ∩ P2) are flag varieties. In particular, Xi is closed

in P(Vi), and X12 is closed in P(V1) × P(V2). Notice also that X0
∼= G/H, where

H ⊂ P1∩P2 is the kernel of the character λ1−λ2 : P1∩P2 → Gm. This shows that
X0 is a Gm-bundle over G/(P1∩P2), so X is a non-singular projective horospherical
variety of rank 1 (but not necessarily of Picard rank 1, see Remark 7.4).

Let W be the Weyl group of G, and recall the notation from Section 5.

lemma:orbits Lemma 7.2. We have X = X0 ∪X1 ∪X2. The B-orbit closures in X are

Bw.[vi] =
⋃

w′≤w

Bw′.[vi] for w ∈ WPi and i ∈ {1, 2}, and

Bw.[v1 + v2] =
⋃

w′≤w

(Bw′.[v1 + v2] ∪Bw′.[v1] ∪Bw′.[v2]) for w ∈ WP1∩P2 .

Proof. Set P0 = P(V1 ⊕ V2) ∖ (P(V1) ∪ P(V2)). Since λ1 ̸= λ2, it follows that

T.[v1 + v2] is the line through [v1] and [v2] in P(V1 ⊕ V2). This implies X0 =
(π1 × π2)

−1(X12), hence X0 is closed in P0, and X0 = X ∩ P0. We also have
Xi ⊂ X ∩ P(Vi) ⊂ π−1

i (Xi) ∩ P(Vi) = Xi, which proves the first claim. To finish

the proof, it suffices to show w′.[vi] ∈ Bw.[v1 + v2] if and only if w′ ≤ w (when

w′ ∈ WPi). The implication ‘if’ holds because w′.[vi] ∈ Tw′.[v1 + v2], and ‘only if’

holds because πi(Bw.[v1 + v2]∖X3−i) ⊂ Bw.[vi]. □

Define an alternative action of Pi on V3−i by p • u = λi(p)
−1p.u, and use this

action to form the space

G×Pi V3−i = {[g, u] : g ∈ G, u ∈ V3−i} / {[gp, u] = [g, p • u] : p ∈ Pi} .

Define a morphism of varieties ϕi : G×PiV3−i → P(V1⊕V2) by ϕi([g, u]) = g.[vi+u].
This is well defined since p.(vi + u) = λi(p)(vi + p • u) holds for p ∈ Pi and
u ∈ V3−i. Set Ei = (Pi • v3−i) ∪ {0} ⊂ V3−i. Noting that Ei is the cone over
Pi.[v3−i] ∼= Pi/(P1 ∩ P2), it follows that Ei is closed in V3−i.

lemma:vb Lemma 7.3. The restricted map ϕi : G ×Pi Ei → X0 ∪ Xi is an isomorphism of
varieties. In particular, Ei ⊂ V3−i is a linear subspace.

Proof. Assume ϕi([g, u]) = ϕi([g
′, u′]), and set p = g−1g′. We obtain p ∈ Pi and

[vi+u] = p.[vi+u′] = [vi+p•u′] in P(V1⊕V2), hence [g, u] = [g, p•u′] = [gp, u′] =
[g′, u′] in G×Pi V3−i. We deduce that ϕi : G×Pi Ei → X0 ∪Xi is bijective, so the
lemma follows from Zariski’s main theorem, using that X0∪Xi is non-singular. □

Proof of Theorem 7.1. Fix a strongly dominant cocharacter ρ : Gm → T . For
a ∈ Z, define ρa : Gm → T ×Gm by ρa(z) = (ρ(z), za). The resulting action of Gm

on X is given by ρa(z).[u1 + u2] = ρ(z).[u1 + zau2].
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It follows from Lemma 7.3 that [v1] has a T×Gm-stable open neighborhood in X
isomorphic to B−.[v1]×E1, where the action is given by (t, z).(x, u) = (t.x, t • zu).
If a is sufficiently negative, then Gm acts through ρa on T[v1]X = T[v1]X1⊕E1 with
strictly negative weights, hence [v1] is fully definite in X for the action of T ×Gm.
A symmetric argument shows that [v2] is fully definite. Since all T -fixed points in
X are obtained from [v1] or [v2] by the action of the Weyl group W , it follows that
all T -fixed points are fully definite. Part (a) therefore follows from Corollary 3.2.

For a sufficiently negative, it follows from Lemma 5.1 that the Bialynicki-Birula
cells of X defined by ρa are

X+
w.[v1]

= Bw.[v1] and X+
w.[v2]

= Bw.[v1 + v2] ∪Bw.[v2] .

These cells form a stratification of X by Lemma 7.2. Parts (b) and (c) therefore

follow from Corollary 4.3 and Theorem 4.4 when Ω is a translate of Bw.[v1] or

Bw.[v1 + v2] for some w ∈ W . A symmetric argument proves (b) and (c) when Ω

is a translate of Bw.[v2], which completes the proof. □

remark:pasfib Remark 7.4. The exact sequence of [Per14, Thm. 3.2.4] implies that Pic(X) is a
free abelian group of rank equal to the rank of X (which is one) plus the number
of B-stable prime divisors in X that do not contain a G-orbit. Any B-stable prime
divisor meeting X0 has the form D = Bw0sβ .[v1 + v2], where β is a simple root, and
Lemma 7.2 shows that D contains Xi if and only if β is a root of Pi. Let P12 ⊂ G
be the parabolic subgroup generated by P1 and P2. We obtain Pic(X) ∼= Z ⊕
Pic(G/P12). Let π : X → G/P12 be the map defined by π(g.[v1+ v2]) = π(g.[vi]) =
g.P12. This is a G-equivariant morphism of varieties, as its restriction to X0 ∪Xi

is the composition of πi : X0 ∪ Xi → G/Pi with the projection G/Pi → G/P12.

The fibers of π are translates of π−1(1.P12) = L.[v1 + v2] ⊂ P(V1 ⊕ V2), where L
is the Levi subgroup of P12 containing T . Moreover, π−1(1.P12) is a non-singular
projective horospherical variety of Picard rank 1, so it is either a flag variety or one
of the non-homogeneous spaces from Pasquier’s classification [Pas09].

Question 7.5. Let X be any projective G-horospherical variety fibered over a flag
variety G/P with non-singular horospherical fibers of Picard rank 1. Is it true

that X is isomorphic to an orbit closure G.[v1 + v2] ⊂ P(V ), where V is a rational
representation of G, and v1, v2 ∈ V are highest weight vectors?

Example 7.6. Let X be the blow-up of P2 at a point p, let π : X → P1 be
the morphism defined by projection from p, and set G = SL(2,C). Then X is
G-horospherical and fibered over P1 with fiber P1. This variety X is isomorphic to
G.[v1 + v2] ⊂ P(V1 ⊕ V2), where v1 is a highest weight vector in V1 = C2, and v2 is
a highest weight vector in V2 = Sym2(C2).
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