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Abstract. We study a new class of polynomials describing degeneracy
loci for a sequence of vector bundles with maps between them and ar-
bitrary rank conditions on the maps. These polynomials generalize all
known types of Schubert polynomials. We give explicit formulas for the
polynomials as linear combinations with integer coefficients of products
of Schur determinants. We furthermore conjecture that all coefficients
are positive and given by counting tableaux. We prove the conjecture
in the case corresponding to four vector bundles.

Résumé. Nous étudions une nouvelle classe de polynômes qui décrit
l’ensemble des singularités d’une sequence de fibrés vectoriels reliés par
des fonctions et des conditions arbitraires sur le rang des fonctions. Ces
polynômes généralisent tous les types connus de polynômes de Schubert.
Nous donnons des formules qui expriment ces polynômes par des com-
binaisons linéaires, à coefficients entiers, de déterminants de Schur. De
plus, nous conjecturons que tous ces coefficients sont positifs et qu’ils
comptent certains tableaux. Nous démontrons cette conjecture dans le
cas correspondant à quatre fibrés vectoriels.

1. Introduction

The purpose of this talk is to report on a joint geometric project with
W. Fulton [3], in which we proved a formula for a general type of degeneracy
locus, and conjectured another. We will furthermore describe a combinato-
rial continuation of the project, in which we have attempted to prove the
conjecture and succeeded in a special case. Here we are extremely thankful
to S. Fomin, who provided a vital involution on pairs of tableaux, and who
has collaborated with us on the combinatorial aspects of this problem.

Chern class formulas for degeneracy loci have in the past proven to reveal
very interesting polynomials. Schur polynomials and Schubert polynomials
are all examples of this. In this talk we will consider a very general class of
degeneracy loci and describe their formulas.

Let E0 → E1 → · · · → En be a sequence of vector bundles with maps
between them over an algebraic variety X. We will study the degeneracy
loci obtained by putting arbitrary rank conditions on these maps and their
compositions. Given a collection of non-negative integers r = (rij) for 0 ≤
i < j ≤ n, define Ωr to be the subset

Ωr = {x ∈ X | rank(Ei(x) → Ej(x)) ≤ rij ∀ i < j}
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of X. The goal is to find a formula for the cohomology class of Ωr in terms
of the Chern classes of the bundles Ei. The numbers rij are called rank
conditions. For simplicity, we will assume here that the maps of the vector
bundles are sufficiently general, so that Ωr has the expected codimension.
For convenience we set rii = rank(Ei).

A classical case is that of two bundles. To describe the solution in this
case we need some notation. Let I = (a1, . . . , am) be a sequence of integers,
and let F and G be two vector bundles with Chern roots α1, . . . , αp, and
β1, . . . , βq. We define the Schur polynomial

SI(G − F ) = det(hai+j−i)

to be the determinant of the m × m matrix whose (i, j)’th entry is hai+j−i,
where the hk are defined by the equation

∑

k

hkt
k =

∏p
i=1(1 − αit)

∏q
i=1(1 − βit)

.

If I is a partition, this is just the Schur polynomial sI(β/α) defined in
Macdonald [10], applied to the Chern roots of F and G. The Chern roots
are in general independent, and can be thought of as variables.

In case of two bundles, the degeneracy locus Ωr is now described by
Thom-Porteous-Giambelli’s Theorem:

[Ωr] = Sλ(E1 − E0)

where λ = (r00 − r01)
r11−r01 is the partition with r00 − r01 repeated r11 − r01

times.
For the general problem, many choices of rank conditions r = (rij) are

redundant, i.e. the locus Ωr can be written as the union of finitely many
smaller loci Ωr′ . It was shown by Abeasis and Del Fra [1] that the the
non-redundant rank conditions are those that can be obtained in a concrete
choice of vector spaces and linear maps. In other words a set of rank condi-
tions r = (rij) is non-redundant iff there is a sequence of vector spaces with
linear maps between them

V0 → V1 → · · · → Vn

such that rij = rank(Vi → Vj) for all i ≤ j.
Abeasis and Del Fra classified the allowable rank conditions as those aris-

ing from diagrams of dots and lines as follows. For each vector space Vi,
make dimVi dots on a vertical line (column). Then connect some of the
dots in each column to dots of the next, such that no two dots in the same
column are connected to the same dot.

Example 1.
s s s s

s s s s

s s s s s

s s s

s s s

s
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The dots represent basis vectors for the vector spaces Vi, and the lines
represent how each basis vector of one space is mapped into the next space.
rij is now obtained as the number of lines going from dots in column i to
dots in column j.

Rank conditions r = (rij) may conveniently be arranged in a rank diagram
as follows:

E0 → E1 → E2 · · · En

r00 r11 r22 · · · rnn

r01 r12 · · · rn−1,n

. . .

r0n

It follows from Abeasis and Del Fra’s classification that a rank diagram is
non-redundant if and only if

1. rii = rank(Ei),
2. rij ≤ min(ri,j−1, ri+1,j), and
3. rij − ri−1,j − ri,j+1 + ri−1,j+1 ≥ 0.

From now on we will only consider rank diagrams satisfying these conditions.

Example 2. The line diagram of Example 1 corresponds to the following
rank diagram:

E0 → E1 → E2 → E3 → E4

2 4 6 5 3
2 2 4 3

1 2 2
1 1

0

If r = (rij) is a rank diagram, we may obtain a diagram of rectangles
from r by replacing each triangle of integers

s t
u

by a rectangle R with t − u rows and s − u columns. We will sometimes
identify R with the partition (s − u)t−u. However, even when R is empty,
we still need to know both the number of rows and columns of R, and
this information is not encoded in the zero-partition. It turns out that the
rectangle diagram contains key information about the degeneracy locus Ωr.
For example the expected codimension of Ωr in X is the total number of
cells in all of the rectangles.
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Example 3. The rank diagram in Example 2 gives the following rectangle
diagram:PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

If the vector bundle maps are general, then the codimension of Ωr is 15.

It follows from the axiom (3) for rank diagrams, that the rectangles always
get shorter when one goes southeast in a rectangle diagram, while they get
narrower when one goes southwest.

2. A formula for Ωr

For each sequence of partitions λ = (λ(1), . . . , λ(p)), define a symbol

S(λ) = S(λ(1), . . . , λ(p)). A formal sum of symbols with p = n represents a

cohomology class on X by identifying S(λ(1), . . . , λ(n)) with

n
∏

i=1

Sλ(i)(Ei − Ei−1) .

The main result of [3] is that the cohomology class of Ωr is a linear combi-
nation with integer coefficients of such symbols:

[Ωr] =
∑

λ

cλ
r S(λ) .

If I is a sequence of integers then sI(β/α) is either zero or equal to
±sλ(β/α) for a unique partition λ. For example, s(1,2)(β/α) = 0 and

s(1,3)(β/α) = −s(2,2)(β/α). If I(1), . . . , I(p) are sequences of integers, we

define S(I(1), . . . , I(p)) to be either zero or ±S(λ(1), . . . , λ(p)) for a sequence
of partitions λ(j). If sI(j)(β/α) = 0 for any j, then S(I (1), . . . , I(p)) = 0.
Otherwise write sI(j)(β/α) = εjsλ(j)(β/α) for each j with εj = ±1, and
define

S(I(1), . . . , I(p)) =
(

∏

j εj

)

S(λ(1), . . . , λ(p)) .

Let R = (a)b be a rectangle with b rows and a columns. Let µ and ν be
partitions, such that µ is no taller than R, i.e. the length of µ is at most b. We

then define R|µ
ν

to be the the sequence (a+µ1, a+µ2, . . . , a+µb, ν1, ν2, . . . ).
Note that b is significant even when a is zero.
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Example 4. If R = (3)4, µ = (4, 3, 1), and ν = (5, 4, 1), then the entries of
R|µ
ν

are the numbers of cells in the rows of the diagram:

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

We now define polynomials Pr inductively. If the rectangle diagram has
only one row, we put

Pr = S(R)

where R is the only rectangle in the diagram (regarded as a partition).
If the rectangle diagram has more than one row, let r̄ denote the bottom

n rows of the rank diagram. Then r̄ is itself a valid rank diagram, and
its rectangle diagram consists of the bottom n − 1 rows of the rectangle
diagram for r. By induction Pr̄ is a well defined linear combination of
symbols S(λ(1), . . . , λ(n−1)).

Let the top row of the rectangle diagram for r consist of the rectan-
gles R1, . . . , Rn. Then Pr is obtained from Pr̄ by replacing each symbol
S(λ(1), . . . , λ(n−1)) by the sum

∑

µi,νi

(

n−1
∏

i=1

cλ(i)

µi,νi

)

S(
R1|µ1

∅
,
R2|µ2

ν1
, . . . ,

Rn|∅

νn−1
) .

The sum is over all partitions µi and νi for 1 ≤ i ≤ n− 1 such that µi is no
taller than Ri. The constants cλ

µν denote Littlewood-Richardson numbers,
and ∅ is the zero-partition.

Theorem. The cohomology class of Ωr is equal to Pr.

It is clear from the definition that Pr can be written in the form

Pr =
∑

λ

cλ
r S(λ)

where the cλ
r are integer constants, depending on λ and the rectangle dia-

gram. The definition furthermore gives an explicit way of calculating these
constants.

Example 5. Let r be the rank diagram of Example 2. Then we have

Pr̄ = S
(

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

+ S
(

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , ∅,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

+ S
(

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

+

S
(

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai ,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

+ S
(

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , ∅,

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)
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The polynomial Pr is a sum of 72 different symbols, each with coefficient
one.

Example 6. Given a permutation w ∈ Sn, one may construct a line dia-
gram with 2n columns, here shown for w = 2413 ∈ S4:

s s s s s s s s

s s s s s s

s s s s

s s

@
@

��

HH�
�

The connections of the dots in the middle is given by w; the i’th dot on the
right side is connected to the w(i)’th dot on the left. If r is the correspond-
ing rank diagram, then Pr is equal to the universal Schubert polynomial
Sw defined by Fulton [6], although the only proof of this now is from ge-
ometry. Universal Schubert polynomials specialize to the double Schubert
polynomials defined by Lascoux and Schützenberger [9], as well as quan-
tum Schubert polynomials defined by Fomin, Gelfand, and Postnikov [4].
The polynomials Pr therefore give new formulas for the previously known
Schubert polynomials.

We have calculated a large number of examples of the polynomials Pr,
but never found any negative coefficients cλ

r . It is in our attempts to prove
that all these coefficients are non-negative, that some very interesting com-
binatorics has appeared.

3. Conjectured behavior of Pr

Recall that a semistandard Young tableau on a partition λ is a filling of
the cells in the Young diagram of λ with integers, such that the entries are
strictly increasing down the columns, and weakly increasing along the rows.
The partition λ is called the shape of the tableau. By a tableau we will
always mean a semistandard Young tableau.

Two tableaux P and Q can be multiplied using the jeu de taquin algo-
rithm. Here one arranges P and Q in a skew diagram such that the upper
right corner of P is attached to the lower left corner of Q. Then one per-
forms jeu de taquin slides on the diagram until a tableau is reached. For
each slide, one chooses an inner corner C of the skew diagram. Then one
slides the smaller of the cells below and to the right of C into C. If these
cells are equal, then the cell below C is used. C is then replaced by the
“hole” that was made by the slide, and the operation is repeated until C is
no longer in the diagram. If the diagram is still not a tableau, a new inner
corner is chosen, and the whole process is repeated. It is a theorem that the
tableau obtained in this way is independent of the choices of inner corners.
It follows that tableau multiplication is associative.
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Example 7. To multiply

1 2
4

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai with

1 3
2

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , one does the sequence of slides:
31

2
1 2
4 4

1
2 2

1 3
C

C

C 1 3
2 2

1
4

C1 3
2 2

1
4

1 2 3
2 C

1
4

4
1

2
1 2 3

C
1 2 3

1

C
4

2
3

1 2
4

21C 321
2

4

1
C

1 1 2 3

4
2 C

C

1 2 3

4

21

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

We find that =3
2
11 2

4
1 1 2 3
2
4

.

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

By a tableau diagram we will mean a filling of the cells of a rectangle
diagram with integers such that each rectangle becomes a tableau, and so
that all of the cells in each tableau T are strictly larger than all of the cells
in the tableaux appearing above T within 45 degree angles as shown.

PSfrag replacements

T

B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

In the tableau diagram any empty rectangles are reduced to empty tableaux,
and their dimensions are forgotten.

Example 8.

42

1
3
5
6

1
2
3
4

8 55

7

9

.

.

..

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai

Next we will describe the notion of a factor sequence for a tableau dia-
gram.

Example 9. Consider a tableau diagram with three rows:

A B C
R S

T
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Take any factorization T = T1 · T2 of T . Then form the products R · T1 and
T2 · S and take arbitrary factorizations R · T1 = R1 ·R2 and T2 · S = S1 · S2.
Then

(A · R1, R2 · B · S1, S2 · C)

is a factor sequence for the diagram, and all factor sequences are obtained
in this way.

Now consider a general tableau diagram with n rows.

A1 A2 A3 · · · An

B1 B2 · · · Bn−1

C1 · · · Cn−2

. . .

D1

(1)

All factor sequences for this diagram will be sequences of n tableaux. If
n = 1, then the only factor sequence is the sequence (A1), consisting of the
only tableau in the diagram. If n > 1, then a sequence of tableaux

(W1, . . . ,Wn)

is a factor sequence if there exist tableaux P1, Q1, . . . , Pn−1, Qn−1 such that
Qi−1 · Ai · Pi = Wi for i = 1, . . . , n, and

(P1 · Q1, . . . , Pn−1 · Qn−1)

is a factor sequence for the lower n − 1 rows of the diagram. Here Q0 and
Pn are by convention empty tableaux.

Example 10. For the tableau diagram of Example 8, the lower three rows
have the following five factor sequences:

( 8 9

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 7

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 55

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

,
( 8 9

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , ∅, 7
5 5

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

,
( 8

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 9
7

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 55

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

,

( 8

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 9

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , 7
5 5

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

,
( 8

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai , ∅, 9
7
5 5

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =
Wi =
Qi−1

Pi

Ai
)

The whole diagram has 72 different factor sequences.

Conjecture. Let r = (rij) be a rank diagram. Then cλ
r is the number of

different factor sequences (W1, . . . ,Wn) for any fixed tableau diagram for r,

such that Wi has shape λ(i) for each i.

This conjecture will first of all imply that all the coefficients cλ
r are posi-

tive. Another consequence is that the polynomials Pr will be independent of
the side lengths of any empty rectangles in the rectangle diagram. Finally,
the conjecture implies that the number of factor sequences is independent
of the choices of tableaux in the diagram, which is not clear.

One reason that the conjectured formula is hard to work with is that
a factor sequence can arise in many ways. According to the definition, to
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check if a sequence (W1, . . . ,Wn) of tableaux is a factor sequence, one would
have to try all factorizations Wi = Qi−1 · Ai · Pi of each Wi, and check if
(P1·Q1, . . . , Pn−1·Qn−1) is a factor sequence for the lower diagram. However,
the following proposition gives a direct criterion. Note that a first necessary
condition is that each Wi must contain Ai as a subtableau in the upper-left
corner.

Proposition. Let Pi be the part of Wi lying to the right of the rectangular
subtableau Ai, and let Qi−1 be everything lying below Ai and Pi:

PSfrag replacements

T
B
S1

R2

Only entries from T .
W2 =

Wi =
Qi−1

PiAi

Then (W1, . . . ,Wn) is a factor sequence for (1) if and only if Q0 and Pn

are empty and (P1 · Q1, . . . , Pn−1 · Qn−1) is a factor sequence for the lower
diagram.

Let r′ be the rank diagram obtained by mirroring r in a vertical line,
i.e. r′ij = rn−j,n−i, and let λ = (λ(1), . . . , λ(n)) be a sequence of partitions.

Then it is clear from the geometric description that cλ
r′ = cλ̃

r , where λ̃ =

(λ̃(n), . . . , λ̃(1)) is the sequence of conjugate partitions in reverse order. While
this symmetry is not obvious from the definition of the polynomials Pr given
in Section 2, it may easily be deduced from the conjecture.

We can prove the conjecture when the tableau diagram has at most three
rows, or equivalently the number of vector bundles is at most four. When
the tableau diagram has two rows, the conjecture follows from the fact that
if T is any tableau on shape λ, and µ and ν are partitions, then there are
cλ
µν different factorizations T = T1 · T2 such that T1 has shape µ and T2

has shape ν. The proof in the case of three rows relies on the following two
Lemmas.

Lemma 1. Let D be a tableau diagram with three rows

A B C
R S

T

and let L be the diagram of the bottom two rows. Assume that the shape
of B is the rectangle (a)b. Let R1, R2, S1, and S2 be tableaux. Then the
following are equivalent:

1. (R1 · R2, S1 · S2) is a factor sequence for L.
2. (A ·R1, R2 ·B · S1, S2 ·C) is a factor sequence for D, and only entries

from T appear beyond the a’th column of R2 and below the b’th row of
S1.
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PSfrag replacements

T

B S1

R2 Only entries from T .

W2 =
Wi =
Qi−1

Pi

Ai

Fix a positive integer b. If (P,Q) is a pair of tableaux of shapes µ and

ν such that Q has at most b rows, we define S(Q
P

) = S(I) where I =

(ν1, . . . , νb, µ1, µ2, . . . ). Let Pb be the set of all pairs (P,Q) such that S(Q
P

) 6=
0, and so that P and Q do not fit together as a tableau with Q in the top b
rows and P below. This means that the b’th row of Q must be shorter than
the first row of P , or some cell in the first row of P must be smaller than
the cell in the same position on the b’th row of Q.

Lemma 2 (Fomin’s involution). There exists an involution of Pb with the
property that if (P,Q) is mapped to (P ′, Q′), then

1. P ′ · Q′ = P · Q,

2. S(Q′

P ′ ) = −S(Q
P

), and
3. the first column of P ′ is equal to the first column of P .

The proof of Lemma 2 was provided by S. Fomin in the form of an ex-
plicit algorithm for carrying out the involution. This nice algorithm will be
described in [2].

Now the proof of the conjecture for rectangle diagrams with at most three
rows relies on a calculation. We will abuse notation and denote the shape
of a tableau W also by W when it appears in an S-symbol.

Let r be a rank diagram for four bundles and let D and L be as in
Lemma 1. Using the conjecture on L we have

Pr̄ =
∑

(W1,W2)

S(W1,W2) ,

the sum is over all factor sequences for L. By the definition of Pr we get

Pr =
∑

(W1,W2)

∑

W1=R1·R2

∑

W2=S1·S2

S(
A|R1

∅
,
B|S1

R2
,
C|∅

S2
) .

The second and third sums are over all factorizations of W1 and W2 such
that S1 is no taller than B. This expresses Pr as a sum over collections
of tableaux R1, R2, S1, S2 satisfying the properties in Lemma 1. Using the
second condition in the Lemma, we may rewrite this as

Pr =
∑

(W1,W2,W3)

∑

R2,S1

S
(

W1,
B|S1

R2
,W3

)



CHERN CLASS FORMULAS FOR DEGENERACY LOCI 11

where the first sum is over all factor sequences of D and the second is over
all tableaux R2, S1 such that W2 = R2 ·B · S1 and so that only entries from
T appear in the part of R2 that is broader than B, and S1 is no taller than
B. It is enough to prove that

S(W1,W2,W3) =
∑

R2,S1

S
(

W1,
B|S1

R2
,W3

)

.

Here we use Lemma 2 with b equal to the number of rows of B to cancel out
all of the terms in the sum, except the one where R2 and S1 are as in the
picture:

PSfrag replacements

T

B S1

R2

Only entries from T .

W2 =
Wi =
Qi−1

Pi

Ai

For all other pairs R2, S1, let P be the part of R2 that is broader than
B. Let (P ′, S′

1) be the pair corresponding to (P, S1) by Fomin’s involution,
and let R′

2 be R2 with the part broader than B replaced by P ′. Then

S
(

W1,
B|R2

S1
,W3

)

and S
(

W1,
B|R′

2
S′

1
,W3

)

cancel each other out. This finishes

the proof of the conjecture for the case of four bundles.
The full conjecture follows from an assertion that Fomin’s involution pre-

serves factor sequences. When n = 3, this assertion follows from Lemma 1.
The assertion has furthermore been verified in 500,000 randomly generated
examples for n ≤ 10. We consider this as strong evidence for the conjecture.
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