RIGIDITY OF EQUIVARIANT SCHUBERT CLASSES

ANDERS S. BUCH, PIERRE-EMMANUEL CHAPUT, AND NICOLAS PERRIN

ABSTRACT. We prove that Schubert varieties in flag manifolds are uniquely
determined by their equivariant cohomology classes, as well as a stronger result
that replaces Schubert varieties with closures of Bialynicki-Birula cells under
suitable conditions. This is used to prove a conjecture from [BCP23], stating
that any two-pointed curve neighborhood representing a quantum cohomology
product with a Seidel class is a Schubert variety.

1. INTRODUCTION

A Schubert variety € in a flag manifold X = G/P is called rigid if it is uniquely
determined by its class [©] in the cohomology ring H*(X). More precisely, if Z C X
is any irreducible closed subvariety such that [Z] is a multiple of [©] in H*(X), then
Z is a G-translate of 2. This problem has been studied in numerous papers, see
e.g. [Hon05, Hon07, Cosl1, RT12, CR13, Cosl4, Cosl8, HM20] and the references
therein.

In this paper we show that all Schubert varieties are equivariantly rigid. In other
words, if T C G is a maximal torus, 2 C X is a T-stable Schubert variety, and
Z C X is a (non-empty) T-stable closed subvariety such that the T-equivariant
class [Z] € H}(X) is a multiple of [Q], then Z = . We use this result to prove
a conjecture from [BCP23], stating that a two-pointed curve neighborhood corre-
sponding to a quantum cohomology product with a Seidel class, is an explicitly
determined Schubert variety. This conjecture was known in some cases when X is
cominuscule, in all cases when X is a flag variety of type A [LLSY22, Tar23], and
for X = SG(2,2n) [BPX]

More generally, let T' be an algebraic torus over an algebraically closed field, let
X be a non-singular projective T-variety with finite fixed point set X7, and assume
that all fixed points p € X7 are fully definite, in the sense that all T-weights of the
Zariski tangent space T},.X belong to a strict half-space of the character lattice of T'.
Assume also that X7 = X® holds for some 1-parameter subgroup G,, C T, such
that the associated Bialynicki-Birula decomposition X = UX;‘ is a stratification,

in the sense that each cell closure X, is a union of cells. In this situation we prove
the following result.

Theorem. Let Z C X be a T-stable closed subvariety such that the T-equivariant
Chow class of Z is a multiple of the class of a cell closure X;. Then Z = X, .
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In addition to flag varieties, this result applies to a class of horospherical varieties,
which includes all non-singular horospherical varieties of Picard rank 1 [Pas09]. If
X is defined over the field of complex numbers, the Chow class of Z may be replaced
with its class in the T-equivariant singular cohomology ring H7(X). In fact, we
only use the restrictions [Z], € H}(point) of this class to T-fixed points p € X 7T,
which do not depend on the chosen cohomology theory.

To prove the theorem, we first show that the fixed point set of Z is given by
ZT ={p e X7 :[Z], # 0}. Under the assumptions of the theorem, this implies

that Z and Xij have the same T-fixed points. We then observe that Z7 C Xiﬁ

implies Z C X, when the Bialynicki-Birula decomposition of X is a stratification.

Our paper is organized as follows. In Section 2 we recall some basic facts and
notation related to torus actions. In Section 3 we prove that the restricted class [Z],
is non-zero for each fixed point p € Z7, and more generally that the equivariant
local class 1,7 is non-zero when p is a fully definite T-fixed point of Z. This is
used to prove the above theorem in Section 4. Section 5 interprets the theorem
for flag varieties, which is used in Section 6 to prove the conjecture about curve
neighborhoods from [BCP23|. Finally, Section 7 interprets our theorem for certain
horospherical varieties.

2. TORUS ACTIONS

We work with varieties over a fixed algebraically closed field K. Varieties are
reduced but not necessarily irreducible. A point will always mean a closed point.
The multiplicative group of K is denoted G, = K~ {0}. An (algebraic) torus is a
group variety isomorphic to (G,,)" for some r € N.

Let T = (G,,)" be an algebraic torus. Any rational representation V of T is a
direct sum V = @, Vi of weight spaces V) = {v € V' | t.v = A(t)v Vt € T'} defined
by characters A : T — G,,,. The weights of V' are the characters A for which V) # 0.
The group of all characters of T is called the character lattice and is isomorphic to
Z". Given a T-variety X, we let X7 C X denote the closed subvariety of T-fixed
points. A subvariety Z C X is called T-stable if t.z € Z forallt € T and z € Z. In
this case Z is itself a T-variety.

The T-equivariant (operational) Chow cohomology ring of X will be denoted
HZ.(X), see [Ful98, Ch. 17] and [AF24]. This is an algebra over the ring H}.(point),
which may be identified with the symmetric algebra of the character lattice of T'.
Given a class 0 € H%(X) and a T-fixed point p € X7, we let 0, € Hi(point)
denote the pullback of o along the inclusion {p} — X. When X is defined over
K = C, Chow cohomology can be replaced with singular cohomology. In fact, our
arguments will only depend on equivariant classes [Z], € Hj.(point) obtained by
restricting the class of a T-stable closed subvariety Z C X to a fixed point, and
these restrictions are independent of the chosen cohomology theory. Similarly, we
can use cohomology with coefficients in either Z or Q.

Definition 2.1. The T-fixed point p € X is non-degenerate in X if T acts with
non-zero weights on the Zariski tangent space T, X. The point p is fully definite if
all T-weights of T}, X belong to a strict half-space of the character lattice of T'.

Equivalently, p € X7 is fully definite in X if and only if there exists a 1-parameter
subgroup p : G,, — T such that G,, acts with strictly positive weights on T, X
though p. For example, if X = G/P is a flag variety and T' C G is a maximal torus,
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then all points of X7 are fully definite in X (see Section 5). Any non-degenerate
T-fixed point must be isolated in X7.

Remark 2.2. If X is a normal quasi-projective T-variety, then X®» = X7 holds
for all general 1-parameter subgroups p : G,, — T'. Here a 1-parameter subgroup is
called general if it avoids finitely many hyperplanes in the lattice of all 1-parameter
subgroups. This follows because X admits an equivariant embedding X C P(V),
where V' is a rational representation of T [Kam66, Mum65, Sum?74].

3. EQUIVARIANT LOCAL CLASSES

Let Z be a T-variety, fix p € Z7, and let m C Oz, be the maximal ideal in the
local ring of p. Then the tangent cone C,Z = Spec(@ m’/m**1) is a T-stable closed
subscheme of the Zariski tangent space T,Z = (m/m?)¥ = Spec(Sym(m/m?)). The
local class of Z at p is defined by (see [AF24, §17.4])

(1) mZ = (CyZ) € Hy(TyZ) = Hi(point).
When p is a non-singular point of Z, we have n,Z = 1.
Proposition 3.1. Let Z be a T-variety and let p € Z7 be fully definite in Z. Then
npZ # 0 in H}.(point).
Proof. We may assume that p is a singular point of Z, so that C,Z has positive
dimension. Choose G, C T such that G,, acts with positive weights on T),Z. It
suffices to show that the class of C}Z is non-zero in H§ (T,7). Let {v1,...,v,}
be a basis of T,,Z consisting of eigenvectors of G,,. Then the action of G, is given
by t.w; = t%wv; for positive integers ay,...,a, > 0. Set A = H?:l a;, and let G,
act on U = K" by t.u = t“u. Then the map ¢ : T,Z — U defined by

d(crvr + -+ cpvp) = (cf/a17. .. ,cﬁ/a")
is a finite G,,-equivariant morphism. By [EG98, Thm. 4] we obtain

Hg, (U~ {0}h)®Q=H"(PU)2Q,
where PU = (U \ {0})/G,, = P"~! is the projective space of lines in U, and
¢« [CpZ] ooy = deg(e) [¢(CpZ ~ {0})/G] € H(PU) @ Q.

The result now follows from the fact that every non-empty closed subvariety of

projective space defines a non-zero Chow class. (I

Corollary 3.2. Let X be a T-variety, Z C X a T-stable closed subvariety, and
p € ZT a T-fized point of Z. If p is non-singular and non-degenerate in X, and p
is fully definite in Z, then [Z], # 0 € Hx(point).

Proof. By [AF24, Prop. 17.4.1] we have [Z], = ¢y (T,X/T,Z) - npyZ, where m =
dim 7, X —dim 7, Z. The result therefore follows from Proposition 3.1, noting that
T acts with non-zero weights on T, X/T,Z. O

The following example rules out some potential generalizations of Corollary 3.2.
Example 3.3. Let G,,, act on A* by
t.(a,b,c,d) = (ta, tb, ttc, t71d).

Set Z = V(ad — bc) C A* and let p = (0,0,0,0) be the origin in A*. Then
1,2 = TPA4 = A* and CpZ = Z. Since G, acts trivially on the equation ad — be,
we have 1,Z = [Z] = 0 in Hg (A*) (see [AF24, §2.3]).
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4. RIGIDITY OF BIALYNICKI-BIRULA CELLS

The multiplicative group G, is identified with the complement of the origin in
A'. Given a morphism of varieties f : G, — X, we write lim; .o f(t) = p if f can
be extended to a morphism f : A! — X such that f(0) = p. This limit is unique
when it exists, and it always exists when X is complete.

Let X be a non-singular projective G,,-variety such that X® is finite. Then
each fixed point p € X®m defines the (positive) Bialynicki-Birula cell

+_ - _
X, —{xeXu%t.x—p}.

A negative cell is similarly defined by X, = {z € X | lim;0t~'.z = p}. By
[BB73, Thm. 4.4], these cells give a locally closed decomposition of X,

(2) x= U xt,

peXGm

that is, a disjoint union of locally closed subsets. In addition, each cell X;‘ is
isomorphic to an affine space.

Lemma 4.1. For any G,,-stable closed subset Z C X, we have Z C U X;.
pEZEm

Proof. For any point x € Z, we have x € X;r, where p = }in(l) ta e Z8n. (I
—

Definition 4.2. A locally closed decomposition X = | J ) X; will be called a stratifi-
cation if each subset X; is non-singular and its closure X; is a union of subsets X
of the decomposition.

The Bialynicki-Birula decomposition (2) typically fails to be a stratification, for
example when X is the blow-up of P? at the point [0,1,0], where G,, acts on P?
by t.[z,y, 2] = [z, ty,t?2], see [BB73, Ex. 1]. Lemma 4.1 shows that the Bialynicki-

Birula decomposition is a stratification if and only if X ;‘ C Xiﬁ holds for each fixed

point g € (X;7)®=. It was proved in [BB73, Thm. 5] that the decomposition is a
stratification when each positive cell X ; meets each negative cell X~ transversally.
In particular, this holds when X = G/P is a flag variety and G,,, C G is a general
1-parameter subgroup, see [McG02, Ex. 4.2] or Lemma 5.1. On the other hand, if
both the positive and negative Bialynicki-Birula decompositions are stratifications,
then all cells X; and X~ of complementary dimensions meet transversally, hence
the positive and negative cell closures form a pair of Poincare dual bases of the
cohomology ring H*(X). In this paper we utilize the following application, which
follows from Lemma 4.1.

Corollary 4.3. Assume that the Bialynicki-Birula decomposition of X is a strati-
fication. If Z C X is a Gy,-stable closed subvariety such that ZCm C X5 for some
p e XCm then Z C X,',".

The following result says that, under suitable assumptions, the Bialynicki-Birula
cell closures are determined by their equivariant cohomology classes.

Theorem 4.4. Let T be an algebraic torus and X a non-singular projective T'-
variety such that all fived points p € X are fully definite in X. Assume that XT =
XCm for some G,, C T, such that the associated Bialynicki-Birula decomposition
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of X s a stratification. If Z C X is any T-stable closed subvariety such that
[Z] = ¢ [ X ] holds in Hx(X) for somep € XT and 0 # c € Q, then Z = X, .

Proof. The cell X; is T-stable because T is commutative and p € X7 . It follows
from Corollary 3.2 that 27 = (X;))T = {p € X7 : [Z], # 0}, after which Corol-
lary 4.3 shows that Z C Xig'. The result follows from this, as the assumptions imply
that Z and XT;* have the same dimension. O

Question 4.5. We do not know whether Corollary 4.3 and Theorem 4.4 are true
without the assumption that the Bialynicki-Birula decomposition of X is a strati-
fication. It would be very interesting to settle this question.

Example 4.6. Let X be a non-singular projective toric variety, with torus 7' C X,
and choose G,, C T such that X7 = X©®m.  We show that the conclusion of
Theorem 4.4 holds, even though the Bialynicki-Birula decomposition is rarely a
stratification. The T-orbits O, C X correspond to the cones 7 of the fan defining X,
and we have O, C O; if and only if 7 is a face of o, see [Ful93, §3.1]. In particular,
the T-fixed points in X correspond to the maximal cones ¢. Since X is complete,
each cone 7 is the intersection of the maximal cones o corresponding to the T-fixed

points in O,. Since all cell closures X,/ are T-orbit closures, it suffices to show
that each orbit closure O, is determined by its equivariant class. All fixed points
p € XT are fully definite in X, as the weights of T}, X form a basis of the character
lattice of T. It is therefore enough to prove that, if Z C X is a T-stable closed
subvariety such that Z7 C O,, then Z C O,. We may assume that Z is irreducible,
in which case Z = O,, is also a T-orbit closure. The claim now follows because & is
the intersection of the maximal cones given by the fixed points in Z7', hence 7 C k.
Now assume that X has dimension two. By [BB73, Cor. 1 of Thm. 4.5], there is
a unique repulsive fixed point b € X®m with X b+ = {b}, and a unique attractive
fixed point a € X®» such that X is a dense open subset of X. For all other
fixed points p € X®n \ {a, b}, the cell X7 = Al is a line. If the Bialynicki-Birula

decomposition of X is a stratification, then b € X, for all p € X®m. The T-fixed
point b corresponds to a maximal cone ¢, and b is connected to exactly two T-stable
lines corresponding to the rays forming the boundary of this cone. We deduce that
X contains at most four T-fixed points. Higher dimensional toric varieties for which
the Bialynicki-Birula decomposition is not a stratification can be constructed by
taking products. We do not know if the conclusion of Corollary 4.3 holds for toric
varieties.

5. RIGIDITY OF SCHUBERT VARIETIES

Let X = G/P = {g.P | g € G} be a flag variety defined by a connected reductive
linear algebraic group G and a parabolic subgroup P. Fix a maximal torus 7" and
a Borel subgroup B such that T'C B C P C G. The opposite Borel subgroup
B~ C G is defined by BT N B =T. Let ® be the root system of non-zero weights
of T1G, the tangent space of G at the identity element. The positive roots &+
are the non-zero weights of T1B. Let W = Ng(T)/T be the Weyl group of G,
Wp = Np(T)/T the Weyl group of P, and let W¥ C W be the subset of minimal
representatives of the cosets in W/Wp. The set of T-fixed points in X is given by
XT = {w.P | w € W}, where each point w.P depends only on the coset wWp
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in W/Wp. Each fixed point w.P defines the Schubert varieties X,, = Bw.P and
X* = B~w.P. For w € W¥ we have dim(X,) = codim(X*, X) = ¢(w). Any
G-translate of a Schubert variety will be called a Schubert variety.

Recall that a cocharacter p : G, — T is strongly dominant if {a, p) > 0 for all
positive roots a € &+, where (a, p) € Z is defined by a(p(t)) = t{®*) for t € G,,.
The following lemma is well known, see e.g. [McG02, Ex. 4.2] or [BP, Cor. 3.14].

Lemma 5.1. Let p: G,, — T be a strongly dominant 1-parameter subgroup. Then
the associated Bialynicki-Birula cells of X are given by X; = B.p, forpe XT.

Proof. Let G,, act on G by conjugation through p. The fixed point set for this
action is [Spr98, (7.1.2), (7.6.4)]

T={geG|tgt ' =gVteG,},
and the corresponding Bialynicki-Birula cell is [Spr98, (8.2.1)]

B:{g€G|}i£r€)tgt_1€T}.

This implies B.p C X;‘ for any fixed point p € X®n. We deduce from (2) that the
positive Bialynicki-Birula cells in X are the B-orbits. (]

Corollary 5.2. Let X = G/P be a flag variety, T C G a mazimal torus, Q@ C X
a T-stable Schubert variety, and Z C X a T-stable closed subvariety.

(a) We have ZT = {p € XT :[Z], # 0 € Hi(point)}.
(b) If ZT C Q, then Z C Q.
(¢c) If [Z] = ¢[9] holds in H}.(X), with 0 # ¢ € Q, then Z = Q.

Proof. The B-fixed point p = 1.P is fully definite in X because the weights of 7}, X
are a subset of the negative roots of G. Since W acts transitively on X7, this
implies that all T-fixed points are fully definite in X. The result now follows from
Corollary 3.2, Corollary 4.3, Theorem 4.4, and Lemma 5.1, noting that the Bruhat
decomposition X = J,, Bw.P is a stratification. O

The Bruhat order on the Weyl group W is defined by v < w if and only if
X. C X,. Any element v € W has a unique factorization © = u"up for which
uP” € WP and up € Wp, called the parabolic factorization with respect to P. This
factorization is reduced in the sense that f(u) = £(u®) + (up). The parabolic
factorization of the longest element wy € W is wy = wéD wo,p, where wéj and wo, p
are the longest elements in W and Wp, respectively. Since wg and wo,p are self-
inverse, we have wg p = wowy’. As preparation for the next section, we prove the
following identity of Schubert varieties.

Lemma 5.3. Let Q C G be a parabolic subgroup containing B and set w = w(?

Then w=1.Xv = Xuwow-

Proof. Tt follows from Corollary 5.2(b) that X, , = wo,qQ-Xw o, as the T-fixed
points of both Schubert varieties are {u.P | u € Wg}. By translating both sides by

w = w?, we obtain w. X, 0 = Wo.Xywew = X, as required. O
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6. SEIDEL NEIGHBORHOODS

In this section we prove a conjecture about curve neighborhoods from [BCP23].
Since this conjecture and its proof relies on the moduli space of stable maps, we will
restrict our attention to varieties defined over the field K = C of complex numbers.
As in Section 5, we let X = G/P denote a flag variety.

For any effective degree d € Hy(X,Z), we let Mo 3(X,d) denote the Kontsevich
moduli space of 3-pointed stable maps to X of degree d and genus zero (see [FP97]).
The evaluation map ev; : Mg 3(X,d) — X, defined for 1 < i < 3, sends a stable
map to the image of the i-th marked point in its domain. Given two opposite
Schubert varieties X, and X", the (two-pointed) curve neighborhood T 4(X,, X™)
is the union of all stable curves of degree d in X connecting X, and X:

Ta(X,, X") = evzlevy '(X,) Nevy H(X™)).

Let Z[q] = Spany{q? : d € Hy(X,Z) effective} be the semigroup ring defined by
the effective curve classes on X. The equivariant quantum cohomology ring of X is
an algebra over H}.(point) ®z Z[g|, which is defined by QHp(X) = H(X) ®z Z[q]
as a module. The quantum product of two classes o1,02 € H}.(X) is given by

01 %09 = Z(Ul *UQ)dqd

d
where we set
(01 % 02)q = evs.(evioy-evyo2),

using the evaluation maps from My 3(X,d).

A simple root v € ®7 is called cominuscule if, when the highest root is written
in the basis of simple roots, the coefficient of « is one. The flag variety G/Q is
cominuscule if @) is a maximal parabolic subgroup corresponding to a cominuscule
simple root v, that is, s is the unique simple reflection in WQ. Let Weemin ¢ 1/
be the subset of point representatives of cominuscule flag varieties of G, together
with the identity element:

weemin — 1)@ | G/Q is cominuscule} U {1} .

This is a subgroup of W, which is isomorphic to the quotient of the coweight lattice
of ® modulo the coroot lattice [Bou81, Prop. VI.2.6]. The isomorphism sends wdQ

to the class of the fundamental coweight wx corresponding to ). Notice that ~ is

the unique simple root for which w(? 5y < w(? .

The Seidel representation of W™ on QH(X)/(g — 1) is defined by w.[X"] =
[X%] % [X¥] for w € W™ and u € W [Sei97, Bel04, CMP09]. In fact, we have

(3) [X) % [XV] = ¢ [X*]

in the (non-equivariant) quantum ring QH(X), where d = w¥ —u~'.wY € Hy(X,Z).
Here we identify the group Hs(X,Z) with a quotient of the coroot lattice, by map-
ping each simple coroot 8V to the curve class [Xs,] if s € WP, and to zero
otherwise. The identity (3) also holds in the quantum K-theory ring QK(X)
when X is cominuscule [BCP23], and an equivariant version of (3) was proved
in [CMP09, CP23].

It follows from (3) and the definition of the quantum cohomology ring QH(X)
that [I'g(Xwew, X*)] = [X**] holds in the cohomology ring H*(X). Conjecture 3.11
from [BCP23] asserts that T'g(Xygw, X*) is in fact equal to the translated Schubert
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variety w™'.X®%. This is proved below as a consequence of Corollary 5.2 and
the equivariant version of (3) from [CMP09, CP23|. This result was known when
X = G/P is cominuscule and w = wl [BCP23], when X is a Grassmannian of type
A and [X™] is a special Seidel class [LLSY?22, Cor. 4.6], when X is any flag variety
of type A [Tar23], and when X is the symplectic Grassmannian SG(2,2n) [BPX,
Thm. 8.1].

Theorem 6.1. Let X = G/P be a complex flag variety. Let u € W, w € Weomin,
let ~ be the simple root defined by ws, < w, and set d = wY —u~'.wY € Hy(X,Z).
Then Tg(Xwgw, X¥) = w™L.X 0,

Proof. By the definition of the quantum product, we have
([Xwow] * [X*])a = ¢ [Ta(Xuwouw, X*)]

in Hi(X), where c is the degree of the map evy : ev] ' (Xuow) Nevy (X¥) —
Ti(Xwows X™), interpreted as zero if the general fibers of this map have positive
dimension. On the other hand, by [CP23, Thm. 1.1] we have

[X%] % [w.X"] = ¢ [X*].
By applying w~! and using Lemma 5.3, we obtain
[(Xugw] * [X¥] = ¢ [w™ . X",

We deduce that ¢ [['g(Xwow, X*)] = [w™1.X%"] holds in H4(X). The result there-
fore follows from Corollary 5.2(c). O

7. HOROSPHERICAL VARIETIES OF PICARD RANK 1

In this section we interpret Theorem 4.4 for a class of horospherical varieties that
includes all non-singular projective horospherical varieties of Picard rank 1 (except
flag varieties) by Pasquier’s classification [Pas09]. Let G be a connected reductive
linear algebraic group, B C G a Borel subgroup, and T' C B a maximal torus. Let
V1 and V5 be irreducible rational representations of G, and let v; € V; be a highest
weight vector of weight \;, for i € {1,2}. We assume that A; # Ag. Define

X = G.[’Ul + 1)2} C P(Vl D VQ) .

If X is normal, then X is a horospherical variety of rank 1, see [Tim11, Ch. 7].
We will assume that X is non-singular and K = C, even though many claims hold
more generally; this implies that X is fibered over a flag variety G/P;2 with non-
singular horospherical fibers of Picard rank 1, see Remark 7.4. Any G-translate of
a B-orbit closure in X will be called a Schubert variety. Our next result uses the
action of T' X G,, on X defined by (¢, z).[u1 + uz] = t.[u; + zusg], for u; € V;. We
have XT*xGm = X1

Theorem 7.1. Let 2 C X be a T-stable Schubert variety, and let Z C X be a
T-stable closed subvariety.

(a) We have Z" ={pe X" : [Z], #0 € Hy ¢ (point)}.

(b) If ZT C Q, then Z C Q.

(c) If [Z] = [ holds in H} ¢ (X), with 0 # c € Q, then Z = ().
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Before proving Theorem 7.1, we sketch elementary proofs of some basic facts
about X, which are also consequences of general results about spherical varieties,
see [Tim11, Perl4, Pas09] and the references therein.

Given an element [u; +us] € P(V; @ V2), we will always assume u; € V;, and ¢ will
always mean an element from {1,2}. We consider P(V;) as a subvariety of P(V; ®V5).
Let m; : P(V1 @ Vo) N\ P(Va_;) — P(V;) denote the projection from Vi_;, defined
by m([ul + Ug]) = [ul] Set Xy = G.[’Ul + UQ] C ]P)(Vl D ‘/2)7 X; = G[UZ] C ]P)(‘/Z),
and X152 = G.([n1],[v2]) € P(V1) x P(V2). Since v; is a highest weight vector,
the stabilizer P; = G|, is a parabolic subgroup containing B. It follows that
X; 2 G/P; and X5 = G/(P, N Py) are flag varieties. In particular, X; is closed
in P(V;), and X5 is closed in P(V7) x P(V2). Notice also that Xy = G/H, where
H C PN P, is the kernel of the character A\ — Ay : Py NPy — G,,,. This shows that
Xy is a G,,,-bundle over G/(P;1NP;), so X is a non-singular projective horospherical
variety of rank 1 (but not necessarily of Picard rank 1, see Remark 7.4).

Let W be the Weyl group of G, and recall the notation from Section 5.

Lemma 7.2. We have X = XoU X1 U Xy. The B-orbit closures in X are

Buw.[v;] = U Bw'.[v;] forw e WP andi € {1,2}, and
w’ <w
Bw.[v; + vg] = U (Bw'.[v1 + vo] U Bw'.[v1] U Bw'.[va])  for w € WHNF2,

w’ <w

Proof. Set Py = P(V; & Vo) ~ (P(V1) UP(V2)). Since A1 # Ag, it follows that

T.[v1 + vo] is the line through [v;] and [vs] in P(V; @ V3). This implies Xy =

(m x m2)~H(X12), hence X is closed in Py, and Xy = X NPy. We also have
X, c X nP(V;) c 71 (X;) NP(V;) = X;, which proves the first claim. To finish
the proof, it suffices to show w'.[v;] € Bw.[v; + vo] if and only if w’ < w (when
w’ € W), The implication ‘if’ holds because w’.[v;] € Tw'.[v; + vs], and ‘only if’
holds because m;(Bw.[v; + v2] \ X3_;) C Bw.[v;]. O

Define an alternative action of P; on V3_; by p e u = \;(p)~'p.u, and use this
action to form the space

GXPi V3*i = {[gvu}g€G7UGV3*Z}/{[gpau]:[gvp.u]pGPZ}

Define a morphism of varieties ¢; : G xFiV3_; — P(Vi@Va) by ¢;i([g,u]) = g.[vi+u].
This is well defined since p.(v; + ©) = \;(p)(v; + p @ w) holds for p € P; and
u € Va_;. Set E; = (P, ev3_;) U{0} C V3_,;. Noting that F; is the cone over
P;.lvs—;] = P;/(P1 N Py), it follows that F; is closed in Va_;.

Lemma 7.3. The restricted map ¢; : G x¥ E; — Xo U X; is an isomorphism of
varieties. In particular, E; C Va_; is a linear subspace.

Proof. Assume ¢;([g,u]) = ¢i([¢',]), and set p = g~'g’. We obtain p € P; and
[vi+u] = p.[u; + ] = [v; +peu') in P(V; & V), hence [g,u] = [g, pe] = [gp, ] =
[¢/,u'] in G xT V3_;. We deduce that ¢; : G x¥i E; — Xy U X is bijective, so the
lemma follows from Zariski’s main theorem, using that Xy U X; is non-singular. [

Proof of Theorem 7.1. Fix a strongly dominant cocharacter p : G,, — T. For
a € Z, define pg : Gy = T X Gy, by pa(z) = (p(z), 2%). The resulting action of G,
on X is given by po(2).[u1 + ua] = p(2).[u1 + 2%us].
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It follows from Lemma 7.3 that [v1] has a T' x G,,,-stable open neighborhood in X
isomorphic to B~.[v1] X Ey, where the action is given by (¢, 2).(z,u) = (t.z,t ® zu).
If a is sufficiently negative, then G,, acts through p, on T, X = T},,; X1 © £y with
strictly negative weights, hence [v1] is fully definite in X for the action of T' X Gy,.
A symmetric argument shows that [vs] is fully definite. Since all T-fixed points in
X are obtained from [v1] or [vg] by the action of the Weyl group W, it follows that
all T-fixed points are fully definite. Part (a) therefore follows from Corollary 3.2.

For a sufficiently negative, it follows from Lemma 5.1 that the Bialynicki-Birula
cells of X defined by p, are

X+

w o] = Bw.[v1] and X;[w] = Bw.[v1 + v2] U Bw.[vg] .

These cells form a stratification of X by Lemma 7.2. Parts (b) and (c) therefore
follow from Corollary 4.3 and Theorem 4.4 when  is a translate of Bw.[v1] or
Buw.[v1 + v2] for some w € W. A symmetric argument proves (b) and (c) when Q

is a translate of Bw.[vs], which completes the proof. O

Remark 7.4. The exact sequence of [Perl4, Thm. 3.2.4] implies that Pic(X) is a
free abelian group of rank equal to the rank of X (which is one) plus the number
of B-stable prime divisors in X that do not contain a G-orbit. Any B-stable prime
divisor meeting Xy has the form D = Bwgsg.[v1 + vs], where [ is a simple root, and
Lemma 7.2 shows that D contains X; if and only if £ is a root of P;. Let P C G
be the parabolic subgroup generated by P; and P,. We obtain Pic(X) & Z @
Pic(G/P12). Let m: X — G/ Pj2 be the map defined by 7 (g.[v1 +v2]) = 7(g.[vi]) =
g.P1o. This is a G-equivariant morphism of varieties, as its restriction to Xy U X;
is the composition of m; : X U X; — G/P; with the projection G/P; — G/Pys.
The fibers of 7 are translates of 7=1(1.P12) = L.[; +v2] C P(V; & Vz), where L
is the Levi subgroup of Pjy containing T. Moreover, 7~ (1.P;5) is a non-singular
projective horospherical variety of Picard rank 1, so it is either a flag variety or one
of the non-homogeneous spaces from Pasquier’s classification [Pas09].

Question 7.5. Let X be any projective GG-horospherical variety fibered over a flag
variety G/P with non-singular horospherical fibers of Picard rank 1. Is it true
that X is isomorphic to an orbit closure G.[v1 + v2] C P(V), where V is a rational
representation of G, and v1,vs € V are highest weight vectors?

Example 7.6. Let X be the blow-up of P? at a point p, let 7 : X — P! be
the morphism defined by projection from p, and set G = SL(2,C). Then X is
G-horospherical and fibered over P! with fiber P'. This variety X is isomorphic to
G.[v1 + v2] C P(V;y @ Va), where vy is a highest weight vector in V3 = C2, and v, is
a highest weight vector in V = Sym?(C?).
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