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QUANTUM COHOMOLOGY OF PARTIAL FLAG MANIFOLDS

ANDERS SKOVSTED BUCH

ABSTRACT. We give elementary geometric proofs of the structure theorems for
the (small) quantum cohomology of partial flag varieties SL(n)/P, including
the quantum Pieri and quantum Giambelli formulas and the presentation.

1. INTRODUCTION

The (small) quantum cohomology ring of a partial flag variety SL,(C)/P is a
deformation of the usual cohomology ring. The structure constants are the three-
point, genus zero Gromov-Witten invariants, which count the number of rational
curves meeting three general Schubert varieties. The remarkable fact that this ring
is associative [18, 14] makes it possible to use the associativity relations to compute
Gromov-Witten invariants.

The usual approach for understanding this ring consists of proving a presentation
for the ring [21, 19, 10, 13, 6, 1, 12], together with a quantum Giambelli formula
which expresses the Schubert classes as polynomials in the generators [2, 8, 7]. This
information determines the ring as well as all the Gromov-Witten invariants it en-
codes. In addition, a quantum Pieri formula is known for the multiplication by
special Schubert classes [2, 7, 17]. These are the Chern classes of the tautological
bundles, and represent the special Schubert varieties defined by a single Schubert
condition. Since the special Schubert classes generate the quantum ring, the quan-
tum Pieri formula also determines this ring and its Gromov-Witten invariants.

The purpose of this paper is to give elementary proofs of the above structure
theorems for the quantum ring of a partial flag variety. We do this by proving
Ciocan-Fontanine’s general quantum Pieri formula [7] and by deriving the other
results from this formula. The quantum Pieri formula is proved by explicitly solving
the underlying Gromov-Witten problem. That is, given three general Schubert
varieties, one of which is special, we construct the unique rational curve (of adequate
multidegree) meeting these varieties, or prove that none exist. We then rely on
Ciocan-Fontanine’s proof that the presentation of the quantum ring is a consequence
of the quantum Pieri formula, and give an another argument that the quantum
Giambelli formula is also a consequence.

The original proofs of the quantum formulas relied on intersection theory on
hyperquot schemes. In the present paper, these techniques have been replaced with
classical Schubert calculus applied to partial flags called the kernel and span of a
curve [4, 3]. In particular, if we grant the associativity of quantum cohomology, we
make no use of moduli spaces in this paper.
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We also investigate how the theory can best be used to compute Gromov-Witten
invariants. To this end, we give algorithms for computing quantum Schubert poly-
nomials and Gromov-Witten invariants. Despite their simplicity, these algorithms
in our experience give an efficient method for computing in the quantum ring.

In section 2 we set up notation and recall the structure of the usual cohomol-
ogy ring of a partial flag variety. We furthermore give the algorithm for computing
quantum Schubert polynomials (although it is stated for the usual Schubert polyno-
mials). In section 3 we recall the definition of the quantum ring, state the quantum
Pieri formula, and use it to derive the remaining results. We finish this section
by explaining the algorithm for computing Gromov-Witten invariants. In section
4 we prove some combinatorial lemmas relating to the the classical and quantum
Pieri formulas. Section 5 contains geometric tools for handling curves in partial
flag varieties. These combinatorial and geometric tools are finally used to prove the
quantum Pieri formula in section 6.

We thank Sergey Fomin for showing us a very slick proof of Lemma 5. We also
thank Ionut, Ciocan-Fontanine for helpful comments.

2. COHOMOLOGY OF FLAG VARIETIES

2.1. Cohomology. Set £ = C". Given a strictly increasing sequence of integers
(a1 < ag < -+ < ag) with a1 > 0 and ap < n, we let F€(a; E) be the variety
of partial flags V3 € Vo C -+ C Vi, C E such that dim(V;) = a; for all i. For
convenience we set ap = 0 and agy; = n. The dimension of F¢(a; E) is equal to
Z;C:l ai(a,H_l — Cl,i).

Let S,, be the group of permutations of n elements. The Schubert varieties in
F{(a; E) are indexed by the set S, /W, where W, C S, is the subgroup generated
by the simple transpositions s; = (i,4 + 1) for ¢ € {a1,...,ax}. Let Sy(a) C
S, denote the set of permutations whose descent positions are contained in the
set {a1,as,...,ar}. These permutations are the shortest representatives for the
elements in S, /W,. Given a fixed full flag Fy C Fo, C --- C F,,—1 C F and a
permutation w € S, (a), define the Schubert variety

Q) ={V, € Fl(a; E) | dim(V; N E,) > #{t < a; : w(t) > n — p} Vi,p}.
The codimension of this variety is equal to the length ¢(w) of the permutation
w € Sy(a).

We let Q) denote the fundamental class of Q' )(F,) in the cohomology ring
H*(Fl(a; E)) = H*(F{(a; E);Z). The Schubert classes Q" form a basis for this
ring, for all w € Sp(a). The Schubert class Poincaré dual to Q) is the class

Qfﬁo)wwa where wg = n...21 is the longest permutation in S,,, and w, is the longest
permutation in the subgroup W, C Sy, i.e. wo(j) = a; +aip1+1—jfora; < j <
Q1.

2.2. Pieri’s formula. The Pieri formula gives a rule for multiplying with the
Chern classes of the tautological bundles on F¢(a; E) [15, 20]. Let t¢;; denote the
transposition interchanging ¢ and j.

Definition 1. Let 1 <r <m < n—1 be integers and consider the cyclic permuta-
tion o = $pSp41 - Sm € Sy of length £ = m —r + 1. For permutations u and w we
write u — w if there exist integers by, ..., by and c1,...,c¢ such that
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(1) b <m < ¢ forall1 <i<U¥;

(2) w=utpey ---toyeys

(3) U(utpyey - --toye;) = L(u) +1i for all 1 <i < {; and
(4) the integers by, ..., by are distinct.

If m = a; for some j then « belongs to S,(a) and corresponds to the special
Schubert variety ol (F,) of points V, € Fl(a; E) such that dim(V; N F,—,) > £.
Its Schubert class is given by i = (=1)%c,(V;) € H*(Fl(a; E)), where V; C -+- C
Vi, C E denotes the tautological flag on F¥(a; E). The Pieri formula states that for
any permutation u € Sy, (a) we have

(1) Q@ . Q) = Z Q@)
uihu

2.3. Presentation. We let F4(E) = F((1,2,...,n—1; E) denote the full flag vari-
ety of F, and we denote its Schubert varieties and Schubert classes by ., (F,) and
Q.,, respectively, for w € S,,. The cohomology ring of F¢(E) has the presentation

H*(FUE)) =Z[x1,...,z5)/(e], ... e0)

ren

where el* = ¢;(z1,...,2,) is the ith elementary symmetric polynomial in n vari-
ables. This presentation maps z; to the class g, — €2, ,, which is identical to the
Chern class —c1(V;/Vi—1)-

In this presentation the Schubert class 2, is represented by the Schubert poly-
nomial &,, = &,(z1,...,2,-1) of Lascoux and Schiitzenberger [15]. It is defined
as follows. If w = wyq is the longest permutation in S,,, then we set

n—1_n—2
GCuwe =27 25~ Tp_1.

Otherwise we can find a simple transposition s; € S,, such that £(ws;) = £(w) + 1.
In this case we define
Gwsi(ﬂfl, PIRTREPI 47 S o7 Sy [P ,an) - 61”51.(331, ey Tjp1y Ly e v e ,Jﬁn)

Ti — Ti41

Gw =

An important property of these polynomials is that they multiply with the same
structure constants as those of the Schubert classes they represent. In particular,
the Pieri formula (1) also holds as an identity of Schubert polynomials.

The ring H*(F{(a; E)) is isomorphic to the subring of Z[z1,...,x,]/(e], ..., el)

generated by the elementary symmetric polynomials y? = e; (Ta, 1415+ Ta,) for
1<p<k+land1<i<a,—ap. Notice that e} = Sl yfktll where the
sum is over all sequences (i1, ..., 4k+1) such that 0 <14, < a, —ap—1 and )i, = j.
We therefore get the direct presentation
* k+1 k41
H*(Fl(a; E)) = Z[yi, . .. ,y}ll, vl ... ,y22_a1, oyt ,...,ynfak]/(e’f, e

which maps v to (—1)%c;(V,/Vp—1) = ¢i(Q,), where Q, is the dual of the bundle
Vp/Vp-1.

2.4. An algorithm for Schubert polynomials. If w € S,,(a) then the Schubert
polynomial &,, is symmetric in each interval of variables Tay_1415-+1Ta,s 50 Gy
can be written as a polynomial in the variables y¥. This gives a representative of

the Schubert class Q4 in the above presentation for H*(F{(a; E)).
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We will here give a simple method for expressing a Schubert polynomial &,, for
w € Sp(a) as an integral linear combination

2) = Cinoin

of products of the form

ap+1—1
(a) _
%1 i H H €4, xl,...,x%)
r= (lp
for sequences (iq,, ... ,in—1) such that for ap <7 < apy1 we have 0 < i, < a,. In

fact, if we demand that i, < iq,41 < -+ <ig, -1 for all p, then the polynomi-
(a) i
umquely determined integers.

Schubert polynomials in the form (2) were used by Fomin, Gelfand, and Post-
nikov [8] and by Ciocan-Fontanine [7] to define quantum Schubert polynomials.
This application will be explained in §3.4. Notice that the expression (2) may

easily be converted to an expression for &, in the y’-variables, thus giving the

als e; are linearly independent, so the obtained coefficients ¢;, . . are

yin—1

representative of the class Q) in the presentation for H*(F{(a; E)).
The polynomial &,, can be expressed in the form (2) as follows. Choose p < k
maximal such that w(a, + 1) # a, + 1, and define u € S,,(a) by
w(7) it i <ap and w(i) < w(ap +1)
u(i) = qw() —1 if i <ap, and w(i) > w(ap + 1)
w(ii+1)—1 ifi>ap.
Set @ = Sy(a,+1) " Sap—18a, € Sn(a). Then we have &, We
claim that the identity

(3) 6w - 6“ ea +l-w(ap+1) Z 6”

uim;éw

aerl w(ap+1)”

can be used recursively to obtain the required expansion of G,,.

Notice that since w € S, (a) we automatically have w(a, +1) < ap + 1. The
identity (3) is true by the Pieri formula because u —» w. We must show that
the recursive process terminates and that the resulting expression for &,, has the
required form (2).

For r < n we let S, C S, denote the subgroup of permutations fixing the set
{r+1,...,n}. Choose r minimal such that w € S,. Then r < a,4+1 and u € S,_;.
Suppose &, occurs in the product &, - &,. Then Lemma 2 of section 4, with
m = ap, implies that w(i) < v(7) < u(i) for ¢ > ap + 2. Now it is immediate from
Definition 1 that 377, ., (u(i) —v(i)) > £(a). Since £(a) = 377, 1 (u(i) — w(i))
we conclude that v(a, +1) < w(ap + 1), and if equality holds then v = w. Since we
also have v € S, this immediately implies termination. The resulting expression
for &,, is of the form (2) by induction on r.

Example 1. For n =7 and a = (2,4) we get

4 24 4 24
G1536247 = G1a25367 - €3 — Gouszersr = (eles — e3)es — efefe]

When using equation (3) in real life, it is essential to remember the Schubert

polynomials which have already been calculated in the recursive process, since oth-
erwise the calculation of such polynomials can be repeated multiple times. However,
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when this precaution is taken, the algorithm performs well. For alternative formulas
for Schubert polynomials with relevance to partial flag varieties we refer to [5].

3. QUANTUM COHOMOLOGY OF FLAG VARIETIES

3.1. Gromov-Witten invariants. A rational curve in F¢(a; E) is the image of
a regular map P! — F/(a; E). (We will tolerate that a rational curve can be a
point according to this definition.) The multidegree of a curve C C Fl(a; E) is
the sequence d = (dy,...,dy) where d; is the number of points in the intersection
cn Qg'g (F,) for any general flag F, of E. Thus, if C is not a point then the

cohomology class of C is equal to Zle d; leo)sai W -
Given u,v,w € Sp,(a) and a multidegree d such that £(u) + £(v) + l(w) =
dimFl(a; E) + Zle di(ai+1 — a;—1), the (three-point, genus zero) Gromov-Witten

invariant (", 9, Q@) 4 is defined to be the number of rational curves in F¢(a; E)

of multidegree d meeting all of the Schubert varieties Q" (F.), Q*(G.), and
Qg)(H,) for fixed flags F,, G,, H, in general position. When £(u) + ¢(v) + £(w) #
dim Fé(a; B) + 3 di(aie1 — ai_1) we set (2,05 i), =o.

Let q1,...,qx be independent variables and write Z[q] = Z[q1,...,qx]. The
(small) quantum cohomology ring of F¢(a; E) is a Z[g]-algebra, which as a Z[q]-

module is free with a basis of quantum Schubert classes (Tl(él ).

QH'(Fl(a: E)) = @ Zlgoy.

weSy,(a)
Multiplication is defined by the formula
(4) O'ﬂsa) ! O'ﬂ.()a) = Z<Qaga)7 qua), Qv(f;lo)wwa>d qdo't(él)

w,d

where the sum is over all w € S,,(a) and multidegrees d, and ¢% = qflng e q,‘j’“.

It is a non-trivial fact that this product is associative [18, 14, 9]. The ring
QH* (F{(a; E)) has a natural grading, where the degree of o' is the length ¢(w),
while each variable ¢; has degree a;4+1 —a;—1. If we set ¢; = 0 for each 7, we recover
the usual cohomology ring H*(F{(a; E)).

3.2. The quantum Pieri formula. The central result about the structure of the
quantum ring QH" (F{(a; E)) is the quantum Pieri formula of Ciocan-Fontanine [7].
This result generalizes the quantum Pieri formula for Grassmannians [2] and the
quantum Monk’s formula for full flag varieties [8]. In the case of full flag varieties,
Postnikov has given an equivalent but simpler statement of the quantum Pieri
formula, as well as a combinatorial proof based on the quantum Monk’s formula
[17]. We will give an elementary geometric proof of Ciocan-Fontanine’s result in
the last section.

We will call a sequence d = (dy,...,d;) of non-negative integers for a Pieri se-
quence with maximum at position j, if (d1, ..., d;) is weakly increasing, (d;, ..., dy)
is weakly decreasing, and if we set dy = di4+1 = 0 then |d; —d; 1] < 1for 0 <i < k.
Given such a sequence, we set vq = 17T € S, where 7; is the permutation
which interchanges the intervals [a; — d; + 1, a;] and [a; + 1, a;41]. In other words,
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7; is defined by

P+ a1 —a ifai—di<p§ai,
7i(p) =p—d; if a; <p < aiya,
P otherwise.

Theorem 1 (Quantum Pieri formula [7]). Let o = 55,4154, and u € Sy,(a) be
permutations. Then
oA ol = 3 ol

where the sum is over all Pieri sequences d with mazimum at position j and
permutations w € Sp(a) such that (i) L(uvyqd) = L(u) — €(va); (i) L(wweya) =
Lwwy) + L(va); and (1) uyg L wweyqwy where b =a—d = (a1 —dy,...,ar—d)

and O = 878741 Sp; -

An equivalent symmetric version of this theorem is given in section 6. Notice
that condition (iii) implicitly implies that d; < ¢(c).

Given a Pieri sequence d with maximum at position j, set h, = min{i : d; = p}
and [, = max{i : d; = p} for each 1 < p < d;. With this notation we have
’Yd(blerl) = ap,, while v4(i) = i + p if bhp <1 < bhp+1 or if blp+1+1 <1< blp+1-
It follows that f(uyg) = £(u) — £(va) if and only if u(ap,) > wu(i) for all p and
an, <i<ap41 (cf. [7, Remark 3.2 (ii)].)

Example 2. Let a = sgs3s4 and u = 3715246. We will compute the product
ol . 5@ in the ring QH* F£(2,4;C"). First observe that the Pieri sequences d
with maximum at position 2 such that ¢(uvyq) = ¢(u) — £(4) are (0,0) and (1,1).
The first of these contributes with >° o ow’ = Ui;)26135. For d = (1,1) we have

a = sgs3, and uyg = 3152467 2, v when v is one of the permutations 4251367,
3261457, and 4162357. The first two of these satisfy £(vwyy; ") = £(vwy) — £(7a),

and they contribute g1¢2 051)25367 +q1q2 052)26457. In conclusion we have

ol o = 06135 + 0102 T\ibsser + 1102 O\ heus -
3.3. Structure of the quantum ring. The presentation of QH" F¢(a; E) is due to
Astashkevich and Sado [1] and Kim [11, 12] (see also [21, 19] for the Grassmannian
case, and [10, 13, 6] for the case of full flag varieties.) In this section we sketch how
to recover this presentation from the quantum Pieri formula. We follow Ciocan-
Fontanine’s paper [7].

Let ¢ : H*(Fl(a; E)) — QH*(F{(a; E)) be the linear map which sends each Schu-
bert class 95,3’ ) to the corresponding quantum Schubert class a&@. The presentation
of QH*(F{(a; F)) uses variables y/ and ¢;j, and maps y/ to (—1)‘¢(c;(V;/Vj-1)) =
$(ci(Qy))-

Set aij = Sa;—it15a;—it2 " Sa; and Bij = Sa;1i-18a;4i-2" " Sa; € Sn(a).
Then GQM =e;i(z1,... ,xaj) is the elementary symmetric polynomial and GBM =
hi(x1,...,24;) is the complete symmetric polynomial in a; variables. Using the

Pieri formula (1), it follows that for ¢ < a; — a;j_; we have (cf. [7, Lemma 3.5])

i i

_ @ @  _ (@
a(Q) =) (-yrel) o =y (-yreg)

p=0 p=0
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We therefore get
6(ci(Q) =Y (~1P o) .-

p=0
Define quantum elementary symmetric polynomials Ef as follows. If i = j =0
then set E) = 1. If j < 0ori < 0 or i > a; then set E/ = 0. Otherwise, if
0 <i < a; # 0 then define inductively

aj—aj—1

j i—1 P =1 a i—2
Ezj = E’Lj + Z yi Eij—r - (_l)aj 4t qj—lEiJ—aj+aj_2 :
r=1

For example, if n =7 and a = (2,4) then we get
Ef = B3 + 4B} + 3 B3 + y3 B3 — (=1)°2
=0+ 47 (32 — @) +y3(yivz +yau1) + 5 (2 +yiyi +v3) + a2
We claim that the quantum ring has the presentation
QH' (Fl(a; E)) = Zly, ql/(E{, ..., ENYY)

where each variable yf is mapped to ¢(c;(Q;)) for 1 < j < k+land1 < i <
a; — Aj—1-

More generally, if we replace each yf with ¢(c¢;(Q;)), then Ef maps to U(()Z?j for
7 < k while Ef“ becomes zero. In fact, since a symmetric functions calculation
shows that this is true in cohomology after setting ¢; = 0 for all j, we only need to
determine the g-terms which arise when the sum $2%7% " ¢(c,(Q;)) - ol . | is
expanded. Here one observes that, if d is a non-zero Pieri sequence with maximum
at position j — 1 and if €(Bp j—10r—p,;jVd) = €(Bpj—10r—p,;) — €(7a), then r =
p =a; —aj— and d = (0,...,0,1,0,...,0) has a single one at position j — 1.
(a) (a)

Furthermore, when 7 = a; — a;—; the product og° - 0a,”,; , contains no g-

terms for ¢ < a; — aj_p while it has exactly one when i > aj — aj_2, namely

qj_lagj),aﬁaj_%jd. For more details we refer to [7, Lemma 3.6].

3.4. The quantum Giambelli formula. For a sequence (i4,, .. .,%,—1) such that
0 <14, < aj for each a; <r < ajiq, set

k oaj+1—1

Ei(:l);uwinfl = H H Ei

j=1 r=a;

Ciocan-Fontanine has given a geometric proof that no g-terms occur in the expan-

sion of the corresponding product of quantum Schubert classes [7, Thm. 3.14]. In
(a)

Gy seenin—

other words, ¢ maps the cohomology class represented by e , to the quantum

class given by E® .- We will here deduce this fact from Theorem 1.

Taq seeslin—

Suppose u € Syp(a) NS, for some r < aj1q. Then ol 0&?]. = (b(Qq(f) . Q(()Z)J),
which follows because £(uvyq) > £(u) — €(7q) for all non-zero Pieri sequences d with
maximum at position j. Lemma 2 of section 4 furthermore implies that all terms
Q% in the product @ Q(()Z)J satisfy w € S, (a)NS,41. Foreacha; <r <n-—1we
set a(r) = o, ; where j is maximal such that a; < r. By induction on r, the above

comments imply that 0'(():1(211) : US(LIH) e crgzl) = qS(Q((f()al) : Qaa()alﬂ) o le()r)) and
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that all terms om(ua ) in this product satisfy w € S,41. In particular, the class given

by E(a)

Gaq yeeesln—

, contains no g-terms.
Define the partial quantum Schubert polynomial for a permutation w € Sy, (a) by

q _Z ' , (a)
Gw - CZG.l?"')ln_l Eialywwin*l :

are defined by (2). In particular, this definition depends

yeenrdn—1

The coefficients Cig,
on the sequence a.

By applying ¢ to the classes represented by either side of (2), it follows that
&Y is a representative for the quantum Schubert class a&“’ in the presentation of
QH"(Fl(a; E)). In other words, &Y%, is a quantum Giambelli formula. This result
is due to Bertram [2] for Grassmannians, to Fomin, Gelfand, and Postnikov for full
flag varieties [8], and to Ciocan-Fontanine in general [7].

Notice that the identity (3) gives the direct recursive formula

(5) &l =6 - Eg,,ﬂ—w(apﬂ) - Z S5

uim;éw

where p, u, and « are chosen as in §2.4. For full flag varieties one can alternatively
use a quantum version of the transition formula, which is based on the quantum
Monk’s formula (see [8, §8] and [16, (4.16)]).

3.5. Computing Gromov-Witten invariants. By definition of the quantum

product (4), a Gromov-Witten invariant (Qq(f), o, Qq(f,l)>d on F{(a; E') can be com-

puted by extracting the coefficient of qdagu%)wwa in the expansion of the product

o ol € QH* (Fi(a; E)).
The following method may be used to compute this product. Start by expressing

the quantum class 0'1(;1) as a polynomial in the classes a((;:g This can be done using

equation (5). Then let this polynomial act on the class ol using the quantum
Pieri formula (Thm. 1). The result is the desired expansion.

Practical experiments indicate that this method is quite efficient. For example, it
vastly outperforms the Grobner basis methods suggested in [8]. Notice that the roles
of u, v, and w can be permuted. Often (but not always) the best choice is to let the
quantum Schubert polynomial for the shortest permutation act on one of the other
quantum Schubert classes. Notice also that this method for computing Gromov-
Witten invariants does not make any use of the presentation of the quantum ring.

Example 3. We will compute the number of rational curves in F¢(2,4;C") of
multidegree (2,3), which pass through two general points and meet the Schubert
variety Qé’f&m%(ﬂ). In other words, we compute the Gromov-Witten invariant
<Qéf;i5123, Qg%mm, Q§Z17256>(273). Using equation (5) we obtain the point class as

ol s = (082 )2(0$¥,)3. Now using the quantum Pieri formula repeatedly, we
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obtain
Ué$215123'0§z)17256 Yo (a)z) Uéi)l7256
2( (a
? gz)Q 42 022)23147

(a)
@2 1
((12),1 )2) "q2 ‘74(1(;)12367
(a)

Q21

()

O¢21

2

(o8
= (g
= (o

= (o

— — ~—  —

g2 Ué7?34125
= oc(x?l (1192 01(3(;216125 +qi43 05(%4256)
=dig Uéi%n% +4id 0531)36257 +4ias U§(31‘217256 +4die 0531)34567 :
The Gromov-Witten invariant of interest is the coefficient to ¢2¢3 0{%),s7 in this
product, so it is equal to one.
4. COMBINATORICS OF THE PIERI RULE

In this section we prove some lemmas concerning the Pieri and quantum Pieri
formulas. As in §2.2 we set a = 8,841 Sm € Sy, and £ = £(a).

Lemma 1. Let u = w and let b and ¢ be sequences satisfying Definition 1. Suppose
¢i # ciy1. Then we can interchange the i ’th and (i+1) th indices in b and ¢, i.e. the
sequences b’ = (by,...,bi41,biy...,b¢) and ¢ = (¢1,...,Ci11,Ciy. .., Co) also satisfy
Definition 1.

Proof. The sequences b’ and ¢’ clearly satisfy properties (1) and (4). Conditions
(2) and (3) hold because the transposition tp,., commutes with t; O

The following fact has already be used in §2.4 and §3.3.

i+1Cit+1°

Lemma 2. Let u — w and suppose u has no descents after position m. Then for
all j > m+2 we have u(j — 1) < w(j) < u(j).

Proof. Let b and ¢ be sequences satisfying Definition 1. By Lemma 1 we may assume

that ¢; =--- =¢, = j and ¢; # j for ¢ > p. It then follows from property (3) and
induction on 4 that each permutation uty,c, - - - tp,c; maps j to a value greater than
u(j —1). O

Lemma 3. Let u < w and suppose that for some | > m we have u(i) < u(l) for
allm < i <. Then for all j < m such that u(j) < u(l) we have w(j) < u(l).

Proof. Let b and ¢ be sequences satisfying Definition 1. We may assume that
w(j) # u(j), so j = b, for some p. By Lemma 1 we may furthermore assume that
€l =C = = Cp.

Set u' = utp,c, -+ ty, yc, - If ¢ <1 then w(j) = u'(c,) < ulcy) < u(l). On the
other hand, if ¢, > [ then since v/(j) < v'(I) and (v’ tb,,cp) £(u)+1 we must have
uw'(¢ep) < v (1), so once again we get w(j) = u'(¢p) < w'(l) =u(l), as required. O

If z1,...,2, are elements of a vector space E, we let (z1,...,xp) C E denote
the linear span of these vectors.

Lemma 4. Let {ey,...,e,} be a basis for a vector space E and let u,w € S, be

permutations such that u = w. Suppose x1,...,x, € E are elements satisfying the
following conditions:

(i) If i <m and u(i) = w(i) then r; = ey
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(ii) Ifi <m and u(i) # w(i) then x; = Niey) + fiewi) where A, pi # 0

(iii) If i > m then x; = ey(;) OF Ti = €y(i)-
Then {x1,...,Tn} is also a basis for E. The flag V, € FUE) given by V; =
(1,...,x;) belongs to the Schubert variety Q,(F,) where F, is defined by F; =

(ent1—iy---,€n). Furthermore, this flag V, does not depend on the choices made in
Proof. Suppose at first that x; = e, for all ¢ > m. In this case we have

Frti—ut) = Fo—u@)®Cux; for alli, so {x1,...,2,} isabasisand V, € Q,(F,). It suf-
fices to show that V;_1 @ Ce, ;) = Vi1 ® Ce,y(;) for each i > m. In case u(i) # w(i)
we let b and ¢ be sequences satisfying Definition 1, such that for some p we have
¢ =---=c¢p=1and¢; #ifor j >p. Then the values w(b1),w(b2),...,w(by),w(i)
agree with w(2), u(b1),...,u(bp—1),u(bp), in the indicated order. This implies that
<xb1, ... ,xbp> is a subspace of <eu(b1)7 e €u(by)s eu(¢)>. Furthermore, (ii) implies
that neither e,; nor e, is contained in this subspace, so <xb1, cen xbp,eu(i)> =
<xb1, ... ,xbp,ew(i)> = <eu(bl), s €ulby)s eu(¢)>. The required identity of subspaces
follows from this. |

We also need the following characterization of Pieri sequences, which is equivalent
to parts (i) and (ii) of [7, Lemma 5.2].

Lemma 5. A sequence of non-negative integers d = (dy, ..., dg) is a Pieri sequence
with mazimum at position j if and only if the inequality

k-1 k
d; +Zdidi+1 —Zd? >0
i=1 i=1
is satisfied. In this case the inequality is satisfied with equality.

Proof. (Fomin) The inequality can be rewritten as 2d; > Zfzo(di —d;;1)? and the
right-hand side of this is estimated from below by ) |d; — di1] > 2d;. O

5. GEOMETRIC TOOLS

In this section we will give some tools for handling curves in flag varieties. It
is to convenient to extend the notation for partial flag varieties to allow weakly
increasing sequences of dimensions. If b = (b < by < -+ < by) is a weakly
increasing sequence with by > 0 and by, < n we let F4(b; E) be the variety of partial
flags K1 € Ko C --- C K C E such that dim K; = b; for all i. The Schubert
varieties in F£(b; E') are indexed by the set S, (b) of permutations whose descent
positions are contained in {b1,...,bx}.

Let b be a weakly increasing sequence such that b; < a; for each i. Given a
Schubert variety o )(F.) C F{(a; E') we will need a description of the set of points

K, € F{(b; E) such that for some V, € o (F,) we have K; C V; for all 4.

We construct a permutation @ € S, (b) from w as follows. Set w(®) = w. Then for
each 1 < i < k we let w() be the permutation obtained from w(~!) by rearranging
the elements w1 (b; 4+ 1),..., w1V (a;11) in increasing order. Finally we set
w = w®. For example, if n = 6, a = (2,5), b = (1,2), and w = 263451 then
w) =234561 and W = 231456. The following result is proved in [3].

Lemma 6. The set {K, e F{(b;E) |3V, € Qg)(F,) : K; CV; Yi} is equal to the
Schubert variety Q(b)(F.) in FU(b; E).

w
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Our notation is related to Pieri sequences as follows.

Lemma 7. Let d be a Pieri sequence and set b=a —d = (a1 — dy,...,ar — di).
Let uw € Sy, (a). Then £(uvyq) = £(uw) — £(va) if and only if £(T) = £(u) — £(vq) if and
only if uyq = 1. In this case we have uyq € Sy (b).

Proof. With the notation of section 3.2 we have £(vq) = > ¢(7;). The lemma follows
because £(ul~V7;) > £(u~V) — ¢(1;) and L(u®) > (D) — £(7;) for all 4, with
equality if and only if u(9 = 4=V, O

i—

Now let C' C F{(a; E) be a rational curve of multidegree d = (d,...,dx). For
each i we let C; = p;(C) C Gr(a;, E) be the image of C' in the Grassmannian
Gr(a;, E) by the projection p; : Fl(a; E) — Gr(as, E). This curve C; then has a
kernel and a span [4]. The kernel is the largest subspace of E contained in all
the a;-dimensional subspaces of E corresponding to points of C;. We let b; be the
dimension of this kernel and denote the kernel itself by K;. It follows from [4,
Lemma 1] that b; > a; — d; for each i. The span of C; is the smallest subspace of
E containing all subspaces given by points of C;. This span has dimension at most
a; — di.

The kernels K; form a partial flag K, € F£(b; E) called the kernel of C. Notice
that K; C V; for all points V, € C. Lemma 6 therefore implies the following (cf. [3,
Prop. 1)).

Proposition 1. Let C' € Fl(a; E) be a rational curve with kernel K, € F{(b; E).
IFCNQY(F,) #0 then K, € QY(F,).

Lemma 8. Let f : P! — Gr(m, E) be a curve of degree d such that the kernel K
of f(PY) has dimension m — d. Then there are elements T1,...,%d4,Y1,-..,Yd € F
such that f(s:t) = K & (sx1 + tyi,...,sTq + tya) for all (s:t) € PL.

Proof. Any regular map f : P! — Gr(m, E) can be written in the form f(s:t) =
(fi(s:t),..., fm(s:t)) for regular maps f; : P! — P(E), and furthermore we have
> deg(f;) = deg(f) = d. (To see this, one uses that the pullback of the tautological
subbundle on Gr(m; E) splits as a sum of line bundles on P'.) At least m — d of
these maps must have degree zero, so we can assume that fq41,..., fn, are constant.
Since (fa+1,---, fm) is contained in K and these spaces have the same dimension,
we conclude that K = (fgq11,..., fm). This implies that none of the functions
f1,..., fqa are constant, so they must all have degree one. Thus we can write
fi(s:t) = sx; + ty; for some x;,y; € F for 1 <i<d. O

Given a morphism f : P! — Fl(a; E) we let f; : P! — Gr(a;, E) denote the
composition of f with the ith projection p; : F¢(a; E) — Gr(a;, F).

Lemma 9. Let a = (a1 < az < a3) be a sequence of integers, 0 < a; < n, and
let f = (f1, f2, f3) : P! — Fl(a; E) be a regular map of multidegree (d,d + 1,d) for
some integer d > 0. Suppose that the kernel K, € FU(b; E) of f(P) has dimensions
given by b = (a1 —d,as —d—1,a3—d). Suppose also there are linearly independent
elements x1,...,x441,Y1,---,Ya+1 € E such that

(1) fi(s:t) =K1 ® (sz1 +tys,...,82q +tya) for all (s:t) € P

(2) fQ(lO) = K2 D <.1?1, NN ,$d+1>

(3) f2(0:1) = K2 ® (Y1, - -+, Yd+1)

(4) Ko N <3317---7xd+1;y17---;yd+1> =0
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(5) K3 N <m17"'7xday17"'ayd> =0
(6) Tat1,Ya+1 € Ks.
Then there exists a unique A € C* such that

fa(s:t) = Ko® (sx1+tyr,...,8$Ta +tYd, STat1 + tAYdr1) -

Proof. By Lemma 8 we can find elements x,...,2},,,v1,.-.,¥qy; € E such that
fa(s:t) = Ko ® (saf +tyl, ..., sl +ty,,,). Using (2) we can write z; =
zH—Zjill ozijx;- for each ¢ where z; € K3 and (o) is an invertible matrix. Replacing
z; with z; and y; with ), ai;y; we may assume that z; = z; for each i.

Now if ¢ < d we have x; + y; € f1(1:1) C f2(1:1) by (1) so we may write

d
xi+y; = 2+ EJLI Bij(xj + yg) = > Bijz; + (2 + Zﬁijyg-) where 2! € K3 and
Bi; € C. Since the last term of this belongs to Ko & (y1,...,Ya+1), it follows
from (4) that G;; is equal to one if ¢ = j and zero otherwise, so we conclude that
x; +y; = 2z + (x; + y;). Thus we have y; = y; + 2z} so we may replace y| with y; for
1<i<d.

Finally since y;,, € f2(0:1) we can write y;,; = 2" + Ej:i A;y; by (3) where
2" € Ko, \j € C. Replacing yj;, ; with ¢/, , — 2" we may assume that 2" = 0. Now
(1) and (5) imply that f3(1:1) = Ks ® (x1 + y1,.-.,2q + yd). Since 441 + y/d+1 S
f2(1:1) C f3(1:1) we conclude by (5) and (6) that A; = 0 for j < d. So we have
Yigr1 = Ad+1Yd+1 as required. ]

6. PROOF OF THE QUANTUM PIERI FORMULA

In this section we finally prove Ciocan-Fontanine’s quantum Pieri formula [7].
For convenience we will prove the following equivalent statement of Theorem 1.

Theorem 1'. Let o = 88,41 - +8q; and u,w € Sp(a) be permutations, and let
d = (dq,...,d) be a multidegree, such that ¢(u) + {(w) + ¢(a) = dim Fé(a; E) +
> (ai+1 — ai—1)d;. The Gromov-Witten invariant (qua), Qq(f,l), Q&a))d on Fl(a; E) is
non-zero only if d is a Pieri sequence with maximum at position j. In this case we
have
.o, 0, = [ o al.al
FU(b;E)
where b=a—d = (a1 — di,...,ar —dg).

It will be clear from the proof that, if the right hand side of the identity is non-
zero, then £(w) = £(u) — > (ai+1 —a;)d; = £(u) —€(74), SO0 T = uyq by Lemma 7, and
similarly for w. Therefore the equivalence with Theorem 1 is a matter of dualizing
the permutation w. Notice also that the right hand side can only be equal to zero
or one by the classical Pieri formula (1).

Proof. We first show that if the Gromov-Witten invariant (2, (", () 4 1s non-
zero, then d is a Pieri sequence with maximum at position j, and the triple inter-
section on F{(b; E) is non-zero as well. Throughout this proof, F,, G,, and H, will
denote full flags of F in general position.

Let C C F{(a; E) be a rational curve of multidegree d which meets each of the
Schubert varieties Q" (F.), Q{(G.), and QW (H.). Let K, € Fi(b; E) be the
kernel of C' and set e; = a; — b; for 1 < ¢ < k. Then [4, Lemma 1] shows that
e; < d; for all ¢, and by Proposition 1 we have K, € Qg’) (F,) ﬂQ(b)(G,) N Qg’) (H,).

w
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In particular £(w) +4(w)+£4(@) < dim F4(b; E). By the definition of w we get £(a@) >
Ua) = ej, £(@) > €(u) — S2F (a1 — ai)es, and £(W) > L(w) — S5 (aiv1 — a)e;.

Thus we obtain
dim FU(b; E) > £() + (W) + £(@) > dim Fl(a; E) — e + Z (2a; — ai—1 — aip1)e; .
Since dim F4(b; E) — dim Fl(a; E) = Y (2a; — a;—1 — a;41)e; + Y. (eieir1 — €2), this

implies that
€; —I—Zeieiﬂ —Zef >0.

Lemma 5 therefore shows that e is a Pieri sequence with maximum at position
7 and that all the inequalities above must be satisfied with equality. In particular
we have d = e. Furthermore, since £(u) + ¢(w) + ¢(@) = dim F¢(b; E') we must have
/o ) Q(b) Oy ®) _ 1 as required.

On the other hand, if d is a Pieri sequence with maximum at position j, and
if the triple intersection on F4(b; E) is non-zero, then the same dimension count
shows that £(u) = ¢(u) — £(yq) and (W) = L(w) — £(V4), 0 T = uyg and W = wyg
by Lemma 7. Since {(@) = {(a) — dj, we deduce that @ = s,8741---5p,. We

will continue by showing that the Gromov-Witten invariant (Qq(f),Qi(f,l ),Q((f)> 4 1s
non-zero by explicitly constructing a rational curve C' C F¢(a; E') of multidegree d,
which meets each of the Schubert varieties . (F,), Qgﬁl)(G.), and Q((f)(H.).

As in §3.2 we set hy, = min{i : d; = p} and [, = max{i: d; = p} for 1 <p < dj,so
that '}/d(blp—i-l) = ap,, while ’}/d(i) =i+pif bhp <1 < bhp+1 or if blp+1+1 <1< blp+1-
We also set E; = F,11-; NG; for 1 < ¢ < n. Since the flags are general, it follows
that these spaces have dimension one, and £ = FE1 & --- & E),.

Let @ = wowwy, be the dual permutation of @ € S, (b). Then @ < @. For
each 1 < i < n we define a space L; C E as follows. If u(i) = w(i) or if i > b;
we set L; = FEn;). Let B be the direct sum of the spaces L; for which i < b;
and T(i) = w(i). Notice that dimB = r — 1. When ¢ < b; and u(i) # w()
we then let L; be the unique one-dimensional subspace of Eg;) © Eg;) such that
(B®Li)NHy,— # 0. This is well defined since B® Fg(;) ® Eg(;) has dimension r+1
and since the flags are general, and furthermore we have L; # Eg(;) and L; # Eg;).

It follows from Lemma 4 that the spaces L; are linearly independent and that the
partial flag K, € F(b; E) defined by K; = L1 @ - - - & Ly, belongs to the Schubert
variety QQ) )( F,). We furthermore get the same partial flag K, if we take L; = Eg;

for ¢ > b;. A symmetric argument therefore shows that K, € Q(b)(G ).

Fmally, since (B & L;) N H,,—, # 0 for /(@) different indices ¢ < b;, we obtain
dim(K; N Hp,—,) = ¢(@) which means that K, € Qg))(H.). By the classical Pieri
formula we therefore conclude that
(6) 0 (F) N Qg (G) N0 (H.) = (K.}

Notice that this implies that K, must be the kernel of any rational curve of multi-
degree d i F4(a; E') which passes through ol (F,), Qgﬁl)(G.), and Q((f)(H.).

Now for each 1 < p < m = d; choose z, € Eu(ahp) and y, € Ewow(ahp)
such that (B @© (x, +yp)) N Hy— # 0. Notice that since yq(by,+1) = an, we
have u(ap,) = (b, +1) and wow(an,) = w(b, + 1). By Lemma 4 this im-
plies that B N (Eu(ahp) D Ewow(ahp)) = 0, so zp and y, can be found. Since
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the integers b;,+1 and b;, + 1 are all different for 1 < ¢ < m, the same lemma
furthermore implies that x1,...,Zm,y1,--.,Yym are linearly independent and that
K, 0 {x1,...,2p,y1,...,Yp) = 0 for all p.

Let f : P! — F{(a; E) be the morphism which maps a point (s:t) € P! to the
partial flag V, € Fl(a; E) given by V; = K; & (sx1 + ty1,...,$%q, + tyq,). Since
Tp,yp € Ky, 41 it follows that V; C Viyq for all 4, so f is well defined. Its image
C = f(P!) C Ff(a; E) is a rational curve of multidegree d.

Notice that F, 11w = Fr_mg) © Li- If we set L}, = L,Yd—l(p) for 1 < p < n then
Fri1—up) = Fa—u(p) ® L, and the space of dimension a; in the partial flag f(1:0) is

equal to L} @---@ L;, . This shows that f(1:0) € an)(F.). A symmetric argument
shows that f(0:1) € ng)(G.). Finally, since dim(K;NH,—_,) = {(a) —d; and since
(B® (zi+yi)) NHyp # 0 for 1 < i < d; we conclude that f(1:1) € QE{”(H,).
This proves that <qua), o, Q&a))d # 0.

It remains to be shown that C' is the only curve which contributes to this Gromov-
Witten invariant. Let f’ : P! — F{(a; E) be any rational curve of multidegree d
such that f/(1:0) € Q(F.), f/(0:1) € Q(G.), and f/(1:1) € QY (H,). Then
the kernel of f/(P') must be K,. We will show that f’ is identical to the map f
constructed above.

Set f/ = p;o f' and fi = p; o f : P* — Gr(a;, E). We will prove that f/ = f; by
induction on 7, the case ¢ = 0 being clear. Assume that ¢ > 0 and that f/_; = fi_1.
If i & {hi,...,hn} then this follows because f/(s:t) D fi_,(s:t) + K; = fi—1(s:
t) + K; = fi(s:t) by the definition of f.

So suppose ¢ = h, for some p. Then we know that f,’Lrl = fn,—1. Since
fl’p+1(s:t) must contain fp,,_1(s:t) + Kj 41 = fi,+1(s:t) we furthermore deduce
that fl'pJr1 = fi,+1. In particular we see that the span of fl'erl(}P’l) is the space
W = Klp+1 D <3§‘1, oo 7xp—17y17 oo 7yp—1>-

Notice that since £(uyq) = £(u) — £(ya) we have u(an,) > u(apn,) for 7 < p
(see the remarks after Theorem 1.) Similarly we have wow(an,) < wow(ap,) =
w(by, +1) <a(by, +1) <u(by,+1) = ulan,).

We claim that the intersection of W with F, 1 y(,) is contained in K; &
(T1,...,2p_1) ® Ey(q,)- To see this, notice at first that x1,...,2, 1 € F},_y(q,) and
Y15+ Yp—1 € Gy(a,) by the above inequalities. We will show that for any 7 < by, 41
we have L, C Fj,_y(q;) OF Ly C Gy(q,)- Again using that £(uyg) = £(u) — £(vq) it
follows that w(a;) = (b, 1) > (7) for all by < 7 < by,41. If bj <7 < by, 41 we
therefore get L, = Eg(;) C Gyua,)- If 7 < by then u(r) < w(r). Soif u(r) > u(a;)
then L, C F,_y(,). Finally, if 7 < b; and u(7) < wu(a;) then it follows from
Lemma 3 that w(1) < u(a;), so Ly C Gya,). Since in particular L; C Gy, for
all by < 7 < by, 41, it follows that W N F,_yq,) C Ki @ (21,...,7p-1). Our claim
follows from this since Eyq,) C W.

Since Fyp1—u(r) = Fnu(r) ® L} for all 7, it follows that the intersection of
Ki © (v1,...,0p1) = Ly ©--- @ L,,_; with F,;_y(,) has dimension #{r <
a; | u(r) > u(a;)} — 1. Therefore we can write f/(1:0) = K; ® (21, ..., 2p-1,2))
where ac;, € Frii—u(a;)- Since x; must also be contained in W, it follows from
the claim that we can take x), € Ey(,,). A symmetric argument shows that f;(0:
1) =K;® (y1,---,Yp-1,Y)) where y € Eyu(a,)- Applying Lemma 9 to the map
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(fhp—1s fhys fi,+1) : P — Fl(ap,—1,an,,a;,+1; E) we then conclude that f/(s:t) =

K;

M

@ <sa:1 +ty1, ..., STp_1 + typ—1, sa:;, + t)\y;> for some \ € C*.
Finally notice that we can write f(1: 1) = B& (), + Ay,,)®M for some subspace
C E of dimension ¢(«) — 1. Since the dimension of f;—(ltl) N H,_, is at least

{(av), it follows that (B & (x, + Ayj)) N Hp—r # 0, so C(a}, + Ayp) = C(zp + yp).
This shows that f/ = f; and finishes the proof. O
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