EIGENVALUES OF HERMITIAN MATRICES WITH
POSITIVE SUM OF BOUNDED RANK

ANDERS SKOVSTED BUCH

ABSTRACT. We give a minimal list of inequalities characterizing the possible
eigenvalues of a set of Hermitian matrices with positive semidefinite sum of
bounded rank. This answers a question of A. Barvinok.

1. INTRODUCTION

The combined work of A. Klyachko [8], A. Knutson, T. Tao [9] and C. Wood-
ward [10], and P. Belkale [1] produced a minimal list of inequalities determining
when three (weakly) decreasing n-tuples of real numbers can be the eigenvalues of
Hermitian n x n matrices which add up to zero. The necessity of these inequali-
ties had also been proved by S. Johnson [7] and U. Helmke and J. Rosenthal [6]
(see also B. Totaro’s paper [11]). We refer to [4] for a description of this work, as
well as references to earlier work and applications to a surprising number of other
mathematical disciplines.

S. Friedland applied these results to determine when three decreasing n-tuples
of real numbers can be the eigenvalues of three Hermitian matrices with positive
semidefinite sum, that is, the sum should have non-negative eigenvalues [2]. Fried-
land’s answer included the inequalities of the above named authors, except that a
trace equality was changed to an inequality. Friedland’s result also needed some
extra inequalities. W. Fulton has proved [5] that the extra inequalities are super-
fluous, and that the remaining ones form a minimal list, i.e. they correspond to
the facets of the cone of permissible eigenvalues. All of these results have natural
generalizations that work for any number of matrices [6, 4, 10].

In this paper we address the following more general question, which was formu-
lated by A. Barvinok and passed along to us by Fulton. Given weakly decreasing
n-tuples of real numbers a(1),...,a(m) and an integer r < n, when can one find
Hermitian n x n matrices A(1),..., A(m) such that a(s) is the eigenvalues of A(s)
for each s and the sum A(1)+- - -+ A(m) is positive semidefinite of rank at most r?
The above described problems correspond to the extreme cases r = 0 and r = n.

Let a(l),a(2),...,a(m) be n-tuples of reals, with a(s) = (ai(s),...,an(s)).
The requirement that these n-tuples should be decreasing is equivalent to the in-
equalities

() ai(s) > ag(s) = -+ = an(s)

foralll <s<m.
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Given a set I = {a1 < az < -+- < a¢} of positive integers, we let s; =
det(ha,—;)exe be the Schur function for the partition A(I) = (a;—t,...,a2—2,a1—1).
Here h; denotes the complete symmetric function of degree i. Fulton’s result [5]
states that the n-tuples a(1), ..., a(m) can be the eigenvalues of Hermitian matrices
with positive semidefinite sum if and only if

([>7l) Z Z az

s=14iel(s)

for all sequences (I(1),...,I(m)) of subsets of [n] = {1,2,...,n} of the same car-
dinality ¢ (1 <t < n), such that the coefficient of s{, ;11 ,,—¢12,... n} in the Schur
expansion of the product sy(1)Sy(2) - S1(m) is equal to one. Notice that this coef-
ficient is one if and only if the corresponding product of Schubert classes on the
Grassmannian Gr(¢, C™) equals a point class.

The added condition that the rank of the sum of matrices is at most r results in
the additional inequalities

(qn,r) Z Z Op41— p 0

s=1peP(s)

for all sequences (P(1),...,P(m)) of subsets of [n — r] of the same cardinality ¢
(1 <t <n-—r), such that S{n—r—t+1,....n—r} has coefficient one in the product
5p(1)Sp(2) " SP(m)- Equivalently, a product of Schubert classes on Gr(t,C"™")
should be a point class. The necessity of the inequalities (<, ) follows from (>,,)
applied to the identity —A(1) — --- — A(m) + B = 0, by noting that the n — r
smallest eigenvalues of the matrix B = ) A(i) are zero. We remark that without
the requirement that a Hermitian matrix is positive semidefinite, rank conditions
on the matrix do not correspond to linear inequalities in the eigenvalues. The
following theorem is our main result.

Theorem 1. Let «(1),...,a(m) be n-tuples of real numbers satisfying (1), and
let ¥ < n be an integer. There exist Hermitian n x n matrices A(1),..., A(m)
with eigenvalues a(l),...,a(m) such that the sum A(1) + --- + A(m) is positive
semidefinite of rank at most r, if and only if the inequalities (>,,) and (<y,.) are
satisfied. Furthermore, for v > 1 and m > 3 the inequalities (1), (>n), and (<n.r)
are independent in the sense that they correspond to facets of the cone of admissible
eigenvalues.

As proved in [10], the minimal set of inequalities in the case r = 0, m > 3 consists
of the inequalities (>,,) for ¢t < n, along with the trace equality Y o > i ai(s) =0
and, for n > 2, also the inequalities (). The cases r = 0,m < 2, or m = 1 are not
interesting. The situation for m = 2 and r > 0 is described by the following special
cases of Weyl’s inequalities [12] (see also [4, p. 3]).

Corollary 1. Let a(1),a(2) be n-tuples satisfying (1), and let r < n be an integer.
There exist Hermitian n x n matrices A(1), A(2) with eigenvalues (1), a(2) such
that the sum A(1) + A(2) is positive semidefinite of rank at most r, if and only if
a;(1)+;j(2) >0 fori+j=n+1and a;(1) +;(2) <0 fori+j=n+r+1.
These inequalities are independent when r > 1; they imply (1) for r = 1, and are
independent of (1) for r > 2.



EIGENVALUES OF MATRICES WITH SUM OF BOUNDED RANK 3

Proof. Given subsets I,.J C [n] of cardinality ¢, the coefficient of s(, ;11 ny in
sy - Sy is equal to one if and only if J = {n+1—14¢ |4 € I}. This implies that
the inequalities (>y,) and (<) are consequences of the inequalities of the corollary.
The claims about independence of inequalities are left as an easy exercise. (I

In the special case r = 1 of Corollary 1, the sum A(1) + A(2) may be written as
xx* for some (column) vector x € C™. Inspired by a question from the referee, we
give an explicit description of the set of all vectors x that can appear in this way
for fixed a(1) and «(2) satisfying the inequalities (see Proposition 1). It shows that
this set is always a product of odd dimensional spheres.

Theorem 1 also has the following consequence. Although the statement does
not use any inequalities, it appears to be non-trivial to prove without the use of
inequalities.

Corollary 2. Let a(1),...,a(m) be n-tuples of real numbers and let r < n. There
exist Hermitian n x n matrices A(1),..., A(m) with these eigenvalues such that
A1) + -+ A(m) is positive semidefinite of rank at most r, if and only if there
are Hermitian n x n matrices with the same eigenvalues and positive semidefinite
sum, as well as Hermitian (n —r) X (n —r) matrices C(1),...,C(m) with negative
semidefinite sum, such that the eigenvalues of C(s) are the n —r smallest numbers
from a(s).

Proof. The inequalities (<, ,) for n-tuples a(1),...,a(m) are identical to the in-
equalities (>p_,) for &(1),...,&(m), where &(s) = (—an(s) > -+ > —ayr41(s)). O

Our proof of Theorem 1 is by induction on r, where we rely on the above men-
tioned results of Klyachko, Knutson, Tao, Woodward, and Belkale to cover the base
case r = 0. To carry out the induction, we use an enhancement of Fulton’s methods
from [5]. We remark that Theorem 1 remains true if the Hermitian matrices are
replaced with real symmetric matrices or even quaternionic Hermitian matrices.
This follows because the results for zero-sum matrices hold in this generality [4,
Thm. 20].

We thank Barvinok and Fulton for the communication of Barvinok’s question,
and Fulton for many helpful comments to our paper. We also thank the referee for
inspiring comments and questions.

2. THE INEQUALITIES ARE NECESSARY AND SUFFICIENT

In this section we prove that the inequalities of Theorem 1 are necessary and
sufficient. For a subset I = {a1 < a2 < --- < a;} of [n] of cardinality ¢, we let o7 €
H* Gr(t,C™) denote the Schubert class for the partition A(I) = (a; —t,...,a1 — 1).
The corresponding Schubert variety is the closure of the subset of points V €
Gr(t,C") for which VN C"~ % C V NC"~%*! for all 1 <4 < t. Let S*(m) denote
the set of sequences (I(1),...,I(m)) of subsets of [n] of cardinality ¢, such that the
product [[_; o(s) is non-zero in H* Gr(t,C"), and we let R}'(m) C Si*(m) be the
subset of sequences such that H:Zl o1(s) equals the point class oy, _;41,... n—1,n}-

The inequalities () are indexed by all sequences (I(1),...,I(m)) which be-
long to the set R"(m) = |J;<;<, B'(m). Furthermore, it is known [1, 10] that if
a(1),...,a(m) are decreasing n-tuples of reals satisfying (>, ), then they also satisfy
the larger set of inequalities indexed by sequences from S™(m) = J;,<,, Si'(m),
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that is D507, 37, () @i(s) > 0 for all (I(1),...,I(m)) € S

equalities of (<) are indexed by R"™ "(m), and if a(1),...,a(m) satisfy these
inequalities, then we also have > ", 2 pep(s) Ont1-p(s) < 0 for all sequences
(P(1),...,P(m)) € 8"~ "(m).

We first show that the inequalities (>,) and (<) are necessary. Suppose
A(1),...,A(m) are Hermitian n X n matrices with eigenvalues «(1),...,a(m),
such that the sum B = A(1) + --- + A(m) is positive semidefinite with rank at
most . Let 8 = (B1 > -+ > (3,,0,...,0) be the eigenvalues of B. For any se-
quence (I(1),...,I(m)) € R}(m) we have that (J,I(1),...,1(m)) is in R}(m + 1)
where J = {1,2,...,t}. This is true because o; € H* Gr(t,C") is the unit. Since
—B+ A1)+ -+ A(m) =0, it follows from [4, Thm. 11] that

DINEES 35 SRICEL)

JjeJ s=14el(s)

"(m). Similarly, the in-

which implies (>,,) because each (; is non-negative.

On the other hand, if (P(1),...,P(m)) € R "(m), then (Q, P(1),...,P(m)) €
R} (m) where Q = {r + 1,7+ 2,...,r + t}. This follows from the Littlewood-
Richardson rule, since A\(Q) = (r)! is a rectangular partition with ¢ rows and r

columns. Since B — A(1) —--- — A(m) =0, [4, Thm. 11] implies that
> 0-30 Y ausl 20
q€Q s=1 peP(s)

Since By = 0 for every g € @, this shows that (< ) is true.

If I ={i1 <iz <--- <4} is asubset of [n] and P is a subset of [t], we set
Ip = {i, | p € P}. To prove that the inequalities are sufficient, we need the
following generalization of [5, Prop. 1 (i)].

Lemma 1. Let (I(1),...,I(m)) € SP(m) and let (P(1),...,P(m)) € St~"(m),
where 0 < r <t. Then (I(1)p(1),---,1(m)p@m)) belongs to S7~"(m).

Proof. The case r = 0 of this Lemma is equivalent to part (i) of [5, Prop. 1].
We deduce the lemma from this case using straightforward consequences of the
Littlewood-Richardson rule.

Set @ = {p+r | pe PQ)} Since A(Q) = (r)* + A(P(1)), it follows that
og - I y0p@s) # 0 on Gr(z,t). By the r = 0 case, this implies that TI()o
[1ss91(5)p, # 0 on Gr(z,n). Now notice that if P(1) = {p1 < --- < p,} and
I(1) = {i1 < --- < iz} then the jth element of I(1)q is ip,4r > ip, + 7, ie.
)\(I(I)Q) D (r)* 4+ )\(I(l)p(l)). This means that T(r)e+AI(1) p1y) * HT 2 01(s) p(s) is
also non-zero on Gr(z,n), which implies that [, o (5)p(ey 7 00N Gr(z,n—r). O

We also need the following special case of Corollary 1, which comes from refor-
mulating the Pieri rule in terms of eigenvalues.

Lemma 2. Let a= (a1 > - > ayp) and y= (71 > -+ > v,) be weakly decreasing
sequences of real numbers. There exist Hermitian n x n matrices A and C with
these eigenvalues such that C' — A is positive semidefinite of rank at most one, if
and only if y1 > a1 > 2 > ag > -+ > Y = Q.
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Proof. Set = (p1,0,...,0) where 81 = > v — > a;, and assume that 3; > 0. We
must show that there are Hermitian matrices A, B, and C with eigenvalues «, (3,
and «y such that A+ B=C if and only if v > a1 > -+ > v, > .

By approximating the eigenvalues with rational numbers and clearing denom-
inators, we may assume that «, 3, and  are partitions. In this case it follows
from the work of Klyachko [8] and Knutson and Tao [9] that the matrices A, B,C
exist precisely when the Littlewood-Richardson coefficient clﬁ is non-zero (see [4,
Thm. 11]). This is equivalent to the specified inequalities by the Pieri rule. (I

The necessity of the inequalities of Lemma 2 also follows from Weyl’s inequalities
a;(A) + an(B) < a;(A+ B) and a;(A+ B) < a;—1(A4) + a2(B) with B = C — A,
where «;(A) denotes the ith eigenvalue of a Hermitian n x n matrix A [12]. The
existence of the matrices A and C' is equivalent to the existence of a (column) vector
x = (x1,...,2,)7 € C" such that the matrix D + xx* has eigenvalues v, where
D = diag(aq,...,a,). We will give an alternative proof that the inequalities are
sufficient by explicitly solving this equation in x when v1 > a1 > -+ > v, > ay.

Let & = (@ > -+ > ag) and 7y = (31 > -+ > Ax) be the subsequences of «
and «y obtained by removing as many equal pairs o; = «y; as possible. This implies
that 41 > @1 > -+ > 9 > ai. For example, if a = (6,5,4,4,4,3,2,2,1) and
v =(6,6,5,4,4,3,3,2,2), then @ = (4,1) and ¥ = (6,3). Now define real numbers
C1,...,Ck by

1 ... 1 qt 1
/’Y\l_al al_ak

1 . 1 1
Ak —aQ1 Vk—ak

Notice that the matrix [ﬁ] is invertible because its determinant is equal to
(IL,;(G = aj))*l(]‘[m(ai —a;)(y; — 7:))- The following proposition is inspired
by and answers a question from the referee, who suggested that exactly 2™ real
solutions x € R™ exist when v; > a3 > -+ > 7, > ap.

Proposition 1. Assume that v1 > o1 > -+ > v, > o,. Then each real number ¢,
is strictly positive. The matriz D 4+ xx* has eigenvalues v if and only if

Z |z = ¢p

Jio=ap
for each 1 <p <k, and z; = 0 whenever o; & {Q1,...,0x}.

Proof. The characteristic polynomial of the matrix D + xx* is given by P(T) =
(Hj(aj - T)) (1 +22; O'j%';) Suppose «; & {@,} and let m be the number of
occurrences of o; in . Since a; occurs at least m times in v, it must be a root of
P(T) of multiplicity at least m, which is possible only if z; = 0 whenever «; = «;.
It is enough to prove the proposition after removing all occurrences of o; from o
and equally many occurrences of o; from . We may therefore assume that if an
eigenvalue ~; is also found in «, then a contains more copies of «; than .

It follows from the expression for P(T') that the requirement that ~ is the list

of roots of P(T) is equivalent to a system of linear equations in |z1|?, ..., |z, |%. If
Qp_1 > 0y = -+ = Qg > Qq41, then each of these equations has the same coefficient
in front of |z,|%, ..., |z4|?, so this group of unknowns can be replaced with its sum.

We do this explicitly by discarding apy1,...,04 from o and vp41,...,74 from 7,
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which replaces |z,|* + - -+ + |z4]? with |z,|? in the equations. This reduces to the
situation where o = @ and v = 7, in which case D + xx* has eigenvalues + if and
only if |z;|? = ¢; for each i. It remains to show that ¢; > 0.

We first note that this is true for at least one choice of eigenvalues 7. In fact, if
x € C" is any vector with non-zero coordinates and a; > - -+ > «, then the list
of eigenvalues of the matrix D + xx* contains none of the numbers «;. By Weyl’s
inequalities, we must therefore have v; > oy > --- > v, > a;, and the numbers ¢;
defined by v are strictly positive because ¢; = |x;|%. If some choice of eigenvalues
v with v4 > a1 > --- > 7, > ,, results in non-positive real numbers c;, then by
continuity one may also choose v such that cq,...,¢, > 0 and ¢; = 0 for some j.
But then for any vector x with |z;|* = ¢; for each 4, a; is in the list of eigenvalues
v of the matrix D 4 xx*, a contradiction. This shows that c; > 0 for each j and
finishes the proof. O

Finally, we need the following statement, which is equivalent to the Claim proved
in [5, p. 30].

Lemma 3 (Fulton). Let a(1),...,a(m) be weakly decreasing n-tuples of real num-
bers which satisfy (>n). Suppose that for some sequence (I(1),...,I(m)) € Sf(m)
we have Y o Yicr(s) @i(s) = 0. For 1 < s < m we let o/(s) be the sequence of
a;i(s) fori € I(s) and let o (s) be the sequence of o (s) for i & I(s), both in weakly
decreasing order. Then {a/(s)} satisfy (>¢) and {a”(s)} satisfy (bn—t).

We prove that the inequalities () and (<) are sufficient by a ‘lexicographic’
induction on (n,r). As the starting point we take the cases where r = 0, which are
already known [8, 1, 10], [4, Thm. 17]. For the induction step we let 1 < r < n be
given and assume that the inequalities are sufficient in all cases where n is smaller,
as well as the cases with the same n and smaller r. Using this hypothesis, we start
by proving the following fact. Given two decreasing n-tuples o and (3, we write
a > g if a; > (; for all 7.

Lemma 4. Let 8, v, and «(2),...,a(m) be weakly decreasing n-tuples with 3 > =,
such that B, a(2),...,a(m) satisfy (>n) and v, @(2),...,a(m) satisfy (<y,). There
exists a decreasing n-tuple (1) such that 8 > a(1) > v and a(1),...,a(m) satisfy
both (>p) and (<n,.).

Proof. We start by decreasing some entries of § in the following way. First decrease
Bn until an inequality (>,) becomes an equality, or until 8, = ~,. If the latter
happens, then we continue by decreasing (3, —1 until an inequality (>,) becomes an
equality, or until 8,_1 = 7,—1. If the latter happens we continue by decreasing
OBn—a2, etc. If we are able to decrease all entries in § so that § =, then we can use
a(l) =+~.

Otherwise we may assume that for some sequence (I(1),...,I(m)) € R}(m)
we have an equality >, ;) 8i + >, Dici(s) @i(s) = 0. For each s > 2 we let
o/(s) be the decreasing t-tuple of numbers «;(s) for i € I(s), and we let a”(s)
be the decreasing (n — t)-tuple of numbers «;(s) for i & I(s). Similarly we define
decreasing tuples 3" = (8:)ic11), 8" = (Bi)igrq1), and v = (7i)igr(1)- By Lemma 3
we know that 3, a/(2),...,a'(m) satisfy (>;) and that 5", a”(2),...,a" (m) satisfy
(>n—¢). In particular, since the entries of the ¢-tuples add up to zero, we can find
Hermitian ¢ x ¢t matrices A’(1),..., A’(m) with eigenvalues 7',/ (2), ...,/ (m) such
that > A'(s) = 0.
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We claim that the (n — t)-tuples v”,a”(2),...,a” (m) satisty (<,—¢,). This is
clear if n —t < r. Otherwise set J(s) = {n+1—1¢ | i & I(s)}. Since A(J(s))
is the conjugate partition of A(I(s)), it follows that (J(1),...,J(m)) € RI_,(m).
For any sequence (P(1),...,P(m)) € R?~*""(m), we obtain from Lemma 1 that
the sequence (J(1)p(y,--.,J(m)pn)) belongs to S7~"(m). Notice that if J(s) =
{j1 < ja < -+ < jn—t}, then a4y ,(s) = any1-j,(s). The claim therefore
follows because

Z /77lzlft+1fp+z Z O‘Zﬂ%lfp(s) =

peP(1) s=2 pcP(s)
Z Yn+1—j5 + Z Z OénJrlfj(S) < 0.

JEJ(W)p() s=2 jEJ(s)p(s)

By induction on n there exists a decreasing (n — t)-tuple o (1) such that g >
a’(1) > 4" and &”(1),...,a”(m) satisfy both of (>,—;) and (<,—¢). By the
cases of Theorem 1 that we assume are true by induction, we can find Hermitian

(n—t) x (n —t) matrices A”(1),..., A”(m) with eigenvalues (1), ...,a” (m) and
with positive semidefinite sum of rank at most r. We can finally take a(1) to be
the eigenvalues of A'(1) @ A”(1). O

We can now finish the proof that the inequalities of Theorem 1 are sufficient. Let
v = (az2(1),a3(1),...,a,(1), M) for some large negative number M < 0. We claim
that when M is sufficiently small, the n-tuples v, a(2),...,a(m) satisfy (<,,r—1).
In fact, let (P(1),...,P(m)) € R} " (m). If 1 € P(1) then the inequality for
this sequence holds by choice of M. Otherwise we have that (Q, P(2),...,P(m)) €
Ry ™" (m) where Q@ = {p—1|p € P(1)}, and the required inequality follows because

ZanJrlfq(l)*'Z Z ant1-p(s) < 0.

q€Q s=2 p€eP(s)

By Lemma 4 we may now find a decreasing n-tuple &(1) with a(1) > &(1) >
v, such that &(1),(2),...,a(m) satisfy (>,) and (<,,—1). By induction on r
there exist Hermitian n x n matrices A(1), A(2),..., A(m) with eigenvalues @(1),
a(2),...,a(m), such that A(1)+ A(2) +---+ A(m) is positive semidefinite of rank
at most r — 1. Finally, using Lemma 2 and the choice of v we may find a Hermitian
matrix A(1) with eigenvalues a(1) such that A(1) — A(1) is positive semidefinite of
rank at most 1. The matrices A(1), A(2),..., A(m) now satisfy the requirements.

3. MINIMALITY OF THE INEQUALITIES

In this section we prove that when r» > 1 and m > 3, the inequalities (}), (by,),
and (<, ) are independent, thereby proving the last statement of Theorem 1. It is
enough to show that for each inequality among (>,) or (<, ), there exist strictly
decreasing n-tuples «(1), ..., a(m) such that the given inequality is an equality and
all other inequalities (>,,) and (<) are strict. In addition we must show that for
each1l < i <n—1thereexist a(l) = (a1(1) > > (1) = a1 (1) > -+ > an(l))
and strictly decreasing n-tuples a(2),...,a(m), such that all inequalities (>,) and
(<n,r) are strict.
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We start with the latter case. If n = 2 we can take «(1) = (0,0) and a(s) =
(2,—1) for 2 < s < m. For n > 3, it was shown in [3, Lemma 1] that the n-
tuples 5(1) = B(2) = --- = f(m) = (n—1,n—3,...,3 —n,1 — n) satisfy that
PO Yici(s) Bi(s) = 2 for all sequences (I(1),...,1(m)) € R}'(m) of subsets of
cardinality ¢ < n. In fact, this follows because Y .-, Dicrs)t=tn—1t)+ m(*5).
Using this fact, one easily checks that both (>,) and (<) are strict for a(1) =
(n=1,n—3,...,n—2i,n—2i¢,...,3—n,1 —n), with n — 2¢ as the ith and 7 + 1st
entries, and a(2) =---=a(m) = (n,n—3,n—5,...,3—n,1 —n).

Now consider an inequality from (>,), given by a sequence (I(1),...,I(m)) €
RP(m). By [10, Thm. 9] we can choose strictly decreasing n-tuples a(1),...,a(m)
such that 377", 370 ai(s) = 2201, Doic (s @i(s) = 0 and all other inequalities
(>p) are strict. If (P(1),..., P(m)) € R2?~"(m) then we have (Q, P(2),...,P(m)) €
RY(m) where Q = {p+r | p € P(1)}. Since the negated n-tuples &(1),...,&(m)
given by a(s) = (—an(s) > -+ > —ai(s)) must satisfy (>,), we obtain that
Z;n:l Epep(s) Ofn+17p(5) < quQ Oén+1fq(1)+22n:2 Zpep(s) Oén+1fp(5) < 0. This
shows that the inequalities (<, ) are strict. If ¢ < n we may finally replace o, (1)
with a;, (1) + €, where io & I(1), to obtain that Y. > | a;(s) > 0.

At last we consider an inequality of (<, ) given by a sequence (P(1),...,P(m)) €
R»~"(m). We once more apply [10, Thm. 9] to obtain strictly decreasing (n — r)-
tuples 5(1),...,B(m) such that 370", 37077 By(s) = 320, 3 ,cprs) Bols) = 0,
and all other inequalities of (>,_,) are strict. Set a(s) = (N +r, N +r — 1,
ooy N+ 1,—Bn-r(8),...,—B1(s)) for 1 < s < m, where N > 0 is a large num-
ber. Then the n-tuples a(1),...,a(m) strictly satisfy all inequalities from (<, ),

except for the equalities 37", D271 cnt1-p(s) = 3001 2o e ps) @nt1-p(s) = 0.
We must show that Y ", Yici(s) @i(s) > 0 for every sequence (I(1),...,1(m)) €
R(m). If I(1) N [r] # O then this follows from our choice of N. Otherwise
we have (J,I(2),...,I(m)) € R} "(m) where J = {i —r | i € I(1)}. Since
ai(s) > —Bn-rt1-i(s) for i € [n — r], we obtain that Y .-, Dici(s) ils) >
ZieJ(_ﬂnfrJrlfi(l)) + Z;n:z Ziej(s)(_ﬂnfrJrlfi(S)) > 0. Finally, if z # n —r
we replace ap41—po (1) With apt1-p(1) — €, po & P(1), to obtain a strict inequal-
ity D20y D op—1 @nt1-p(s) < 0. This completes the proof that the inequalities are
independent.
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