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Abstract. We introduce a mutation algorithm for puzzles that is a three-

direction analogue of the classical jeu de taquin algorithm for semistandard
tableaux. We apply this algorithm to prove our conjectured puzzle formula for
the equivariant Schubert structure constants of two-step flag varieties. This

formula gives an expression for the structure constants that is positive in the
sense of Graham. Thanks to the equivariant version of the ‘quantum equals
classical’ result, our formula specializes to a Littlewood-Richardson rule for
the equivariant quantum cohomology of Grassmannians.

1. Introduction

In 1999 Allen Knutson circulated a conjecture stating that any Schubert struc-
ture constant of the cohomology ring of a partial flag variety X = GL(n)/P can be
expressed as the number of puzzles that can be created using a list of triangular
puzzle pieces with matching side labels [21]. While this conjecture was proved in the
special case where X is a Grassmann variety [24, 23], Knutson discovered counter
examples to his general conjecture. In later work by Kresch, Tamvakis, and the
author [9] it was proved that the (3 point, genus zero) Gromov-Witten invariants
of Grassmannians are special cases of the Schubert structure constants of two-step
flag varieties Fl(a, b;n). In fact, the map that sends a rational curve to its kernel-
span pair [7] provides a bijection between the curves counted by a Gromov-Witten
invariant and the points of intersection of three general Schubert varieties in a two-
step flag variety. Supported by computer verification, it was suggested in [9] that
Knutson’s conjecture might correctly predict the Schubert structure constants of
two-step flag varieties. This case of the conjecture has recently been proved [8]. A
different positive combinatorial formula for the cohomological structure constants
of two-step flag varieties had earlier been proved by Coşkun [13]. See also [22] for
a relation between puzzles and Belkale-Kumar coefficients.

The cohomology ring of a homogeneous space X = G/P generalizes to the equi-
variant cohomology ring H∗

T (X;Z), whose structure incorporates the action of a
torus T . The Schubert structure constants of this ring are elements of H∗

T (pt,Z),
which can be identified with the polynomial ring Z[y1, . . . , yn]. Graham has proved
that the equivariant Schubert structure constants are polynomials with positive
coefficients in the differences yi+1 − yi [18]. Knutson and Tao’s paper [23] proves
an equivariant generalization of the puzzle rule for Grassmannians that makes Gra-
ham’s positivity result explicit. The equivariant puzzles in this rule are composed
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by triangular puzzle pieces as well as rhombus shaped equivariant puzzle pieces.
The equivariant pieces are required to be vertical, and each equivariant piece con-
tributes a weight yj − yi with i < j, where the values of i and j depend on the
location of the equivariant piece in the puzzle. Knutson and Tao define the weight
of an equivariant puzzle to be the product of the weights of its equivariant pieces,
and prove that any equivariant Schubert structure constant of a Grassmann variety
is equal to the sum of the weights of a collection of equivariant puzzles. A different
Graham-positive formula for the equivariant structure constants of Grassmannians
was later obtained independently by Molev [31] and Kreiman [27]. In addition,
Knutson has recently generalized the puzzle rule for Grassmannians to equivariant
K-theory [20].

Efforts to prove Knutson’s conjecture more than a decade ago resulted in a con-
jectured Graham-positive formula for the equivariant Schubert structure constants
of any two-step flag variety Fl(a, b;n), which generalizes both the equivariant puzzle
rule for Grassmannians and the cohomological puzzle rule for two-step flag varieties.
This conjecture was published in Coşkun and Vakil’s survey [14] together with a
suggested correction of Knutson’s cohomological conjecture for three-step flag vari-
eties. The main result in the present paper is a proof of the conjectured equivariant
puzzle formula for two-step flag varieties (Theorem 2.1).

Our paper [10] with Mihalcea proves that the equivariant Gromov-Witten in-
variants of Grassmannians are special cases of the equivariant Schubert structure
constants of two-step flag varieties, thus generalizing the ‘quantum equals classical’
result from [9]. Our puzzle formula therefore specializes to a Littlewood-Richardson
rule for the equivariant quantum cohomology of Grassmannians that accords with
Mihalcea’s result [29] that the equivariant Gromov-Witten invariants satisfy Gra-
ham positivity. While different formulas for equivariant Gromov-Witten invariants
are known [28, 30, 3], positive formulas have not been available earlier for either
the equivariant cohomology of two-step flag varieties or the equivariant quantum
cohomology of Grassmannians.

The main combinatorial construction in our paper is an algorithm called muta-
tion of puzzles, which is analogous to Schützenberger’s jeu de taquin algorithm for
semistandard Young tableaux. Recall that the jeu de taquin algorithm operates
on Young tableaux that contain a flaw in the form of an empty box, and works
by making natural changes to move the empty box to a different location in the
tableau. Our mutation algorithm similarly operates on flawed puzzles. A flaw in
a puzzle can be a pair of gashes on the boundary, a marked scab, or a temporary
puzzle piece. Gashes and scabs are also present in Knutson and Tao’s work [23],
whereas temporary puzzle pieces are new in this paper. Flawed puzzles that contain
a gash pair or a marked scab can be mutated in exactly one way. On the other
hand, a puzzle containing a temporary puzzle piece has exactly three mutations,
which correspond to moving the temporary piece in three different directions. The
mutation algorithm therefore organizes the set of all flawed puzzles into a trivalent
graph with leaves (see Figure 4.9). In contrast, the jeu de taquin algorithm offers
only two choices for moving an empty box in a tableau. Our definition of flawed
puzzles allows equivariant puzzle pieces to appear in arbitrary orientations and also
allows the shape of a puzzle to be a hexagon. This ensures that rotations of puzzles
are again puzzles, which in turn simplifies the definition of the mutation algorithm.
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The changes made to a puzzle during a mutation are based on the following
observation. Suppose that a puzzle contains a gash, i.e. the labels of two puzzle
pieces next to each other do not match. Then there is at most one way to replace
either of these pieces with a different puzzle piece such that the gash disappears and
only one new gash is created by the replacement. This provides a natural method
for moving a gash around in a puzzle, which we call propagation of the gash. Given
a flawed puzzle, the mutation algorithm first resolves the flaw by replacing it with
two gashes. Both of these gashes are then propagated as far as possible. Our main
technical result states that the two gashes will propagate to the same location in
the puzzle, where they create a new flaw. While the mutation algorithm itself can
be formulated in terms of general principles, the proof that it works requires some
case by case analysis. For example, the proof of the above-mentioned technical
result is a winding number argument that is justified with case checking. Even so,
our construction of the mutation algorithm applies without change to the puzzles
appearing in the conjectured formula for the cohomology of three-step flag varieties;
this will be explained in [5] together with the consequences for this conjecture. It is
natural to speculate that a correction of Knutson’s general conjecture for GL(n)/P ,
if one exists, should be formulated in terms of puzzles that can be mutated.

Thanks to an idea that originates in Molev and Sagan’s work on products of
factorial Schur functions [32], any formula for the equivariant Schubert structure
constants of a homogeneous space X = G/P can be proved by verifying certain
recursive identities associated to multiplication with divisor classes, together with
showing that the formula is compatible with restriction of equivariant Schubert
classes to torus-fixed points [26, 1, 4]. This method was used in [23]. Molev and
Sagan’s method requires the verification of 2r families of recursive identities, where
r is the rank of the Picard group of X. By working with equivariant cohomology
with coefficients in the polynomial ring R = C[δ0, δ1, δ2], we combine the 4 families
of identities required for a two-step flag variety into a single recursive identity that
involves powers of a 12-th root of unity ζ ∈ C. The proof that this identity is
satisfied by the constants defined by our puzzle formula involves assigning an aura
in the ring R to various objects related to puzzles. Here the powers of ζ are used as
unit vectors whose directions correspond to puzzle angles, and the variables δ0, δ1,
and δ2 correspond to simple puzzle labels. The recursive identity then follows from
the mutation algorithm together with simple identities among auras. Our proof
of the puzzle formula is logically self-contained starting from basic properties of
equivariant cohomology [26, 2] and the Monk/Chevalley formula [12, 33].

The proofs of the puzzle formulas in [23, 8] rely on bijections of puzzles to estab-
lish certain basic identities. These bijections are formulated in terms of propagation
rules stating that a small region of a puzzle with a particular look must be changed
in a specified way. Knutson and Tao’s bijection requires around 10 rules, while the
bijection in [8] uses a list of 80 propagation rules. In contrast the mutation algo-
rithm is defined without lists of rules. In Section 4.11 we explain how mutations of
puzzles can be used to give a new construction of the bijections from [23, 8]. This
construction involves that some areas of a puzzle can be changed by more than
one mutation, which, at least for two-step puzzles, is simpler than giving a direct
description of the end result of the bijection. We also sketch how the breathing con-
struction of Knutson, Tao, and Woodward [24] can be carried out using mutations;
this application was pointed out by the referee.
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This paper is organized as follows. In Section 2 we state our puzzle formula
for the equivariant cohomology of two-step flag varieties and specialize it to the
equivariant Gromov-Witten invariants of Grassmannians. Section 3 explains the
recursive identity required to prove the formula. Section 4 starts with an informal
introduction of the mutation algorithm, after which we give the precise definitions
and prove that the mutation algorithm works as required. Finally, Section 5 defines
auras associated to various objects in puzzles and uses this concept to prove our
main result.

Parts of the work on writing this paper was carried out during a visit to the
University of Copenhagen during the summer of 2013. We thank the Mathematics
Department in Copenhagen for their hospitality and for providing a friendly and
stimulating environment. We thank Andrew Kresch and Kevin Purbhoo for many
inspiring discussions about puzzles. We finally thank the referee for many helpful
comments and suggestions, including the above-mentioned relation to breathing of
puzzles.

2. The equivariant puzzle formula

2.1. Two-step flag varieties. Fix integers 0 ≤ a ≤ b ≤ n and let X = Fl(a, b;n)
be the variety of two-step flags A ⊂ B ⊂ Cn such that dim(A) = a and dim(B) = b.
A 012-string for X is a sequence u = (u1, u2, . . . , un) ∈ Z

n consisting of a zeros,
b − a ones, and n − b twos. The Schubert varieties in X are indexed by these
012-strings. Let e1, e2, . . . , en be the standard basis for C

n, let B ⊂ GLn(C) be
the Borel subgroup of upper triangular matrices, and let B− ⊂ GLn(C) be the
opposite Borel subgroup of lower triangular matrices. We also let T = B ∩ B−

be the maximal torus of diagonal matrices. Given any 012-string u for X, we
define the subspaces Au = SpanC{ei | ui = 0} and Bu = SpanC{ei | ui ≤ 1}
of Cn. Then (Au, Bu) is a point in X, and the T -fixed points in X are exactly

the points of this form. Let Xu = B.(Au, Bu) the Schubert variety defined by u,

and let Xu = B−.(Au, Bu) the opposite Schubert variety defined by u. We have
dim(Xu) = codim(Xu, X) = ℓ(u) = #{i < j | ui > uj}.

Let H∗
T (X;Z) denote the T -equivariant cohomology ring of X. An introduction

to this ring can be found in [2]. Each T -stable closed subvariety Z ⊂ X defines
an equivariant class [Z] ∈ H2d

T (X;Z), where d = codim(Z,X). Pullback along the
structure morphism X → {pt} gives H∗

T (X;Z) the structure of an algebra over the
ring Λ := H∗

T (pt;Z), and H∗
T (X;Z) is a free Λ-module with a basis consisting of the

Schubert classes [Xu] indexed by all 012-strings for X. The equivariant Schubert
structure constants of X are the unique classes Cw

u,v ∈ Λ defined by the equation

(1) [Xu] · [Xv] =
∑

w

Cw
u,v[X

w] ∈ H∗
T (X;Z) ,

where the sum is over all 012-strings w for X. Let
∫
X

: H∗
T (X;Z)→ Λ denote the

pushforward along the map X → {pt}. For arbitrary 012-strings u and v for X we
then have

∫
X
[Xu] · [Xv] = δu,v. It follows that the equivariant structure constants

of X are given by

Cw
u,v =

∫

X

[Xu] · [Xv] · [Xw] .

Each basis element ei for C
n defines a one-dimensional T -representation Cei,

where the action is given by (t1, . . . , tn).ei = tiei. This representation can be
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regarded as a T -equivariant line bundle over a point. We let yi = −c1(Cei) ∈ Λ
be the corresponding equivariant Chern class with negated sign.1 We then have
Λ = Z[y1, . . . , yn]. Since H∗

T (X;Z) is a graded ring, it follows that each structure
constant Cw

u,v ∈ Λ is a homogeneous polynomial of total degree ℓ(u) + ℓ(v) −
ℓ(w). The constants Cw

u,v ∈ Z for which ℓ(u) + ℓ(v) = ℓ(w) are the structure
constants of the ordinary cohomology ring H∗(X;Z). These constants are given
by the cohomological puzzle rule proved in [8]. A result of Graham [18] asserts
that every equivariant structure constant Cw

u,v ∈ Λ is a polynomial with positive
coefficients in the differences yi+1−yi, i.e. we have C

w
u,v ∈ Z≥0[y2−y1, . . . , yn−yn−1].

We proceed to state our manifestly positive formula for these constants.

2.2. Equivariant puzzles. A puzzle piece is a figure from the following list.

0
0 0

1
1 1

2
2 2

3
1 0

4
2 1

5
2 0

6
2 3

7
4 0

0 1

01

1 2

12

0 2

02

3 2

32

0 4

04

3 4

34

0 6

06

7 2

72

The triangular puzzle pieces come from the cohomological puzzle rule [8], which
was originally conjectured by Knutson [21]. In Knutson’s notation the side labels
were parenthesized strings of the integers 0, 1, and 2. The labels that are greater
than two can be translated to such strings as follows:

3 = 10, 4 = 21, 5 = 20, 6 = 2(10), 7 = (21)0 .

The labels 0, 1, 2 are called simple and the other labels 3, 4, 5, 6, 7 are called
composed. Notice that a triangular puzzle piece is uniquely determined if the labels
on two of its sides are known.

The rhombus-shaped puzzle pieces are called equivariant puzzle pieces. The first
equivariant piece comes from Knutson and Tao’s puzzle formula for the equivariant
structure constants of Grassmannians [23]. In fact, the first five equivariant pieces
are very natural from the statement of this formula together with the cohomological
puzzle rule for two-step flag varieties. The last three equivariant pieces are more
surprising, as each of them embeds the same simple label on all sides, which appears
to violate the philosophy of Knutson’s original conjecture [21]. Puzzle pieces may
be rotated arbitrarily, but they may not be reflected. An equivariant puzzle piece
is called vertical if it is oriented as in the above list.

Define a triangular puzzle to be any equilateral triangle made from puzzle pieces
with matching labels, i.e. any two puzzle pieces next to each other assign the same
label to the side that they share. We also demand that all labels on the boundary
of the triangle are simple, and that the triangle is ‘right side up’, i.e. its bottom
border is a horizontal line segment. The sides of the puzzle pieces in a puzzle are
called puzzle edges, and the three sides of the boundary of the puzzle are called
border segments. We will say that a triangular puzzle P has boundary △u,v

w , also
written as ∂P = △u,v

w , if u is the string of labels on the left border segment, v is

1The sign ensures consistency with standard notation for double Schubert polynomials.
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the string of labels on the right border segment, and w is the string of labels on the
bottom border segment, all read in left to right order.

The triangular puzzle P is called an equivariant puzzle for X if all its equivariant
pieces are vertical and the boundary of P is△u,v

w where u, v, and w are 012-strings
for X. The composed labels in any puzzle are uniquely determined by the simple
labels, so we will often omit them in pictures of puzzles. The following are two
pictures of the same equivariant puzzle for the variety Fl(2, 4; 6), with and without
the composed labels. This puzzle has boundary △u,v

w where u = (1, 1, 0, 2, 0, 2),
v = (0, 2, 1, 2, 1, 0), and w = (1, 2, 0, 2, 1, 0).

5

0 2

5 4

0 2 4

1 1 2

1 2 0 2 1 0

2 0

0 20 2

2 0 20 2 1

0 2 0 00 2 7 2

1 3 1 2 01 4 1 2 1

1 1 3 1 1 01 4 1 4 1 0

0 2

0 2

1 1 2

1 2 0 2 1 0

2 0

0 20 2

2 0 20 2 1

0 2 0 00 2 2

1 1 2 01 1 2 1

1 1 1 1 01 1 1 0

Given an equivariant puzzle P for X, we number the edges of the bottom border
segment from 1 to n, starting from the left. Each equivariant puzzle piece q in
P has a weight defined by wt(q) = yj − yi, where i is the number of the bottom
edge obtained by following a south-west line from q, and j is the bottom edge
number obtained by following a south-east line from q. For example, the following
equivariant puzzle piece has weight y6 − y3.

1 2 3 4 5 6 n

The weight of the equivariant puzzle P is the product of the weights of all equivari-
ant puzzle pieces in P .

Our main result is the following Graham-positive combinatorial formula for the
equivariant Schubert structure constants of X, which generalizes both Knutson and
Tao’s equivariant rule for Grassmannians [23] and the cohomological puzzle rule for
two-step flag varieties [8]. We conjectured this formula more than 10 years ago,
and our conjecture was printed in Coşkun and Vakil’s survey [14].2

2The statement in [14] lacks two of the equivariant puzzle pieces; the author of the present

paper is entirely responsible for this.
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Theorem 2.1. Let u, v, and w be 012-strings for the two-step flag variety X =
Fl(a, b;n). Then the equivariant Schubert structure constant Cw

u,v ∈ Λ is given by

Cw
u,v =

∑

∂P=△
u,v
w

wt(P )

where the sum is over all equivariant puzzles P for X with boundary △u,v
w .

Example 2.2. ForX = Fl(2, 4; 5) we have [X01201]·[X10102] = [X12010]+[X11200]+
(y4 − y1)[X

12001] + (y5 + y4 − y3 − y1)[X
10210] + (y4 − y3)(y4 − y1)[X

10201]. The
puzzles required to compute this product are:

1

1 0

1 0

1 2 0

1 2 0 1 0

1 1

0 0 0

2 11 1 1

1 2 01 2 0 0

0 0 0 0 2 2

1

1 0

1 0

1 0 0

1 1 2 0 0

1 1

0 0 0

2 11 1 1

1 2 0 01 0 0

0 0 2 2 2 2

1

0 1

1 2 0

1 2 0 0 1

1 1

0 11 0

2 0 11 0 1

1 21 2 2 0

0 0 0 00 0 2

1

0 1

1 1 0

1 0 2 1 0

1 1

0 11 0

2 0 11 0 1

1 2 0 01 0 0

0 0 20 2 2 2

1

1 0

1 1 0

1 0 2 1 0

1 1

0 0 0

2 1 01 0 1

1 2 1 01 0 1 0

0 0 20 2 2 2

1

0 1

1

1 0 2 0 1

1 1

0 11 0

2 0 11 0 1

1 2 01 0 2 0

0 0 2 00 2 0 2

2.3. Equivariant quantum cohomology. Let X = Gr(m,n) be the Grassmann
variety of m-dimensional subspaces of C

n. By identifying X with the variety
Fl(m,m;n), we may index the Schubert varieties in X by strings λ = (λ1, . . . , λn)
containing m zeros and n −m twos. Each such string λ can be identified with a
Young diagram contained in the rectangle with m rows and n−m columns. More
precisely, λ defines a path from the lower-left corner to the upper-right corner of
this rectangle, where the i-th step is vertical if λi = 0 and horizontal if λi = 2, and
λ is identified with the portion of the rectangle that is north-west of this path. For

example, we identify λ = (2, 0, 2, 2, 0, 2, 0, 2) with the Young diagram .

0
2

0
2

2
0
2 2

Given a degree d ∈ N, let Md =M0,3(X, d) denote the Kontsevich moduli space
of 3-pointed stable maps to X of genus zero and degree d. This variety parametrizes
morphisms of varieties f : C → X defined on a tree of projective lines C with three
ordered marked non-singular points, such that f∗[C] = d [X ] ∈ H2(X;Z), and
any component of C that is mapped to a single point in X contains at least three
special points, where a special point is either marked or singular. The variety Md

is equipped with evaluation maps evi : Md → X for 1 ≤ i ≤ 3, where evi sends a
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stable map to the image of the i-th marked point in its domain. We refer to [17]
for a careful construction of this space.

The equivariant quantum cohomology ring QHT (X) is an algebra over the ring
Λ[q], which as a module is defined by QHT (X) = H∗

T (X;Z) ⊗Λ Λ[q]. The multi-
plicative structure of QHT (X) is determined by

[Xλ] ⋆ [Xµ] =
∑

ν,d≥0

Nν,d
λ,µ q

d [Xν ] ,

where the structure constants Nν,d
λ,µ ∈ Λ are the equivariant Gromov-Witten invari-

ants defined by

Nν,d
λ,µ =

∫

Md

ev∗1[X
λ] · ev∗2[X

µ] · ev∗3[Xν ] .

It is a non-trivial fact that this construction defines an associative ring [34, 25, 19].

The structure constant Nν,d
λ,µ is a homogeneous polynomial in Λ = Z[y1, . . . , yn] of

total degree |λ| + |µ| − |ν| − nd. If this degree is zero, then Nν,d
λ,µ is the number of

stable maps f ∈Md for which ev1(f), ev2(f), and ev3(f) belong to (fixed) general
translates of the Schubert varieties Xλ, Xµ, and Xν .

In [7] we introduced the kernel and span of a rational curve in a Grassmann
variety as a tool to study its Gromov-Witten invariants. The kernel of a stable
map f : C → X is defined as the intersection of the m-planes in its image, and the
span of f is the linear span of these m-planes:

Ker(f) =
⋂

V ∈f(C)

V and Span(f) =
∑

V ∈f(C)

V .

Define the two-step flag variety Yd = Fl(m − d,m + d;n) and the three-step flag
variety Zd = Fl(m − d,m,m + d;n); these varieties can be regarded as empty if
d > min(m,n − m). Let p : Zd → X and h : Zd → Yd be the projections. It

was proved in [9] that, when Nν,d
λ,µ has degree zero, the map f 7→ (Ker(f), Span(f))

defines an explicit bijection between the set of stable maps counted by Nν,d
λ,µ and

the set of points in the intersection of general translates of the Schubert varieties

h(p−1(Xλ)), h(p−1(Xµ)), and h(p−1(Xν)) in Yd. It follows that Nν,d
λ,µ is equal to

a classical triple intersection number of Schubert varieties in Yd. The following
equivariant generalization of this result was obtained in [10, Thm. 4.2].

Theorem 2.3 ([9, 10]). We have Nν,d
λ,µ =

∫
Yd

h∗p
∗[Xλ] · h∗p

∗[Xµ] · h∗p
∗[Xν ].

Let Jd(λ) denote the 012-string obtained from λ by replacing the first d oc-
currences of 2 and the last d occurrences of 0 with 1. For example, we obtain

J2((2, 0, 2, 2, 0, 2, 0, 2)) = (1, 0, 1, 2, 1, 2, 1, 2). We then have h(p−1(Xλ)) = Y
Jd(λ)
d ,

i.e. h(p−1(Xλ)) is the (opposite) Schubert variety in Yd defined by the 012-string
Jd(λ). Furthermore, the varieties p−1(Xλ) and h(p−1(Xλ)) have the same dimen-
sion if and only if the first d occurrences of 2 in λ come before the last d occur-
rences of 0; equivalently, the Young diagram of λ contains a d × d rectangle. Let
λ∨ = (λn, λn−1, . . . , λ1) denote the string λ in reverse order. Then Xλ is a translate

of Xλ∨

. We obtain the following consequence of Theorem 2.1 and Theorem 2.3.
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Corollary 2.4. The Gromov-Witten invariant Nν,d
λ,µ is non-zero only if each of the

Young diagrams of λ, µ, and ν∨ contains a d× d rectangle. In this case we have

Nν,d
λ,µ =

∑

P

wt(P )

where the sum is over all equivariant puzzles P for Yd with boundary △Jd(λ),Jd(µ)

Jd(ν∨)∨
.

Proof. If the Young diagram of λ, µ, or ν∨ does not contain a d× d rectangle, then
one of the classes h∗p

∗[Xλ], h∗p
∗[Xµ], or h∗p

∗[Xν ] is equal to zero. On the other
hand, if each of these Young diagrams contain a d× d rectangle, then we obtain

Nν,d
λ,µ =

∫

Yd

h∗p
∗[Xλ] · h∗p

∗[Xµ] · h∗p
∗[Xν ]

=

∫

Yd

[Y
Jd(λ)
d ] · [Y

Jd(µ)
d ] · [(Yd)Jd(ν∨)∨ ] = C

Jd(ν∨)∨

Jd(λ),Jd(µ)
,

and the result follows from Theorem 2.1. �

Example 2.5. In the equivariant quantum cohomology ring of X = Gr(2, 5) we
have

[X ] ⋆ [X ] =

(y5 − y3)(y5 − y1)(y2 − y1) [X ] + (y5 − y1)
2 [X ] + (y5 − y1) [X ] +

(y5 − y3)(y2 − y1) q + (y5 − y1) q [X ] + q [X ] + q [X ] .

The last four terms involving q are accounted for by the following puzzles.

1

2

2

1 0 2 2 1

2 1

1 21 0

2 1 21 0 2

0 2 1 21 0 2 2

1 0 2 1 11 0 2 1

1

2

2

1 0 2 2 1

2 1

1 21 0

2 1 21 0 2

0 2 1 11 0 2

1 0 2 2 11 0 2 2 1

1

2

2 2

1 2 0 2 1

2 1

1 21 0

2 1 21 0 2

0 2 21 2 2 2

1 0 0 1 11 0 1

1

2

2

1 2 0 2 1

2 1

1 21 0

2 1 21 0 2

0 0 22 2 2

1 2 0 1 11 2 0 1

1

2

0 2

1 2 0 2 1

2 1

1 21 0

2 1 21 0 2

0 0 1 20 2 2

1 2 1 11 2 2 1

1

2

0 2

1 2 0 2 1

2 1

1 21 0

2 1 21 0 2

0 0 1 10 2

1 2 2 11 2 2 2 1

1

2 2

2 0 1 2

2 1 0 2 1

2 1

1 21 0

2 22 0 2

0 0 20 2 2

1 1 1 11 1 1

1

0 2

1 2 0 2

1 2 2 0 1

2 1

1 21 0

2 0 20 2

0 2 22 2 2

1 1 1 11 1
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3. Recursive equations

An observation that originates in Molev and Sagan’s work [32] shows that all
the equivariant structure constants Cw

u,v are determined by the structure constants
of the form Cw

w,w by a set of recursive identities. This observation was used to
prove the equivariant puzzle rule for Grassmannians [23], and it was extended to
equivariant quantum cohomology in [30]. Molev and Sagan’s recursions apply to
the equivariant structure constants of any homogeneous space Y , and in general
involves 2r families of identities where r is the rank of the Picard group of Y . The
structure constants of the form Cw

w,w are given by a formula of Kostant and Kumar
[26]. In this section we will arrange the recursive identities into a single family,
focusing on the two-step flag variety X = Fl(a, b;n).

For this purpose we will work with T -equivariant cohomology with coefficients in
the polynomial ring R = C[δ0, δ1, δ2]. The variables of this ring correspond to the
simple puzzle labels, and the field of complex numbers C will be utilized as a two-
dimensional real plane where puzzle angles can be encoded. This will later make it
possible to use the triangular geometry of puzzles to prove the required recursive
identities. We have H∗

T (pt;R) = R[y] := R[y1, . . . , yn] where yi = −c1(Cei), and
this ring contains Λ as a subring. Furthermore, the ringH∗

T (X;R) = H∗
T (X;Z)⊗ZR

is an R[y]-algebra with an R[y]-basis consisting of the equivariant Schubert classes
[Xu]. The defining equation (1) for the equivariant structure constants Cw

u,v ∈ Λ is
also valid in H∗

T (X;R).
The Bruhat order on the set of 012-strings for X is defined by u ≤ v if and only

if Xu ⊂ Xv. We will write u → u′ if u′ covers u in the Bruhat order, i.e. we have
u ≤ u′ and ℓ(u′) = ℓ(u) + 1. Equivalently, u′ can be obtained from u by replacing
a connected subsequence in one of the following three ways:

(0, 2m, 1)→ (1, 2m, 0) or (0, 2)→ (2, 0) or (1, 0m, 2)→ (2, 0m, 1) .

Here xm denotes a sequence of m copies of x. Given a covering u→ u′ we set

δ
( u

u′

)
= δui

− δu′

i
,

where i is the smaller index for which ui 6= u′
i. For example, we have δ( 1022111220 ) =

δ0 − δ1 and δ( 1202112201 ) = δ0 − δ2. Finally, given any 012-string u for X we define

Cu =
n∑

i=1

δui
yi ∈ R[y] .

For example, C01021 = δ0y1 + δ1y2 + δ0y3 + δ2y4 + δ1y5.
Set ζ = exp(πi/6) ∈ C. Notice that the odd powers of ζ are unit vectors

perpendicular to puzzle edges.

ζ

ζ3

ζ5

ζ7

ζ9
ζ11

Theorem 3.1. The equivariant Schubert structure constants Cw
u,v of the two-step

partial flag variety X = Fl(a, b;n) satisfy the identities

(2) Cw
w,w =

∏

i<j:wi>wj

(yj − yi)
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in Λ and

(3) (Cuζ
11 + Cvζ

7 + Cwζ
3)Cw

u,v =

ζ5
∑

u→u′

δ
( u

u′

)
Cw

u′,v + ζ
∑

v→v′

δ
( v

v′

)
Cw

u,v′ + ζ9
∑

w′→w

δ

(
w′

w

)
Cw′

u,v

in R[y], for all 012-strings u, v, and w for X. Furthermore, the equivariant struc-
ture constants of X are uniquely determined by these identities, i.e. any family of
classes Cw

u,v that satisfy (2) and (3) are the equivariant structure constants of X.

Theorem 3.1 will be proved at the end of this section after some additional
notation has been introduced. Given a class Ω ∈ H∗

T (X;R) and a 012-string u
for X, we let Ωu ∈ R[y] denote the restriction of Ω to the T -fixed point (Au, Bu).
The following identity is a special case of a formula of Kostant and Kumar [26,
Prop. 4.24(a)].

Lemma 3.2. For any 012-string w for X we have [Xw]w =
∏

i<j:wi>wj

(yj − yi).

Proof. It follows from [16, Ex. 3.3.2] that [Xw]w is the top Chern class of the fiber
of the normal bundle of Xw in X over the point (Aw, Bw). For i 6= j we define
maps γi,j : C → GLn(C) and ϕi,j : C → X by γi,j(s).ek = ek + s δjk ei for all k,
and ϕi,j(s) = γi,j(s).(Aw, Bw). Here δjk is Kronecker’s delta. The tangent space
TwX of X at (Aw, Bw) has the basis {ϕ′

i,j(0) | wi > wj}, and TwX
w has basis

{ϕ′
i,j(0) | wi > wj and i > j}. It follows that the normal space TwX/TwX

w has
basis {ϕ′

i,j(0) | wi > wj and i < j}. Since the torus T acts on TwX by t.ϕ′
i,j(0) =

ti/tj ϕ
′
i,j(0), we obtain c1(Cϕ′

i,j(0)) = yj − yi. This proves the lemma. �

Lemma 3.3. Let Ω ∈ H∗
T (X;R), let u be a 012-string for X, and consider the

expansion Ω · [Xu] =
∑

w dw[X
w] where dw ∈ R[y]. Then dw is non-zero only if

u ≤ w, and we have du = Ωu.

Proof. We have dw =
∫
X
Ω · [Xu] · [Xw] =

∫
X
Ω · [Xu ∩ Xw], and the intersection

Xu ∩ Xw is non-empty if and only if u ≤ w. The last identity follows because
du =

∫
X
Ω · [(Au, Bu)] = Ωu. �

Lemma 3.3 implies that we have Cw
u,w = [Xu]w for arbitrary 012-strings u and

w for X. In particular, the identity (2) follows from Kostant and Kumar’s formula
for [Xw]w. A formula for the more general restrictions [Xu]w has been proved by
Andersen, Jantzen, and Soergel [1, App. D] and by Billey [4].

Let D1 = Xλ(1) and D2 = Xλ(2) be the Schubert divisors on X, defined by the
012-strings λ(1) = (0a−1, 1, 0, 1b−a−1, 2n−b) and λ(2) = (0a, 1b−a−1, 2, 1, 2n−b−1).
We will work with the class D = (δ0 − δ1) [D1] + (δ1 − δ2) [D2] ∈ H∗

T (X;R) that
encodes both of these divisors. We also set C0 = C(0a,1b−a,2n−b) ∈ R[y].

Lemma 3.4. For any 012-string u for X we have

D · [Xu] = (Cu − C0) [X
u] +

∑

u→u′

δ
( u

u′

)
[Xu′

] .

Proof. The equivariant ring H∗
T (X;R) has a natural grading by complex codimen-

sion given by deg [Xw] = ℓ(w), deg(yi) = 1, and deg(δj) = 0. It therefore fol-
lows from Lemma 3.3 that, if the coefficient of [Xw] is non-zero in the expansion
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of D · [Xu], then we have either u = w or u → w. Recall that the classical
Monk/Chevalley formula [12, 33] states that the product [D1] · [X

u] in the ordinary
cohomology ring H∗(X;Z) is equal to the sum of all classes [Xw] for which u→ w
and δ( u

w
) ∈ {δ0 − δ1, δ0 − δ2}, and the product [D2] · [X

u] is the sum of all classes
[Xw] for which u→ w and δ( u

w
) ∈ {δ0 − δ2, δ1 − δ2}. It follows that the coefficient

of [Xw] in D · [Xu] is equal to δ( u
w
) whenever u → w. It remains to show that

Du = Cu − C0. This has been proved in higher generality by Kostant and Kumar
[26, Prop. 4.24(c)]. For completeness we give the following argument from [11, §8].

For m ≤ n we set Cm = SpanC{e1, . . . , em} ⊂ C
n and C

m
X = C

m ×X. There is
a natural sequence of vector bundles over X given by A ⊂ B ⊂ C

n
X → C

b
X → C

a
X ,

where A and B are the tautological subbundles on X and the last two maps are
the projections to the first b and a coordinates in Cn. The Schubert divisors on X

are the zero sections D1 = Z(
∧a
A →

∧a
C

a
X) and D2 = Z(

∧b
B →

∧b
C

b
X). It

follows that

Du = (δ0 − δ1) (c1(C
a
X)− c1(A))u + (δ1 − δ2)

(
c1(C

b
X)− c1(B)

)
u

= δ0
(
c1(C

a)− c1(Au)
)
+ δ1

(
c1(C

b/Ca)− c1(Bu/Au)
)

+ δ2
(
c1(C

n/Cb)− c1(C
n/Bu)

)

= Cu − C0 .

This completes the proof. �

Proof of Theorem 3.1. The identity (2) follows from Lemma 3.2 and Lemma 3.3.
To prove (3), we use Lemma 3.4 and the equivariant structure constants of X to
expand both sides of the associativity relation (D · [Xu]) · [Xv] = D · ([Xu] · [Xv])
in the basis of Schubert classes. Since the coefficient of [Xw] in both sides is the
same, we obtain the identity

(4) (Cu − Cw)C
w
u,v =

∑

w′→w

δ

(
w′

w

)
Cw′

u,v −
∑

u→u′

δ
( u

u′

)
Cw

u′,v .

Similarly, the relation [Xu] · ([Xv] · D) = ([Xu] · [Xv]) · D implies the identity

(5) (Cv − Cw)C
w
u,v =

∑

w′→w

δ

(
w′

w

)
Cw′

u,v −
∑

v→v′

δ
( v

v′

)
Cw

u,v′ .

Finally, the identity (3) is obtained by multiplying both sides of (4) with ζ11,
multiplying both sides of (5) with ζ7, and adding the resulting equations.

We next observe that Cu − Cw is non-zero whenever u 6= w, and Cv − Cw is
non-zero whenever v 6= w. Since both Cu − Cw and Cv − Cw are elements of
the polynomial ring Z[δ0, δ1, δ2, y1, . . . , yn], and the powers ζ11 and ζ7 are linearly
independent over this ring, it follows that the factor (Cuζ

11 + Cvζ
7 + Cwζ

3) =
(Cu − Cw)ζ

11 + (Cv − Cw)ζ
7 of (3) is non-zero whenever u 6= w or v 6= w.

We finally prove that the equivariant Schubert structure constants of X are
uniquely determined by (2) and (3) by descending induction on deg(Cw

u,v) = ℓ(u)+
ℓ(v) − ℓ(w). The basis step is vacuous because deg(Cw

u,v) ≤ 2 dim(X). For the
inductive step, let u, v, and w be given. If u = v = w, then the constant Cw

u,v is
determined by (2). Otherwise notice that all structure constants appearing on the
right side of equation (3) have degree equal to deg(Cw

u,v) + 1, so these constants
are uniquely determined by the induction hypothesis. Since R[y] is a domain and
(Cuζ

11+Cvζ
7+Cwζ

3) 6= 0, we deduce that Cw
u,v is uniquely determined as well. �
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Remark 3.5. The real scalar product of two vectors x, y ∈ C is defined by (x, y) =
Re(xy), and this scalar product has an R-linear extension to the ring R[y]. By
taking the scalar product of both sides of equation (3) with the vector ζ10, we
recover the identity (4) associated to the relation (D· [Xu]) · [Xv] = D·([Xu] · [Xv]),
and by taking the scalar product with ζ8, we recover the identity (5) associated to
the relation [Xu] · ([Xv] · D) = ([Xu] · [Xv]) · D. One may check that the scalar
product of equation (3) with 1 ∈ C results in an identity associated to the relation
([Xu] · D) · [Xv] = [Xu] · (D · [Xv]).

4. Mutations of puzzles

4.1. Puzzles. Define a puzzle to be any hexagon made from puzzle pieces with
matching side labels, such that all boundary labels are simple. In contrast to the
conventions used in [23] we allow all puzzle pieces to be rotated arbitrarily, including
equivariant pieces. This means that rotations of puzzles are again puzzles, which
will be exploited to simplify constructions and proofs. We shall work only with
puzzles whose edges are parallel to the sides of a right-side-up triangle. Define the
dual of a puzzle to be the result of reflecting it in a vertical line and applying the
following substitution to its labels:

0 7→ 2 , 1 7→ 1 , 2 7→ 0 , 3 7→ 4 , 4 7→ 3 , 5 7→ 5 , 6 7→ 7 , 7 7→ 6 .

For example, the following two puzzles are dual to each other.

1 0 1

0 7 1

2 0 0 1 7

0 0 5 1 1

0 0 1 1

0 4 42 0 0

2 0 0 4 42 0 0 2 0

2 2 2 42 0 0 2

0 0 2 2 20 0 0

1 2 1

1 6 2

6 1 2 2 0

1 1 5 2 2

1 1 2 2

2 2 03 3 2

2 0 2 2 03 3 2 2 0

0 2 2 03 0 0 0

2 2 20 0 0 2 2

The line segments that make up the boundary of a puzzle are called border
segments. We allow border segments to have length zero. In particular, the shape
of a puzzle may be an equilateral triangle.

A gashed puzzle is a hexagon made of puzzle pieces, not necessarily with matching
side labels, but still with simple boundary labels. The puzzle edges where the labels
do not match are called gashes. We think about gashes as edges that have two
labels, one on each side. We also allow gashes on the boundary of a gashed puzzle,
by artificially imposing an extra label on the far side of a boundary edge. The
following gashed puzzle has two gashes.

0 1

2 1

1 2

1

2 5 0 02 3 2

2 2 02 2

4 20 2 2
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We will use the textual notation
a

b
= a

b
, b/a = b a , and a\b = a

b for

gashes of the three possible orientations. For example, the two gashes in the above
example are denoted 5/0 and 0\2.

4.2. Introduction to mutations. The main new combinatorial construction in
this paper is an algorithm called mutation of puzzles. Before we state the precise
definition, we will give a more informal introduction by working through some
examples. Consider the following gashed puzzle, where both gashes are located on
the south-west border segment.

0 1

5 1

1 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2 2

Such a pair of gashes can be introduced on an ungashed puzzle if one wishes to
change the labels of a border segment. For example, the bottom gash 0\2 indicates
that the label 2 should be changed to 0. We will always make such a change by
replacing the puzzle piece that contributes the unwanted label of the gash with a
new piece of the same shape, and this new piece must be chosen such that only one
new gash is created by the replacement. It is a fundamental observation that there
is always at most one puzzle piece that satisfies this requirement. In our example

we must replace the puzzle piece
1

42 with either
?

40 or
1

?0 , where the

question marks can be arbitrary labels, and the only possible choice is
7

40 . The

replacement makes the bottom gash move to the top side of the replaced puzzle
piece. We say that the gash has been propagated. After the gash has been moved,
the process can be repeated to propagate it one more step. However, after two
propagations have been carried out, no further propagations are possible. The
steps are displayed in the following sequence of gashed puzzles, where we have also
indicated the direction in which each gash is supposed to move.

0 1

5 1

1 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2 2

0 1

5 1

1
7 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2

0 1

5 1
7

7 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2



MUTATIONS OF PUZZLES AND EQUIVARIANT COHOMOLOGY 15

Propagation of the second gash gives the following continuation.

0 1

5
2

1
7

7 2

1

2 0 00 3 2

2 2 02 2

4 20 2

0 1

2 1
7

7 2

1

2 0 02 0 3 2

2 2 02 2

4 20 2

0 1

2 1
7

7 2

1

2 5 0 02 3 2

2 2 02 2

4 20 2

At this point both gashes are stuck at two sides of the same puzzle piece. We will
show in Theorem 4.6 below that this is no coincidence. At this time we change the
labels of the gashed edges to what the gashes suggest. The result is the following
flawed puzzle, where one of the small triangles is a temporary puzzle piece. A
temporary puzzle piece is analogous to an empty box in a Young tableau during a
sequence of jeu de taquin slides; in fact, it is also possible to regard the temporary
piece as a hole in the puzzle where no valid puzzle piece will fit.

0 1

2 7

7 2

1

2 5 02 3 2

2 2 02 2

4 20 2

We would like to end up with a valid puzzle made from the puzzle pieces listed
in Section 2, which means that we have to get rid of the temporary puzzle piece.
A temporary puzzle piece can be resolved in three different ways, each of which
preserves one of its sides and replaces the other two sides with gashes. This is done
by replacing the temporary piece with a valid piece that has the same label on the
side that is preserved. When we work with two-step puzzles, this valid piece is the
unique puzzle piece whose largest label is the preserved label.

In our example, if we choose to preserve the bottom side with label 7 of the

temporary piece, then we replace this piece with
7

4 0 . The resulting gashes can

be propagated as follows.

0 1

2 7

7 2

1

2 5 4 02 0 3 2

2 2 02 2

4 20 2

0 1
0

2 7

7 2

1

2 5 4 02 0 2

2 2 02 2

4 20 2

0
1

1
0

2 7

7 2

1

2 4 02 0 2

2 2 02 2

4 20 2

On the other hand, if we preserve the right side with label 3 of the temporary

puzzle piece, then the temporary piece is replaced with
1

0 3 , and by propagating

the resulting gashes we recover the puzzle that we started with.
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Finally, if we choose to preserve the left side with label 5 of the temporary piece,

then this piece is replaced with
0

5 2 , and the resulting gashes can be propagated

as follows (skipping some steps).

0 1

2 0
7

7 2

1

2 5 02 2 3 2

2 2 02 2

4 20 2

0 1

2 0

0 6

1

2 5 4 02 2 2

2 2 02 3 2

0 20 3

0 1

2 0 1

0 6

1

2 5 42 2 2

2 2 02 3

0 20 3

The middle picture shows the gashes at the positions where they get stuck, which is
on two sides of an equivariant puzzle piece. We can change the labels of these edges
to what the gashes suggest by replacing the equivariant piece with a rhombus made
from two triangular puzzle pieces. Following [23], we call this rhombus a scab, and
it has been colored light blue to mark its position. This allows the mutation to be
inverted.

4.3. Propagation of gashes. We now give a detailed definition of the mutation
algorithm, starting with several related concepts. Define a directed gash to be a
gash together with a direction perpendicular to its edge. In pictures we will indicate
the direction with a gray arrow. The label that the direction points to is called the
original label and the other label is called the new label. Assume that a directed
gash g points to a puzzle piece q that contributes the original label of g, and that no
other gashes are located on the sides of q. Assume also that there exists a puzzle
piece q′ of the same shape as q, such that q′ has the new label of g on its side
corresponding to g, and another label of q′ is equal to the label of q on the same
side. In this case the gash g can be propagated by replacing q with q′. This replaces
the gash g with its new label and creates a new gash on a different side of q′. The
following are examples of propagations.

3
02 1 7→ 2 0

5
3

2 2
0

0
1

7→ 2 2
1

0
1

If the puzzle piece q is equivariant, then the only possible way to propagate g is
to move this gash to the opposite side of q; this follows because opposite sides of
any equivariant piece have the same label. On the other hand, if q is a triangular
puzzle piece, then the following lemma implies that g can be propagated in at most
one way.

Lemma 4.1. Let a, b, c, x, y, z be labels such that a 6= x, b 6= y, and c 6= z. Then
at least one of the following triangles is not a valid puzzle piece.

p =
c

b x ; q =
c

y a ; r =
z

b a

Proof. Since there are finitely many puzzle pieces, this lemma can be checked case
by case. However, the lemma is also true with the more general definition of puzzle
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pieces that Knutson gave in [21]. We will prove the lemma in this generality. In
this proof we will therefore use the definition of puzzle pieces from [21], which can
be stated as follows. Each x ∈ N is a label and we set min(x) = max(x) = x.
Whenever a and b are labels such that max(a) < min(b), we declare that c = (b, a)
is also a label and set min(c) = min(a) and max(c) = max(b). A triangular puzzle
piece is any small triangle of the form

x
x x or

c
b a

where x ∈ N and c = (b, a) is a label. For labels a and b we will write a < b if
max(a) < min(b). The depth of a label is its depth as a rooted binary tree.

Now assume that a, b, c, x, y, z are labels in this sense and the triangles p, q, r of
the lemma are puzzle pieces. If z = a = b ∈ N, then we have either y = (a, c) and
c < a = b, or c = (y, a) = (y, b). In both cases the triangle p is not a puzzle piece.
We may therefore assume that all three triangles are composed.

We claim that exactly one of the identities x = (c, b), y = (a, c), z = (b, a) is
true. If two of the identities are true, say x = (c, b) and y = (a, c), then b < c < a
implies that r is not a puzzle piece. On the other hand, if none of the identities
are true, then we may assume without loss of generality that c is the deepest of the
labels a, b, c, and we must have c = (b, x) = (y, a), contradicting that a 6= x.

By the claim, we may assume that x 6= (c, b) and y 6= (a, c) and z = (b, a).
In particular, we have a < b. If c = (b, x), then c 6= (y, a), so we must have
a = (c, y) = ((b, x), y), contradicting a < b. It follows that b = (x, c). Since we
have either c = (y, a) or a = (c, y), we again deduce that a < b is impossible. This
completes the proof. �

4.4. Equivalence classes of gashes. We will consider a directed gash as an object
that exists independently of its appearance in a puzzle. In other words, a directed
gash consists of a direction and two labels, but not a location. We will use the

textual notation
a

b
, b/a, and a\b also for directed gashes when the direction of the

gash is clear from the context. Given directed gashes g and h, we say that h is
immediately reachable from g if h can be obtained by propagating g across a single
triangular puzzle piece. For example, the first propagation displayed in Section 4.3

shows that the gash 5
3 is immediately reachable from 2 1 . Notice that, if h is

obtained from g by a propagation that replaces a puzzle piece q with another piece
q′, then g is obtained from h by a propagation that replaces the 180 degree rotation
of q with the 180 degree rotation of q′. It follows that ‘immediately reachable’ is a
symmetric relation.

Let [g] denote the set of directed gashes that can be reached from g by a series
of propagations, i.e. we have h ∈ [g] if and only if there exists a sequence g =
g0, g1, . . . , gk = h such that gi is immediately reachable from gi−1 for each i. The
set [g] is called the class of g. Define the opposite gash of g to be the gash ĝ obtained
by interchanging the labels of g and keeping the direction. For example, 4

1

and 1
4

are opposite gashes. Notice that [ĝ] = {ĥ | h ∈ [g]}. Similarly, if g′ is

obtained by rotating g by some angle, then [g′] is obtained from [g] by rotating all
elements by the same angle. The directed gashes g and h are said to be in opposite
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classes if [ĝ] = [h]. All gash classes that contain at least two gashes are rotations
of one of the following four classes or their opposites.

[
0 1

]
=

{
0
3

, 0 1 , 5 6 , 3 1 , 5 4 , 4
6

}

[
0 2

]
=

{
0
5

, 1
6

, 0 2 , 7 1 , 5 2

}

[
0 4

]
=

{
0
7

, 0 4 , 3 2 , 2
6

}

[
1 2

]
=

{

7 3 , 3
5

, 1
4

, 7 5 , 1 2 , 4 2

}

The directed gashes g for which [g] = {g} are the gashes that can never be propa-
gated. These gashes are rotations of the following seven gashes or their opposites.

0 6 1 5 2 7 3 4 3 6 4 7 6 7

To see that the displayed gashes account for everything, notice that none of them
are rotations of (opposites of) each other, there are 28 of them, and 28 · 12 = 336
is the total number of directed gashes.

4.5. Flawed puzzles. A flawed puzzle is a puzzle that contains a flaw. The flaw
can be of three different types: a gash pair on a border segment, a temporary puzzle
piece, or a marked scab. All types of flaws are represented in the following three
puzzles, which have already been encountered in Section 4.2.

0 1

5 1

1 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2 2

0 1

2 7

7 2

1

2 5 02 3 2

2 2 02 2

4 20 2

0 1

2 0 1

0 6

1

2 5 42 2 2

2 2 02 3

0 20 3

All boundary labels of a flawed puzzle must be simple. Any flawed puzzle has one
or more resolutions where the flaw is replaced with two directed gashes. These
resolutions are used to define the mutations of the flawed puzzle. As we will see,
the gashes of a resolution are always in opposite classes. We proceed to discuss
each type of flaw in more detail.

4.6. Gash pairs. A gash pair is a pair of gashes located on a single border segment
of a puzzle. If the puzzle is rotated so that the gashed border segment is at the top
of the puzzle, then the segment of edges between the two gashed edges should have
one of the following three forms:

0
1 2 2 1

0
0
2

2
0

1
2 0 0 2

1

In the first and third forms, the middle segment may consist of any number of edges
with the indicated labels, including zero. Notice that if u is the sequence of labels
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on or above the border segment, and u′ is the sequence of labels on or below the
segment, then we have u→ u′ with the notation of Section 3.

The gashes of a gash pair should be considered as directed towards the interior
of the puzzle. A flawed puzzle containing a gash pair is therefore its own resolution.
However, we usually omit the direction of gash pairs in pictures. Notice also that
the gashes of a gash pair are opposite to each other.

4.7. Temporary puzzle pieces. According to Definition 4.2 below, a temporary
puzzle piece is a small triangle from the following list. Temporary puzzle pieces are
colored yellow and may be rotated.

3
3 3

4
4 4

5
5 5

6
4 5

7
5 3

1
7 6

A flawed puzzle containing a temporary piece is the same as a puzzle, except that
exactly one temporary puzzle piece is used together with the valid puzzle pieces
from Section 2. The following formal definition of temporary puzzle pieces and
their resolutions is valid also for three-step puzzles, see [5].

Definition 4.2. Let x, y, and z be puzzle labels. The triangle

t =
z

y x .

with these labels is a temporary puzzle piece if and only if there exist puzzle labels
x′, x′′, y′, y′′, z′, z′′ such that all of the following triangles are valid puzzle pieces:

r1 =
z′′

y′ x r2 =
z

y′′ x′ r3 =
z′

y x′′ t′ =
z′

y′ x′ t′′ =
z′′

y′′ x′′

In this case the resolutions of t are obtained by replacing two of the sides of t with
gashes directed away from t, such that the original labels come from t and the new
labels come from r1, r2, or r3:

xy y′

z
z′′

z

x
x′

y
y′′

y

z
z′
x′′ x

We need the following properties and classification of the resolutions of tempo-
rary puzzle pieces.

Proposition 4.3. (a) Let x, y, z, x′, y′′ be puzzle labels. The gashed triangle

t̃ =

z

x
x′

y
y′′

is a resolution of a temporary puzzle piece if and only if its two gashes are in opposite
classes and the triangle r2 of Definition 4.2 is a valid puzzle piece.

(b) Each temporary puzzle piece t has exactly three resolutions. In other words,
the valid puzzle pieces r1, r2, r3 of Definition 4.2 are uniquely determined by t.
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Table 4.7. Temporary puzzle pieces and their resolutions.

3
3 3

1
3

3 0 3
3

3 1 0 3
0
3

3 1 3

4
4 4

2
4

4 1 4
4

4 2 1 4
1
4

4 2 4

5
5 5

2
5

5 0 5
5

5 2 0 5
0
5

5 2 5

6
4 5

2
6

4 0 5
6

4 2 3 5
1
6

4 2 5

7
5 3

1
7

5 0 3
7

5 4 0 3
0
7

5 2 3

1
7 6

2
1

7 3 6
1

7 1 1 6
0
1

7 4 6

Proof. Assume first that t̃ is a resolution of a temporary puzzle piece t, and let z′,
z′′, r1, r3, t

′, and t′′ be as in Definition 4.2. Let g1 be the left directed gash of
t̃ and let g2 be the right gash. The valid puzzle pieces r3 and t′′ then show that

[g1] = [
z′

z′′
], while r1 and t′ show that [g2] = [

z′′

z′
], with both horizontal gashes

directed towards the north. This shows that g1 and g2 are in opposite classes.
To establish the rest of the proposition, one first checks that each triangle t in

the left column of Table 4.7 is a temporary puzzle piece. In fact, if x, y, z are the
labels of t, and we let x′, x′′, y′, y′′, z′, z′′ be the unique labels such that y′, z′′ ≤ x ,
z′, x′′ ≤ y , x′, y′′ ≤ z, and the triangles r1, r2, r3 of Definition 4.2 are valid puzzle
pieces, then t′ and t′′ are also valid puzzle pieces. This shows that t is a temporary
puzzle piece, and also that the three gashed triangles next to t in Table 4.7 are
resolutions of t. On the other hand, by inspection of the gash classes displayed in
Section 4.4 it is easy to check that, up to rotation, all gashed triangles that satisfy
the condition in part (a) are represented in the right column of Table 4.7. The
proposition follows from this. �

Remark 4.4. Given a temporary puzzle piece t, the valid puzzle pieces used to
form the resolutions of t are obtained by keeping one label z of t and replacing
the two other labels with the unique integers smaller than or equal to z such that
the resulting triangle is a valid puzzle piece. This is a coincidence that holds for
two-step puzzles but not for three-step puzzles [5].
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4.8. Scabs. A scab means a small rhombus consisting of two triangular puzzle
pieces with matching labels next to each other, so that the rhombus is not invariant
under 180 degree rotation. In other words, the triangular puzzle pieces are not
rotations of each other. Any puzzle containing one or more scabs can be turned
into a flawed puzzle by marking one of the scabs. Marked scabs are colored light
blue in pictures.

Let s be a scab and assume that q is an equivariant puzzle piece of the same
shape as s, such that two sides of s and q share the same labels. In this case the
two labels that s and q agree about must be on sides connected by an obtuse angle.
The gashed rhombus s̃ resulting from replacing s with q is then called a resolution
of s. More precisely, s̃ is obtained from q by replacing two of its sides with gashes
directed away from q. These are the sides where the labels of q and s disagree, and
the original labels of the gashes come from s while the new labels come from q.
The following is an example.

s = 2
3 6

14
; q =

3 4

34
; s̃ =

3 4 6

3 14

Proposition 4.5. (a) Let x, x′, y, y′ be puzzle labels. The gashed rhombus

y x
x′

y y′x

is a resolution of a scab if and only if the inner labels form an equivariant puzzle
piece and the two gashes are in opposite classes.

(b) Each scab has exactly one resolution.

Proof. Assume that the gashed rhombus is a resolution of a scab, and let z be the
label of the middle edge in this scab. Then the valid puzzle pieces

z
y x′

and
z

y′ x

show that the two gashes of the resolution are in opposite classes. On the other
hand, by inspection of the gash classes displayed in Section 4.4 it is easy to check
that, up to rotation, all gashed rhombuses that satisfy the condition in part (a)
are represented in Table 4.8. Since Table 4.8 also documents that every scab has a
resolution, this completes the proof. �

4.9. Mutations. Let P be a flawed puzzle and let P̃ be the result of replacing the

flaw in P with one of its resolutions. Then P̃ is a gashed puzzle called a resolution of

P . The two directed gashes in P̃ are in opposite classes, and these gashes are either
connected or separated by a sequence of edges from the same border segment. The

right gash of P̃ is the rightmost of the two gashes for an observer standing between

the gashes and facing the direction of the gashes. The other gash in P̃ is called
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Table 4.8. Scabs and their resolutions.

0
0 0

31

0 1 0

0 31
1

0 3

11

0 1 3

0 11
4

0 7

21

0 1 7

0 21
1

1 1

42

1 2 1

1 42

3
1 0

62

1 2 0

1 62
2

1 4

22

1 2 4

1 22
1

0 3

42

0 2 3

0 42
0

0 0

52

0 2 0

0 52

2
0 5

22

0 2 5

0 22
0

3 1

52

3 2 1

3 52
2

3 6

22

3 2 6

3 22
0

0 0

74

0 4 0

0 74

2
0 5

14

0 4 5

0 14
0

3 1

74

3 4 1

3 74
2

3 6

14

3 4 6

3 14
2

0 5

36

0 6 5

0 36

0
7 4

52

7 2 4

7 52

the left gash. The following gashed puzzles are resolutions of the flawed puzzles

displayed in Section 4.5. The right gashes of these puzzles are 0\2,
0

7
, and 4/0.

0 1

5 1

1 2

1

2 0 00 3 2

2 2 02 0 2

4 20 2 2

0 1

2 0
7

7 2

1

2 5 02 2 3 2

2 2 02 2

4 20 2

0 1

2 0

0 6

1

2 5 4 02 2 2

2 2 02 3 2

0 20 3

Define the propagation path of a gash in P̃ to be the sequence of edges that change
if we repeatedly propagate the gash until no more propagations are possible. We

let Φ(P̃ ) denote the result of propagating both gashes in P̃ as far as possible and
then reversing the directions of the gashes. This is well defined by the first claim
in the following result.

Theorem 4.6. Let P̃ be a resolution of a flawed puzzle. Then the propagation

paths of the two gashes in P̃ are disjoint. Furthermore, Φ(P̃ ) is a resolution of a

unique flawed puzzle, and we have Φ(Φ(P̃ )) = P̃ .

Theorem 4.6 will be proved in Section 4.10. We will say that two flawed puzzles

P and Q are mutations of each other if P has a resolution P̃ such that Φ(P̃ ) is
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Figure 4.9. A connected component of the mutation graph.

1 1

1

1

2

2 0 1

2

2 11 0 0

0 2 2 21 0

2 0 21 2 2 0 2

2 0 1 21 2 0 0 2

0 1 10 0 0 1
0
1

1
0

1 1

1

1

2

2 0 1

2 1 0

2 11 0 0

0 2 2 21 0

2 0 21 2 2 0 2

2 0 1 21 2 0 0 2

0 10 0 133
3

1 1

1

1

2

2 0 1

2 1 0

2 1 11 1 0

0 2 2 21 0

2 0 1 21 2 0 0 2

2 0 21 2 0 2 2

0 0 10 0 0

3

1 1

0 1

1 0 1

0 2

2 0 1

2 1 0

2 0 0 0

0 2 2 2 0

2 1 21 2 2 0 2

2 1 0 21 2 0 0 2

1 10 0 1 1

3

1 1

1

1

2

2 0 1

2 1 0

2 11 0 0

0 2 2 21 0

2 0 21 2 2 0 2

2 0 1 21 2 0 1 2

0 0 10 0 0

6
7

1 1

1

1

0 1 2

2 0 1

2 1 0

2 11 0 0

0 2 2 21 0

2 0 1 1 21 0 1 0 2

2 21 2 2 2 2

0 0 10 0 0

5

1 1

1

1 2

1

2 0 1

2 1 0

2 11 0 0

0 2 2 21

2 0 21 2 2 2

2 0 1 1 21 2 0 1 0

0 0 10 0 0

2 0

0 2

1 1

1

1

2

2 0 1

2 1 0

2 11 0 0

0 2 2 21 0

2 0 1 21 2 1 0 2

2 0 21 2 0 2 2

0 0 10 0 0

6
7

a resolution of Q. The set of all flawed puzzles can be arranged in a mutation
graph, where each flawed puzzle is connected to its mutations. Figure 4.9 shows
one component of this graph. For each flawed puzzle in the figure we have also
indicated the set of edges that are changed by at least one mutation.

It should be noted that resolutions of flawed puzzles and propagation of gashes
commute with rotations and dualization. This simplifies our proof of Theorem 4.6,
and it implies that mutation commutes with rotations and dualization.

Example 4.7. In early versions of this paper we conjectured that every connected
component of the mutation graph is a tree. However, the reader may check that
the following puzzle belongs to a cycle of length 13 in its component. Notice also
that since this puzzle is dual to itself, dualization of puzzles provides an involution
of this component.
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1

1 1

0 2

1 2 5 0 1

1 2 0 1

1 2 0 1 2 0 1

1 1

2 11 0

1 2 11 0 1

2 0 20 2 0

0 2 5 02 5 0 2

1 1 1 2 11 0 1 1 1

0 0 0 1 20 1 2 2 2

4.10. Proof of Theorem 4.6. Let P̃ be a resolution of a flawed puzzle. After
rotating and possibly dualizing this puzzle, we may assume that the right gash in

P̃ is equivalent to one of the following directed gashes:

0 1 0 2 0 4

We first assume that the right gash is in the equivalence class

[0/1] =

[
0 1

]
=

{
0
3

, 0 1 , 5 6 , 3 1 , 5 4 , 4
6

}
.

The left and right gashes in P̃ are connected by a node or a sequence of edges.
In the latter case, these edges have the label 2 and are located on the north-west

border segment of P̃ . Consider the set of all edges in P̃ that come from the following
list (with the indicated orientations). These edges can also be found in the center
of Figure 4.10(a).

2 4 1 2 5 7 0 2

Let I be the connected component in this set of edges that includes the node or

edges connecting the left and right gashes. The edges of P̃ that are connected to
I but not contained in I will be called the spikes of I. In particular, the left and
right gashes of P are spikes of I. In the following two examples the edges of I have
been colored light blue while the spikes have been made thick. The nodes where
the spikes are connected to I are drawn as fat dots. One can show that no edge
outside I can be connected to I in both ends, but we will not rely on this fact. In
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such a situation the edge would count as two spikes.

1 2

1 0 2

2 7 0 2

5 1 0 2

3 1 0 2

1 2 0

1 0 03 0 0

2 4 02 0 0 0

0 1 2 4 5 22 0 2 2 2

1 2 2 2 22 0 2

1 1 7 10 1 4 4

0 1

0 1 1

0 6 1

5 1 2

4 1 2

2 1 2

1 1 11 1

2 2 0 03 3 2

2 0 2 2 00 1 3 2 2

2 0 1 4 2 00 1 2 2 2

2 1 1 11 2 1 4

Let s0, s1, . . . , sℓ be the sequence of spikes obtained when we start with the right
gash and follow the boundary of I in counter clockwise direction. Then s0 is the

right gash of P̃ and sℓ is the left gash. Any pair of consecutive spikes sk−1, sk in

the sequence is separated either by a single puzzle piece or by the boundary of P̃ ;
the latter happens when part of the boundary of I is contained in the boundary of

P̃ .
Let θ0 ∈ (0, 2π] be the direction of the first spike s0 in P̃ . Then choose angles

θ1, . . . , θℓ ∈ R for the other spikes relative to θ0. More precisely, if θ0, . . . , θk−1

have been chosen, then let θk be the result of adding or subtracting an amount to
θk−1 that represents the change in direction from sk−1 to sk. For example, in the
hypothetical situation

we have ℓ = 20 and

(θ0, θ1, . . . , θ20) =

( 43π, π,
4
3π,

4
3π, π, 2π,

5
3π,

5
3π,

5
3π,

4
3π, 3π, 3π,

8
3π,

7
3π,

8
3π,

7
3π,

7
3π,

7
3π,

8
3π, 3π,

8
3π) .

To each spike sk we now define an adjusted angle θ̂k that is obtained by sub-
tracting an amount from θk that depends on both the label of sk and (θk mod 2π).
For s0 and sℓ we use the original labels of the corresponding gashes. Figure 4.10(a)
shows all possible spikes of I together with the amount that should be subtracted in
each case. Notice that many edges in the figure are used to represent several spikes
with different labels, which is done by listing the relevant labels. For example, if

θk = 11
3 π and sk has label 6, then we obtain θ̂k = 5

3π, since the amount 2π must

be subtracted from the angle of any spike of the form 6 .

Figure 4.10(a) separates the collection of possible spikes to I into the six groups
G0, G1, G2, G3, G4, and G5. Notice that the right gash s0 belongs to G0, while

the left gash sℓ belongs to G1. In particular, we have π ≤ θ0 ≤ 2π and θ̂0 = 0.
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Figure 4.10(a). Spike groups and adjustment angles for the gash class [0/1].

0

0,53,5

6

3,76,7

3

1,61,4
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0

0,5 3,5

6

3,7 6,7

3

1,6 1,4

4

75

2

1

2

0

2

4

G1

G2

G3

G4

G5

G0

5π
3

2π7π
3

8π
3

5π
32π

π

4π
3

5π
3

2π

5π
3

2π 7π
3

8π
3

5π
3 2π

π

4π
3

5π
3

2π

Lemma 4.8. We have θ̂0 ≤ θ̂1 ≤ · · · ≤ θ̂ℓ. Furthermore, if two consecutive spikes
sk−1 and sk belong to different spike groups, or if sk−1 and sk are separated by the

boundary of P̃ , then θ̂k − θ̂k−1 ≥
1
3π.

Proof. Assume first that sk−1 and sk are separated by a puzzle piece q. Then the
difference θk − θk−1 is determined by q. Since there are finitely many possibilities
for q, the lemma can be checked case by case.

Table 4.10(a) lists all possibilities for the puzzle piece q when sk−1 belongs to
G0, G1, or G2. The spikes sk−1 and sk are also identified in each case. The puzzle
pieces q for which sk−1 is in G3, G4, or G5 can be obtained by rotating the puzzle
pieces in Table 4.10(a) by 180 degrees. Notice also that the puzzle pieces in the
table are organized into four rows, depending on the exact spike groups that sk−1

and sk belong to. This will be convenient later.

As an example, if q =
0

52 , then sk−1 = 5 and sk = 0 are both in the

group G1, and we have θk = θk−1−
π
3 , θ̂k−1 = θk−1− 2π, and θ̂k = θk−

5π
3 = θ̂k−1.

On the other hand, if q =
0

0
6 6 , then sk−1 = 6 is in the group G0, sk = 0
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Table 4.10(a). Consecutive spikes for the gash class [0/1].

3
10

3
62

3

3
2 2

3

3
4 4

1
1 1

3
1 0

2
1 4 1 2

12
3

6 2

1
11

4
21

2

2
1 1

2
14

4
2 1

4

4
0 0

0

0
1 1

0

0
6 6

0
31

0 1

01
0

74

0 4

04
4

0 7
4

4
3 3

0
0 0

0
5 2

0

0
2 2

0

0
4 4

0
00

1
03

2
05 0 2

02

0
52

1
0 3

6
2 3

2

2
3 3

2
0 5

6
23

6

6
0 0

3 4

34
0

3 1
0

7 4
0

0
1 1

0

0
6 6

4
07

0 1

01

0 4

04

0 6

06

0
31

2
36 3 2

32

3 4

34

0
74 7 2

72

4

4
3 3

2
3 6 0 6

06

4
0 7

2

2
7 7

is in G1, θk = θk−1 +
2π
3 , θ̂k−1 = θk−1 −

4π
3 , and θ̂k = θk −

5π
3 = θ̂k−1 +

π
3 . We

leave the remaining cases to the reader.

We finally assume that sk−1 and sk are separated by the boundary of P̃ . Then

we have θk − θk−1 ≥ π, and since all boundary labels of P̃ are simple, it follows
that sk−1 and sk have simple labels. Based on these observations one may check

from Figure 4.10(a) that θ̂k − θ̂k−1 ≥
π
3 , as required. �

We first deduce from Lemma 4.8 that our sequence of spikes goes around the
outer boundary of I in counter clockwise direction, as opposed to going around a
hole in I in clockwise direction. In other words, situations like the following are
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impossible.

In fact, if the sequence of spikes went around a hole in I, then we would have

θ0 − θℓ ∈ {
7π
3 , 8π

3 }, −
5
3π ≤ θℓ ≤ −π, θ̂0 = 0, and θ̂ℓ = − 11

3 π, which contradicts
Lemma 4.8.

Since the sequence of spikes goes counter clockwise around the outer boundary

of I, we obtain θℓ−θ0 ∈ {π,
4π
3 , 5π

3 }, 2π ≤ θℓ ≤ 3π, θ̂0 = 0, and θ̂ℓ =
π
3 . Lemma 4.8

then implies that for some r ∈ [1, ℓ] we have θ̂0 = θ̂1 = · · · = θ̂r−1 = 0 and

θ̂r = θ̂r+1 = · · · = θ̂ℓ = π
3 . Furthermore, we have sk ∈ G0 for 0 ≤ k ≤ r − 1 and

sk ∈ G1 for r ≤ k ≤ ℓ. This implies that the first r spikes are separated by puzzle
pieces from the first row of Table 4.10(a), the two middle spikes sr−1 and sr are

separated either by the boundary of P̃ or by a puzzle piece from the second row
of the table, and the last ℓ − r + 1 spikes are separated by puzzle pieces from the
third row.

When the right gash of P̃ is propagated, this gash moves through the spikes sk
for 0 ≤ k ≤ r − 1. Each spike sk is first replaced with the unique gash in the gash
class [0/1] that has the same orientation as sk and whose original label is equal to
the label of sk. Then sk attains the new label of the same gash, and the gash moves
on. This follows by observing that the following substitution of spikes replaces all
puzzle pieces in the first row of Table 4.10(a) with different valid puzzle pieces.
These substitutions correspond to the gashes in the gash class [0/1].

3 7→ 0 1 7→ 0 6 7→ 5

1 7→ 3 4 7→ 5 4 7→ 6

The above propagations will replace the spike sr−1 with the unique gash in the class
[0/1] whose orientation and original label agree with sr−1, and this gash points to

either the boundary of P̃ or a puzzle piece from the second row of Table 4.10(a).
An inspection of the puzzle pieces in this row then shows that the right gash cannot
be propagated further.

Similarly, the left gash of P̃ propagates through the spikes sk for r ≤ k ≤ ℓ in
reverse order. Each spike sk is first replaced with the unique gash in the opposite
gash class [1/0] that has the same orientation as sk and whose original label is
equal to the label of sk. Then sk attains the new label of this gash, and the gash
moves on. This follows because the substitution of spikes corresponding to the
opposite class [1/0] replaces all puzzle pieces in the third row of Table 4.10(a) with
different valid puzzle pieces. Eventually sr is replaced with the unique gash from
the opposite class [1/0] with the same orientation and original label. At this point
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an inspection of the second row of Table 4.10(a) shows that the left gash cannot be
propagated further (this is also true if the left gash is propagated before the right
gash).

At this point Φ(P̃ ) is obtained by reversing the directions of both gashes. If

the spikes sr−1 and sr are both on the boundary of P̃ , then the (original) labels
of these spikes are simple, and we have θr − θr−1 ≥ π. An inspection of the spike

groups G0 and G1 of Figure 4.10(a) then shows that sr−1 = 1 and sr = 0 .

This implies that Φ(P̃ ) is a flawed puzzle with a gash-pair on the south-east border
segment. Otherwise sr−1 and sr are separated by a puzzle piece from the second

row of Table 4.10(a), and this puzzle piece appears in Φ(P̃ ) with gashes on two
sides that are in opposite classes. In this case it follows from Proposition 4.3(a) or

Proposition 4.5(a) that Φ(P̃ ) is a resolution of a flawed puzzle.

Theorem 4.6 follows from this when the right gash of P̃ is in the gash class [0/1].
The same argument also works if the right gash is in one of the classes [0/2] or [0/4],
except that Figure 4.10(a) and Table 4.10(a) must be replaced with Figure 4.10(b)
and Table 4.10(b) for the class [0/2] and with Figure 4.10(c) and Table 4.10(c) for
the class [0/4]. This completes the proof of Theorem 4.6.

4.11. Bijections of puzzles. We finish this section by explaining how the muta-
tion algorithm can be used to give new constructions of certain bijections of puzzles
defined in the papers [24, 23, 8]. These constructions are not required for our proof
of Theorem 2.1. We start by generalizing the bijections from [23, 8] which were
applied to prove special cases of Theorem 2.1.

Let
−→
G be the union of equivalence classes of gashes defined by

−→
G =

[
0 1

]
∪

[
0 2

]
∪

[
0 4

]
∪

[

0 1

]
∪

[

0 2

]
∪

[

0 4

]
.

Let
−→
R be the set of all resolutions of flawed puzzles for which the right gash belongs

to
−→
G , and let

−→
P be the set of all flawed puzzles for which at least one resolution

belongs to
−→
R. We also let

←−
R and

←−
P denote the sets obtained by rotating the

objects in
−→
R and

−→
P by 180 degrees. Given any set of flawed puzzles S, we write

Sgash, Sscab, and Stemp for the subsets of puzzles in S whose flaws have the indicated

types. Notice that the gash pair of any puzzle in
−→
Pgash is located on one of the left

border segments, while the gash pair of a puzzle in
←−
Pgash is located on one of the

right border segments.

Lemma 4.9. We have
−→
Ptemp =

←−
P temp =

−→
P ∩

←−
P . Furthermore, any puzzle in

−→
P ∩

←−
P has exactly one resolution in

−→
R and exactly one resolution in

←−
R.

Proof. The (right-side-up) temporary puzzle pieces that occur in
−→
Ptemp, and the

resolutions of these pieces that provide elements of
−→
R and

←−
R, are listed in Ta-

ble 4.11. �
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Figure 4.10(b). Spike groups and adjustment angles for the gash class [0/2].
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Table 4.11. Temporary puzzle pieces encountered in
−→
P ∩

←−
P .

1
3

3 0 3
3

3 3
0
3

3 1 3
2
5

5 0 5
5

5 5
0
5

5 2 5
2
3

7 0 5
3

7 5
0
3

7 4 5

4
6

1 0 7
6

1 7
1
6

1 1 7
2
6

4 0 5
6

4 5
1
6

4 2 5
4
5

3 0 7
5

3 7
0
5

3 1 7

1
7

6 1 1
7

6 1
7

6 4 0 1
2
5

6 1 4
5

6 4
5

6 2 0 4
1
7

5 0 3
7

5 3
0
7

5 2 3

The involution Φ defined in Section 4.9 restricts to a bijection from
−→
R to

←−
R.

We can therefore define a bijection Ψ :
−→
P →

←−
P as follows. Given P ∈

−→
P , let P̃ be

the unique resolution of P that belongs to
−→
R, and let Ψ(P ) be the unique flawed
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Table 4.10(b). Consecutive spikes for the gash class [0/2].
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puzzle that has Φ(P̃ ) as a resolution. Notice that if Ψ(P ) ∈
−→
P ∩

←−
P , then we may

apply Ψ an additional time. Let Ψ∞(P ) denote the result of applying Ψ to P until

we obtain a flawed puzzle in the set
←−
P r

−→
P =

←−
Pgash ∪

←−
Pscab. The restriction of

Ψ∞ to
−→
P r

←−
P is a bijection

Ψ∞ :
−→
Pgash ∪

−→
Pscab

≃
−−→

←−
Pgash ∪

←−
Pscab .

For example, Ψ∞ maps the top-left puzzle in Figure 4.9 to the top-right puzzle, and
it maps the bottom-left puzzle to the middle-right puzzle. Related bijections can
be obtained by conjugating Ψ∞ by rotations and/or dualization of flawed puzzles.

This corresponds to rotating and/or dualizing the gashes in
−→
G .
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Figure 4.10(c). Spike groups and adjustment angles for the gash class [0/4].
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The bijections of puzzles from [23, 8] related to multiplication with divisors are
special cases of Ψ∞ and its conjugates. Notice that our definition of Ψ∞ involves
modifying some areas of a puzzle multiple times. In contrast the constructions used
in [23, 8] directly describe the end results of the respective bijections. By factoring
the bijection Ψ∞ into a series of mutations, we have obtained a simpler and more
conceptual description.

Remark 4.10. The classical Littlewood-Richardson rule expresses any Littlewood-
Richardson coefficient cνλ,µ as the number of LR tableaux of shape ν/λ and weight µ.

The precise definitions can be found in e.g. [15]. By composing bijections of Fulton
[6] and of Knutson, Tao, and Woodward [24], one may obtain a bijection between
these LR tableaux and the set of puzzles counted by the cohomological puzzle rule
for Grassmannians. A more general bijection between equivariant LR tableaux and
equivariant puzzles for Grassmannians has been defined by Kreiman [27]. Given a
LR tableau T of shape ν/λ and a Young diagram λ′ ⊂ λ with one box less than
λ, the jeu de taquin algorithm can be used to produce a LR tableau T ′ of some
shape ν′/λ′, where ν′ ⊂ ν has one box less than ν. The bijection Ψ∞ is compatible
with the jeu de taquin algorithm in the sense that the puzzle corresponding to
T ′ may be obtained from the puzzle corresponding to T by applying one of the
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Table 4.10(c). Consecutive spikes for the gash class [0/4].
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conjugates of Ψ∞. However, it is not possible to extend the bijection between
LR tableaux and puzzles to a bijection between tableaux with empty boxes and
flawed puzzles in a way such that individual jeu de taquin slides correspond to
individual mutations. For example, if the box of λ/λ′ is an outer corner of ν, then
the jeu de taquin algorithm involves zero slides, whereas an arbitrary number of



34 ANDERS SKOVSTED BUCH

mutations may be required to transform the corresponding puzzles. Similarly one
can construct examples where two mutations correspond to an arbitrary number of
jeu de taquin slides. Notice also that not all conjugates of Ψ∞ correspond to the
jeu de taquin algorithm.

4.12. Breathing gentle loops. We finally address a construction of Knutson,
Tao, and Woodward that was used in [24] to characterize Littlewood-Richardson
coefficients equal to one and to prove a related conjecture of Fulton. Recall from
[24] that any Littlewood-Richardson coefficient cνλ,µ counts puzzles made from the

pieces
0

0 0 ,
1

1 1 , and 0 0
1

1
. A gentle loop in such a puzzle is defined to be

an oriented cycle of puzzle edges, with turns of ±60◦, such that each edge in the
cycle separates two puzzle pieces of different types. In addition, each edge must be
directed so that it has either a 0-triangle on its left side or a 1-triangle on its right
side. It is proved in [24, Lemma 6] that, if γ is any gentle loop of minimal length
in a Grassmannian puzzle, then a new valid puzzle can be obtained by replacing all
puzzle pieces in the radius-1 neighborhood of γ with different pieces. This is called
breathing the gentle loop, and it demonstrates that the corresponding Littlewood-
Richardson coefficient must be at least 2. The breathing construction in [24] is
defined by specifying how to modify each local region in the radius-1 neighborhood
of γ. We will sketch how a minimal gentle loop can also be breathed by applying a
sequence of mutations. We thank the referee for providing this application.

Given a minimal gentle loop in a puzzle, consider a normal line consisting of
two puzzle edges of equal slope that cuts across the loop (see [24, §4.2]). On
this normal line we place two gash pairs infinitesimally close to each other, so
that the outer labels agree with the original labels of the normal line. The gentle
loop can then be breathed by propagating one of the gash pairs around the loop.
Whenever a temporary puzzle piece is created, this piece must be resolved in the
direction of the gentle loop. Eventually the moving gash pair will reach the other
side of the normal line, where it cancels the stationary gash pair. It is important
to perform the propagations in the direction of the gentle loop, as otherwise the
process will run astray. Notice also that, while resolutions of temporary puzzle
pieces in the construction of Ψ∞ are chosen to keep the propagations moving in
a constant direction, the breathing construction chooses resolutions that steer the
propagations around the loop.

Example 4.11. The two shortest gentle loops have length 6 and are interchanged
by breathing. We list the initial and terminal double-gashed puzzles as well as all
intermediate puzzles that contain both a temporary puzzle piece and the stationary
gash pair. Notice that the gentle loop changes orientation during the process, and
that the normal line can be chosen in several ways.

0 1

1 0

1 0 0
0

1
1

0 1

1 0

1 11 1 0

0 0 0 10 0 1

1 0 0 01 0 0

1 10 1 1

0 1

1 0 3

1 0 1
0

0
1

0 1

1 0

1 11 1 0

0 0 0 30 3 1

1 0 0 01 0 0

1 10 1 1

0 1

1 3 0

1 0 1
0

0
1

0 1

1 0

1 3 01 3 0

0 0 10 1 1

1 0 0 01 0 0

1 10 1 1

0 1

3 1 0

1 0 1
0

0
1

0 1

1 0

1 0 00 0

0 3 13 1 1 1

1 0 0 01 0 0

1 10 1 1
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0 1

1 0

0 1 1
0

0
1

3 0 1

1 0

1 0 00 0

0 1 10 1 1 1

3 0 0 01 3 0

1 10 1 1

0 1

1 0

0 1 1
0

0
1

0 3 1

1 0

1 0 00 0

0 1 10 1 1 1

1 0 01 1 0

0 3 10 3 1

0 1

1 0

0 1 1
0

0
1

0 1 3

1 0

1 0 00 0

0 1 10 1 1 1

1 3 01 1 1 3

0 0 10 0

0 1

1 0

0 1 1
1

0
0

0 1

1 0

1 0 00 0

0 1 10 1 1 1

1 1 01 1 1 0

0 0 10 0

5. Auras of puzzles and the proof of the puzzle formula

5.1. Aura. In this section we assign an aura to certain objects related to puzzles
and use this concept together with the mutation algorithm to prove Theorem 2.1.
An aura is a linear form in the ring R = C[δ0, δ1, δ2] from Section 3. We will
represent auras graphically as a collection of unit vectors labeled with linear forms
from Z[δ0, δ1, δ2]. The aura is then the sum of the unit vectors multiplied to their
labels. For example, we have

δ0ζ + δ1ζ
5 + δ2ζ

9 =

δ2

δ0δ1

where ζ = exp(πi/6) ∈ C.
Define a semi-labeled edge to be a puzzle edge that has a label only on one side.

We will use the textual notation a/, /a, a\, \a,
a
, and a for such edges. The

aura A(e) of a semi-labeled edge e is defined as follows. If the label a of e is simple,
then we set A(e) = δav, where v ∈ C is a unit vector perpendicular to e that
points towards the side of the label. Otherwise A(e) is determined by the rule
that, whenever the sides of a valid puzzle piece are changed to semi-labeled edges
by moving their labels slightly inside the puzzle piece, the sum of the auras of the

sides is zero. For example, using the puzzle piece
3

1 0 we obtain

A(
3
) = −A(/1)−A(0\) = δ1ζ

5 + δ0ζ =
δ0δ1 .

The auras of all semi-labeled edges can be obtained by rotating the following iden-
tities.

A(
0
) =

δ0
A(

1
) =

δ1
A(

2
) =

δ2

A(
3
) =

δ0δ1 A(
4
) =

δ1δ2 A(
5
) =

δ0δ2

A(
6
) =

δ2

δ0

δ1

A(
7
) =

δ0

δ2

δ1

A gash can be regarded as a union of two semi-labeled edges. We define the aura
of a gash to be the sum of the auras of the two semi-labeled edges. For example,
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we have

A(
0

4
) = A(

0
) +A(

4
) = δ0ζ

3 + δ1ζ
7 + δ2ζ

11 =

δ0

δ2δ1

.

The aura of a directed gash is the aura of the underlying undirected gash. The
following are additional examples of auras of gashes.

A(
0

1
) =

δ0−δ1
A(

0

2
) =

δ0−δ2
A(

1

2
) =

δ1−δ2
A(

3

2
) =

δ2

δ0δ1

Lemma 5.1. Any two gashes in the same gash class have the same aura.

Proof. Let g and h be gashes that are immediately reachable from each other. We
must show that A(g) = A(h). After rotating and possibly interchanging the gashes,
we may assume that g = a/b and h = x\y. Furthermore, the labels of the gashes
appear on puzzle pieces of the form:

c
a x and

c
b y .

By definition of the aura of semi-labeled edges we therefore obtain

A(a/b) = A(a/) +A(/b) = A(
c
) +A(x\) +A(

c
) +A(\y) = A(x\y) ,

as required. �

Let P be a flawed puzzle and let P̃ be a resolution of P . We define A(P̃ ) to be

the aura of the right gash of P̃ . If the flaw in P is a gash pair or a marked scab, so

that P̃ is the only resolution of P , then we also write A(P ) = A(P̃ ). Recall that, if
S is any set of flawed puzzles, then we write Sgash, Sscab, and Stemp for the subsets
of puzzles with flaws of the indicated types. Our main application of the mutation
algorithm is the following identity, which is proved in the generality of hexagonal
puzzles with equivariant puzzle pieces in arbitrary orientations. The two sums in
this identity will later be related to the two sides of the recursive identity (3).

Proposition 5.2. Let S be any finite set of flawed puzzles that is closed under
mutations. Then we have∑

P∈Sscab

A(P ) +
∑

P∈Sgash

A(P ) = 0 .

Proof. Let S̃ be the set of all resolutions of the flawed puzzles in S. Since S is closed
under mutations, it follows that the involution Φ defined in Section 4.9 restricts to

an involution of S̃. Since Lemma 5.1 implies that A(P̃ ) + A(Φ(P̃ )) = 0 for any

P̃ ∈ S̃, we deduce that ∑

P̃∈S̃

A(P̃ ) = 0 .

It suffices to show that, if P is any flawed puzzle containing a temporary puzzle
piece, then the sum of the auras of the three resolutions of P is equal to zero.
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Assume that P contains the temporary piece t displayed in Definition 4.2, and let
the labels x, x′, x′′, y, y′, y′′, z, z′, z′′ and the puzzle pieces r1, r2, r3, t

′, t′′ be as in
this definition. Then the right gashes of the three resolutions of P are y/y′, x′\x,

and
z′

z
. Thanks to the puzzle pieces r3, r1, and r2 we have

A(y/y′) = A(x′′\) +A(/y′) +A(
z′

) ,

A(x′\x) = A(x′\) +A(/y′) +A(
z′′

) , and

A(
z′

z
) = A(x′\) +A(/y′′) +A(

z′
) .

The last two puzzle pieces t′ and t′′ therefore imply that

A(y/y′) +A(x′\x) +A(
z′

z
) = 0 .

This completes the proof. �

5.2. The constants Cw
w,w. We first apply the notion of aura to prove that the

equivariant puzzle rule is compatible with restrictions of Schubert classes to torus
fixed points. Let X = Fl(a, b;n) be a two-step flag variety.

Lemma 5.3. Let P be any triangle made from puzzle pieces (in any orientations)
with matching side labels, and let u, v, and w be strings of labels such that ∂P =
△u,v

w . If u and v are 012-strings for X, then so is w. In particular, w consists of
simple labels.

Proof. Consider all pairs (q, e) where q is a puzzle piece in P and e is a side of q.
For each such pair we regard e as a semi-labeled edge, where the label is slightly
inside the puzzle piece q. Now consider the sum

φ =
∑

(q,e)

A(e)

over all such pairs. Since the sum over the sides of each puzzle piece q is zero, we
have φ = 0. On the other hand, since each interior edge of P appears twice in
the sum with its label on opposite sides, it follows that the sum of the auras of all
boundary edges of P is equal to zero. Set γ = aδ0 + (b − a)δ1 + (n − b)δ2. The
assumption that u and v are 012-strings for X implies that the sum of the auras of
the left border edges is equal to γ ζ11, and the sum of the auras of the right border
edges is equal to γ ζ7. We deduce that

(6)

n∑

i=1

A(
wi

) = γ ζ3 .

Since the coefficient of δ0 in this expression is a multiple of the vertical vector ζ3,
an inspection of the auras of horizontal semi-labeled edges listed in Section 5.1
shows that w does not contain any of the labels 3, 5, 6, and 7. Similarly, since the
coefficient of δ2 is a multiple of ζ3, we deduce that w does not contain any of the
labels 4, 5, 6, and 7. It follows that w consists of simple labels, after which (6)
shows that w is a 012-string for X. �
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Let P be an equivariant puzzle for X and recall from Section 2 that we number
the edges of the bottom border segment from 1 to n, starting from the left. An
edge in P will be called SW-NE if it is parallel to the left border segment, NW-SE
if it is parallel to the right border segment, and horizontal otherwise. Given any
NW-SE edge e in P , define the left projection of e to be the number of the bottom
edge obtained by following a line parallel to the left border segment. Similarly, the
right projection of a SW-NE edge is the number of the bottom edge obtained by
following a line parallel to the right border segment.

Since all equivariant puzzle pieces in P are vertical, we may dissect P into
(
n
2

)

small vertical rhombuses together with n triangular puzzle pieces along the bottom
border. Each small vertical rhombus s is either an equivariant puzzle piece or the
union of two triangular puzzle pieces. We will say that s is in position (i, j) if i is
the left projection of its NW-SE edges and j is the right projection of its SW-NE
edges. In this case we define the weight of s to be wt(s) = yj − yi. This extends
the definition of the weight of an equivariant puzzle piece given in Section 2.

The following result implies that the constants Cw
u,v defined by the equivariant

puzzle rule satisfy equation (2) from Theorem 3.1.

Proposition 5.4. Let w be any 012-string for X. Then there exists a unique
equivariant puzzle P for X with boundary △w,w

w , and this puzzle satisfies

wt(P ) =
∏

i<j:wi>wj

(yj − yi) ∈ Λ .

Proof. Let P be any equivariant puzzle for X with ∂P = △w,w
w , and consider any

separation of P into two subpuzzles by any NW-SE line that goes along puzzle
edges.

w5

w4

w3

w2

w1

w1

w2

w3

w4

w5

w1 w2 w3 w4 w5

Notice that two of the border segments of the triangular subpuzzle are 012-strings
for the same two-step flag variety. It therefore follows from Lemma 5.3 that all
labels on the separating line are simple. We deduce that all NW-SE puzzle edges in
P have simple labels, and a symmetric argument shows that all SW-NE edges have
simple labels. In particular, each small vertical rhombus in P has simple border
labels. An inspection of the puzzle pieces from Section 2 shows that, if all border
labels of a small rhombus are simple, then opposite border edges have the same
label. We deduce that the border labels of the small vertical rhombus in position
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(i, j) are given by:

wj wi

wi wj

This shows that P is uniquely determined by its boundary, and also provides a
recipe for constructing P . Finally, the expression for wt(P ) is correct because the
small vertical rhombus in position (i, j) is an equivariant puzzle piece if and only
if wi > wj . �

5.3. Equivariant Aura. Let P be an equivariant puzzle for X = Fl(a, b;n) and
let e be an edge in P . If e is a NW-SE edge, then we set wt(e) = yi where i is the
left projection of e. If e is a SW-NE edge, then set wt(e) = yj where j is the right
projection of e. Finally, if e is a horizontal edge, then we set wt(e) = yi if e is the
i-th edge of the bottom border segment, and otherwise we set wt(e) = 0.

An equivariant aura is an element of the ring R[y] = R[y1, . . . , yn]. If e is a semi-
labeled edge in P , then we define the equivariant aura of e to be AT (e) = wt(e)A(e).
Given any puzzle piece q in P we let AT (q) be the sum of the equivariant auras of
the sides of q, where these sides are regarded as semi-labeled edges by moving their
labels slightly inside q. If s is any small vertical rhombus in P consisting of two
triangular puzzle pieces, then we let AT (s) be the sum of the equivariant auras of
these pieces.

Proposition 5.5. Let u, v, and w be 012-strings for X, and let P be an equivariant
puzzle for X with boundary ∂P = △u,v

w . Then we have

∑

s∈scabs(P )

AT (s) = Cuζ
11 + Cvζ

7 + Cwζ
3

where the sum is over all vertical scabs in P .

Proof. Consider the sum φ =
∑

q AT (q) over all puzzle pieces q in P . Since the
equivariant aura of all inner puzzle edges cancel, φ is equal to the right hand side
of the claimed identity. On the other hand, if s is any vertical rhombus in P that
is not a scab, then AT (s) = 0. In addition we have AT (q) = 0 whenever q is a
triangular puzzle piece on the bottom border of P . This implies that φ is equal to
the left hand side of the claimed identity. �

A flawed puzzle P is called a flawed puzzle for X if P is a right-side-up triangle
with boundary △u,v

w where u, v, and w are 012-strings for X, and all equivariant
puzzle pieces and marked scabs in P are vertical. By the first condition we mean
that u, v, and w are the strings of labels on or outside the three border segments
of P . If P is a flawed puzzle for X that contains a marked scab s, then we set
AT (P ) = AT (s). Recall also thatA(P ) is the aura of the right gash in the resolution
of P .

Lemma 5.6. If P is any flawed puzzle for X containing a marked scab s, then we
have AT (P ) = −wt(s)A(P ).
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Proof. Let (i, j) be the position of s, and assume that the labels of s and its
resolution s̃ are as follows.

s =

a b

d c

x ; s̃ =

a d
b

a cd

Since the gashes a/c and d\b are in opposite classes by Proposition 4.5, we obtain
AT (s) = A(c/a)yj + A(b\d)yi = −A(a/c)(yj − yi) = −A(P ) wt(s). The same
calculation holds if the gashes are on the left side of the resolution of s. �

Proof of Theorem 2.1. For each triple (u, v, w) of 012-strings for X we let Ĉw
u,v ∈ Λ

denote the equivariant class defined by the right hand side of Theorem 2.1. In other

words we set Ĉw
u,v =

∑
P wt(P ) where the sum is over all equivariant puzzles for X

with boundary △u,v
w . It follows from Proposition 5.4 that these constants satisfy

equation (2). We must show that they also satisfy equation (3).
Fix u, v, and w, and let S be the set of all flawed puzzles for X with boundary

△u,v
w . Since the mutation algorithm preserves the set of positions of equivariant

pieces and marked scabs in a flawed puzzle, it follows from Proposition 5.2 and
Lemma 5.6 that

(7)
∑

P∈Sscab

AT (P ) wt(P ) =
∑

P∈Sgash

A(P ) wt(P ) .

Here the weight of a flawed puzzle is defined as the product of the weights of its
equivariant pieces. By rewriting the left hand side of (7) as a sum over (flawless)
equivariant puzzles for X and applying Proposition 5.5 we obtain

∑

P∈Sscab

AT (P ) wt(P ) =
∑

∂P=△u,v

w

wt(P )
∑

s∈scabs(P )

AT (s)

=
∑

∂P=△u,v

w

wt(P ) (Cuζ
11 + Cvζ

7 + Cwζ
3)

= (Cuζ
11 + Cvζ

7 + Cwζ
3) Ĉw

u,v .

Assume that P is a puzzle in the second sum of (7) with a gash-pair on the left
border segment. If u′ is the string of labels on or inside this border segment, then
we have u → u′. Furthermore, if i is the smallest index for which ui 6= u′

i, then
A(P ) = A(ui/u

′
i) = ζ5 δ( u

u′ ). Similar identities hold for puzzles with gash pairs
on the right or bottom border segments. The second sum in (7) can therefore be
rewritten as:

∑

P∈Sgash

A(P ) wt(P ) =
∑

u→u′

ζ5 δ(
u

u′
) Ĉw

u′,v+
∑

v→v′

ζ δ(
v

v′
) Ĉw

u,v′+
∑

w′→w

ζ9 δ(
w′

w
) Ĉw′

u,v .

We conclude that the identity (7) is equivalent to equation (3). Since the con-

stants Ĉw
u,v satisfy the identities (2) and (3), it follows from Theorem 3.1 that

they are the equivariant Schubert structure constants of X. This completes the
proof. �
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