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Abstract. We prove a collection of formulas for products of Schubert classes

in the quantum K-theory ring QK(X) of a cominuscule flag variety X. This
includes a K-theory version of the Seidel representation, stating that the quan-

tum product of a Seidel class with an arbitrary Schubert class is equal to a

single Schubert class times a power of the deformation parameter q. We also
prove new Pieri formulas for the quantum K-theory of maximal orthogonal

Grassmannians and Lagrangian Grassmannians, and give a new proof of the

known Pieri formula for the quantum K-theory of Grassmannians of type A.
Our formulas have simple statements in terms of quantum shapes that repre-

sent the natural basis elements qd[OXu ] of QK(X). Along the way we give

a simple formula for K-theoretic Gromov-Witten invariants of Pieri type for
Lagrangian Grassmannians, and prove a rationality result for the points in a

Richardson variety in a symplectic Grassmannian that are perpendicular to a
point in projective space.
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1. Introduction

In this paper we prove a collection of explicit formulas for products of Schu-
bert classes in the quantum K-theory ring QK(X) of a cominuscule flag variety.
These formulas include a K-theory version of the Seidel representation of the quan-
tum cohomology ring QH(X) [Sei97, Bel04, CMP09], as well as Pieri formulas for
products with special Schubert classes of classical Grassmannians that generalize
earlier Pieri formulas in quantum cohomology [Ber97, KT03, KT04] and in K-
theory [Len00, BR12]. The Pieri formula for QK(X) is known from [BM11] when
X is a Grassmannian of type A, but is new for maximal orthogonal Grassman-
nians and Lagrangian Grassmannians. Our formulas have simple expressions in
terms of quantum shapes that encode the natural basis elements qdOu = qd[OXu ]
of QK(X), generalizing the familiar identification of cominuscule Schubert classes
with diagrams of boxes [Pro84].

Let X = G/PX be a flag variety defined by a complex semisimple linear algebraic
group G and a parabolic subgroup PX . Let Φ be the root system of G, W the Weyl
group, and let B be a Borel subgroup contained in PX . A simple root γ is called
cominuscule if, when the highest root is expressed in the basis of simple roots, the
coefficient of γ is one. The flag variety X is called cominuscule if PX is a maximal
parabolic subgroup defined by a cominuscule simple root. Let wX0 ∈ W be the
minimal representative of the longest element w0 modulo the Weyl group WX of
PX . The minimal representatives wF0 defined by all cominuscule flag varieties of G,
together with the identity, form a subgroup of the Weyl group:

W comin = {wF0 | F = G/PF is cominuscule} ∪ {1} ≤ W .

Each element u ∈ W defines the Schubert varieties Xu = Bu.PX and Xu =
B−u.PX in X. The Schubert classes [Xw] for w ∈ W comin will be called Seidel
classes. It was proved in [Bel04] and also in [CMP09] that quantum cohomology
products with Seidel classes have only one term. More precisely, for w ∈W comin and

u ∈W we have [Xw] ⋆ [Xu] = qω
∨−u−1.ω∨

[Xwu] in QH(X), where ω∨ is the unique
fundamental coweight such that w.ω∨ = w0.ω

∨. This defines a representation
of W comin on QH(X)/⟨q − 1⟩ called the Seidel representation. Our first result
generalizes the Seidel representation to the quantum K-theory ring when X is
itself cominuscule. We denote the Schubert classes in K(X) by Ou = [OXu

] and
Ou = [OXu ].

Theorem 1.1 (Seidel representation). Let X = G/PX be a cominuscule flag vari-
ety, and let w ∈W comin and u ∈W . We have in QK(X) that

Ow ⋆Ou = qdOwu ,
where d is determined by

∫
d
c1(TX) + codim(Xwu) = codim(Xw) + codim(Xu).

When X = G/PX is a cominuscule flag variety, the subset WX ⊂W of minimal
representatives of the cosets in W/WX can be represented by generalized Young
diagrams [Pro84, Per07, BS16]. Set PX = {α ∈ Φ | α ≥ γ}, where γ is the
cominuscule simple root defining X, and give PX the partial order α′ ≤ α if and
only if α−α′ is a sum of positive roots. The inversion set I(u) = {α ∈ Φ+ | u.α < 0}
of any element u ∈WX is a lower order ideal in PX . The set PX can be identified
with a set of boxes in the plane, which in turn identifies I(u) with a diagram of
boxes that we call the shape of u. This defines a bijection between the set of shapes
in PX and the Schubert basis {[Xu]} of H∗(X,Z).
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More generally, let B = {qd[Xu] | u ∈ WX , d ∈ Z} be the natural Z-basis of
QH(X)q = QH(X) ⊗ Z[q, q−1]. It was shown in [BCMP22] that B has a natural
partial order defined by qe[Xv] ≤ qd[Xu] if and only if Xu and Xv can be connected
by a rational curve of degree at most d − e. Moreover, this partial order is a

distributive lattice when X is cominuscule. Let P̂X ⊂ B be the subset of join-

irreducible elements. Then P̂X is an infinite partially ordered set that contains

PX as an interval. When X = Gr(m,n) is a Grassmannian of type A, P̂X =
Z2/Z(m,m−n) is Postnikov’s cylinder from [Pos05]. This poset was also defined in

[Hag04]. The posets P̂X defined by other cominuscule flag varieties are isomorphic
to certain full heaps of affine Dynkin diagrams that were constructed in [Gre13]
and used to study minuscule representations.

Define a quantum shape to be any (non-empty, proper, lower) order ideal λ ⊂ P̂X .
A quantum shape will also be called a shape when it cannot be misunderstood to
be a classical shape in PX . The assignment

I(qd[Xu]) = {α̂ ∈ P̂X | α̂ ≤ qd[Xu]}

defines an order isomorphism from B to the set of shapes in P̂X , where shapes are
ordered by inclusion. We write Oλ = qdOu when λ = I(qd[Xu]) is the quantum
shape of qd[Xu].

Quantum multiplication by any Seidel class σ defines an order automorphism of

B, which restricts to an order automorphism of P̂X . If λ ⊂ P̂X is any quantum
shape, then σ ⋆ λ = {σ ⋆ α̂ | α̂ ∈ λ} defines a new quantum shape such that

σ ⋆Oλ = Oσ⋆λ .
Here we have abused notation and identified σ with the corresponding K-theory

class OI(σ) ∈ QK(X). The poset P̂X can be identified with an infinite set of boxes
in the plane, such that each automorphism defined by a Seidel class is represented
by a translation of the plane, possibly combined with a reflection. This gives a
simple description of products with Seidel classes in terms of quantum shapes.

Let X = G/PX be a cominuscule classical Grassmannian, that is, a Grassman-
nian Gr(m,n) of type A, a maximal orthogonal Grassmannian OG(n, 2n), or a
Lagrangian Grassmannian LG(n, 2n). The Chern classes of the tautological vector
bundles over X are represented by the special Schubert varieties Xp ⊂ X, with
p ∈ N. Formulas for products with the special Schubert classes [Xp] are known as
Pieri formulas. Our Pieri formula for QK(X) takes the form

Op ⋆Oλ =
∑
ν

c(ν/λ, p)Oν ,

where the sum is over all quantum shapes ν containing λ. The coefficient c(ν/λ, p)

depends on p as well as the skew shape ν/λ := ν ∖ λ ⊂ P̂X . For Grassmanni-
ans of type A and maximal orthogonal Grassmannians, these coefficients c(ν/λ, p)
are identical to those appearing in the Pieri formulas for the ordinary K-theory
ring. These coefficients are signed binomial coefficients in type A [Len00], and
are signed counts of KOG-tableaux of shape ν/λ for maximal orthogonal Grass-
mannians [BR12]. In fact, in these cases the Pieri formula for QK(X) is an easy
consequence of Theorem 1.1, the Pieri formula for K(X), and a bound on the
q-degrees in cominuscule quantum products proved in [BCMP22].

Assume now that X = LG(n, 2n) is a Lagrangian Grassmannian. In this case our
Pieri formula for QK(X) is more difficult to state and prove. While the coefficients
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of the Pieri formula for K(X) are expressed as signed counts of KLG-tableaux in
[BR12], we need to amend the definition of KLG-tableau with additional conditions
in the quantum case. The tableaux satisfying these conditions will be called QKLG-
tableaux. Another difference is that the Lagrangian Grassmannian X does not have
enough Seidel classes to translate the Pieri formula for K(X) to one for QK(X).
We must therefore prove our quantum Pieri formula ‘from scratch’, starting with a
geometric computation of the relevant K-theoretic Gromov-Witten invariants, and
then use combinatorics to translate these Gromov-Witten invariants to the structure
constants c(ν/λ, p) of Pieri products. While both parts resemble the proof of the
Pieri formula from [BR12], the technical challenges are harder for several reasons,
and many steps rely on results proved in [BCMP22].

Our computation of Gromov-Witten invariants targets those of the form

Id(Op,Ov,Ou) = χ(ev∗1(Op) · ev∗2(Ov) · ev∗3(Ou)) ,

where ev1, ev2, ev3 :M0,3(X, d)→ X are the evaluation maps from the Kontsevich
modulo space. By [BCMP18b], these can be computed as

Id(Op,Ov,Ou) = χ
X
([OΓd(Xu,Xv)] · Op) ,

where the curve neighborhood Γd(Xu, X
v) ⊂ X is defined as the union of all stable

curves of degree d connecting Xu and Xv. Let X̂ = SF(1, n; 2n) be the variety of

two-step isotropic flags in the symplectic vector space C2n, and let π : X̂ → X and

η : X̂ → P2n−1 be the projections. We then have Op = π∗η
∗([OL]) for any linear

subspace L ⊂ P2n−1 of dimension n− p. The projection formula therefore gives

Id(Op,Ov,Ou) = χ
P2n−1 (η∗π

∗[OΓd(Xu,Xv)] · [OL]) .

We compute the right hand side by showing that the restricted map

(1) η : π−1(Γd(Xu, X
v)) → η(π−1(Γd(Xu, X

v)))

is cohomologically trivial, and that its image is a complete intersection in P2n−1

defined by explicitly determined equations. More precisely, define the skew shape

θ = I(qd[Xu])/I([Xv]) in P̂X , let N(θ) be the number of components of θ that are

disjoint from the two diagonals in P̂X (Section 7), and let R(θ) be the size of a maxi-
mal rim contained in θ. Assuming that R(θ) ≤ n, we show that η(π−1(Γd(Xu, X

v)))
is a complete intersection in P2n−1 defined by N(θ) quadratic equations and n −
R(θ)−N(θ) linear equations. This gives the formula

(2) Id(Op,Ov,Ou) = χ(OL∩ η(π−1(Γd(Xu,Xv)))) =

R(θ)−p∑
j=0

(−1)j 2N(θ)−j(N(θ)
j

)
.

In the special case d = 0 we have Γd(Xu, X
v) = Xu∩Xv, so (1) is the projection

of a Richardson variety in X̂. This map was proved to be cohomologically trivial
in [BR12] by showing that its general fibers are themselves Richardson varieties.
This result has been generalized to arbitrary projections of Richardson varieties, see
[BC12, KLS14] and [BCMP22, Thm. 2.10]. However, the variety π−1(Γd(Xu, X

v))
for d > 0 is not a Richardson variety, and it is difficult to determine the fibers of
the projection (1).

Let Yd = SG(n − d, 2n) be the symplectic Grassmannian of isotropic subspaces
of dimension n − d in C2n, set Zd = SF(n − d, n; 2n), and let pd : Zd → X
and qd : Zd → Yd be the projections. By the quantum-to-classical construction
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(see [BCMP22, §5] and references therein) we have Γd(Xu, X
v) = pd(q

−1
d (R)),

where R = qd(p
−1
d (Xu)) ∩ qd(p−1

d (Xv)) is a Richardson variety in Yd. Define the
perpendicular incidence variety

S = {(K,L) ∈ Yd × P2n−1 | K ⊂ L⊥} ,
and let f : S → P2n−1 and g : S → Yd be the projections. We then have
f(g−1(R)) = η(π−1(Γd(Xu, X

v))).
We prove that for any Richardson variety R ⊂ Yd, the general fibers of the

map f : g−1(R)→ f(g−1(R)) are rational, and the image f(g−1(R)) is a complete
intersection in P2n−1 defined by explicitly given linear and quadratic equations.
The required properties of the projection (1) are deduced from this result. Our
results about perpendicular incidences of Richardson varieties in Yd are stronger
than required for this paper, but of independent interest. For example, the fibers
of f : g−1(R) → f(g−1(R)) is a plausible definition of Richardson varieties in the
odd symplectic Grassmannian SG(n − d, 2n − 1). Notice also that S is not a flag
variety, so f(g−1(R)) is not a projected Richardson variety.

A final step in our proof of the Pieri formula for QK(X) is to translate the
formula (2) for Gromov-Witten invariants of Pieri type to a formula for the Pieri
coefficients c(ν/λ, p). We first show that the structure constants Id(Op,Ov, Iu) of
the undeformed product Op ⊙ Ov (see Section 2.5) are determined by recursive
identities. These identities are used to prove that the Pieri coefficients c(ν/λ, p)
satisfy analogous recursive identities. The Pieri formula for QK(X) then follows by
checking that the signed counts of QKLG-tableaux satisfy the same identities.

This paper is organized as follows. In Section 2 we fix our notation for flag
varieties and discuss preliminaries. Section 3 contains the proof of Theorem 1.1. In

Section 4 we define quantum shapes in the partially ordered set P̂X , and explain
how quantum multiplication by Seidel classes correspond to order automorphisms
of this set. The Pieri formulas for QK(X) are given in Section 5 for Grassmannians
of type A, in Section 6 for maximal orthogonal Grassmannians, and in Section 7 for

Lagrangian Grassmannians. These sections also explain in detail how the posets P̂X
for the classical Grassmannians are identified with sets of boxes in the plane. While
the Pieri formulas for Gr(m,n) and OG(n, 2n) have short proofs given after their
statements, the proof of the Pieri formula for Lagrangian Grassmannians is given
in the last three sections. Section 8 proves that the map f : g−1(R)→ f(g−1(R)) is
cohomologically trivial and identifies its image as a complete intersection in P2n−1.
Section 9 uses this result to prove the formula (2) for Gromov-Witten invariants
Id(Op,Ov,Ou) of Pieri type. Finally, Section 10 proves the recursive identities that
determine the invariants Id(Op,Ov, Iu) and the Pieri coefficients c(ν/λ, p).

We thank Leonardo Mihalcea for inspiring collaboration on many related papers
about quantum K-theory, as well as many helpful comments to this paper. We also
thank Mihail Ţarigradschi for helpful comments. Finally, we thank Prakash Belkale
and Robert Proctor for making us aware of the references [Bel04, Hag04, Gre13].

2. Cominuscule flag varieties

In this section we summarize some basic notation and definitions. We follow the
notation of [BCMP22].

2.1. Flag varieties. Let G be a connected semisimple linear algebraic group over
C, and fix a Borel subgroup B and a maximal torus T such that T ⊂ B ⊂ G. The
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opposite Borel subgroup B− ⊂ G is determined by B ∩ B− = T . Let W be the
Weyl group of G and let Φ be the root system, with simple roots ∆ ⊂ Φ+.

A flag variety of G is a projective variety with a transitive G-action. Given a
flag variety X of G, we let PX ⊂ G denote the stabilizer of the unique B-fixed point
in X. We obtain the identification X = G/PX = {g.PX | g ∈ G}, where g.PX is
the g-translate of the B-fixed point.

Let WX ⊂W be the Weyl group of PX and let WX ⊂W be the set of minimal
representatives of the cosets in W/WX . Each element w ∈W defines the Schubert
varieties

Xw = Bw.PX and Xw = B−w.PX ,

and for w ∈WX we have dim(Xw) = codim(Xw, X) = ℓ(w). The Bruhat order on
WX is defined by v ≤ u if and only if Xv ⊂ Xu.

Any element u ∈ W has a unique parabolic factorization u = uXuX , where
uX ∈ WX and uX ∈ WX . The parabolic factorization of the longest element
w0 ∈ W is w0 = wX0 w0,X , where wX0 is the longest element in WX and w0,X

is the longest element in WX . We have w0.X
u = Xu∨ for any u ∈ WX , where

u∨ = w0 uw0,X ∈WX denotes the Poincare dual basis element.

Lemma 2.1. Let Z = G/PZ be any flag variety with PZ ⊂ PX , and let p : Z →
X be the projection. Let F = p−1(1.PX) = PX/PZ denote the fiber over 1.PX ,
considered as a flag variety of PX . Let u ∈WX and w ∈WZ .

(a) We have p(Zw) = Xw = XwX , and the general fibers of p : Zw → Xw are
translates of FwX

= ZwX
.

(b) We have p(Zw) = Xw = XwX

, and the general fibers of p : Zw → Xw are
translates of FwX .

(c) The map p : Zw → Xw is birational if and only if wX = wZ0,X := (w0,X)Z .

(d) We have p−1(Xu) = ZuwZ
0,X

, and uwZ0,X ∈WZ .

(e) We have p−1(Xu) = Zu, and u ∈WZ .

Proof. Parts (a) and (b) are [BCMP22, Thm. 2.8 and Remark 2.9], and part (c)
follows from (b). Parts (d) and (e) hold because the T -fixed points in p−1(u.PX)
are the points of the form ut.PZ , with t ∈WX . □

Proposition 2.2. Let Y = G/PY and X = G/PX be flag varieties, let u ∈ WY ,
and assume that (PX .PY ) ∩ Y u ̸= ∅. Then (PX .PY ) ∩ Y u = (wX0 )−1.Y v, where
v = wX0 u ((w0,Y )

X)−1 ∈WY . In particular, (PX .PY )∩Y u is a Schubert variety in
Y .

Proof. Set Z = G/(PX ∩ PY ), let p : Z → X and q : Z → Y be the projections,
and set F = p−1(1.PX) = PX/PZ . Let t = w0uw0,Z be the Poincare dual element
of u in WZ . By [BCMP22, Thm. 2.8] we have t.F ∩Zt = tX .ZtX . The assumption
PX .PY ∩ Y u ̸= ∅ implies that p(Zu) = X, hence tX = wX0 and tX = (wX0 )−1t. We
obtain

F ∩ Zu = w0.(t.F ∩ Zt) = w0.(t
X .ZtX ) = (w0t

Xw0).Z
w0tXw0,Z = (wX0 )−1.Zw

X
0 u ,

where w0tXw0,Z = wX0 u belongs to WZ . Since q : F ∩ Zu → (PX .PY ) ∩ Y u is an
isomorphism, it follows from Lemma 2.1(c) that (wX0 u)Y = wZ0,Y = (w0,Y )

X and

(wX0 u)
Y = wX0 u((w0,Y )

X)−1. The result now follows from Lemma 2.1(b). □
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2.2. Cominuscule flag varieties. A simple root γ ∈ ∆ is called cominuscule if
the coefficient of γ is one when the highest root of Φ is expressed in the basis of
simple roots. The flag variety X = G/PX is called cominuscule if PX is a maximal
parabolic subgroup corresponding to a cominuscule simple root γ, that is, sγ is
the unique simple reflection in WX . A cominuscule flag variety X is also called
minuscule if the root system Φ is simply laced. In the remainder of this section we
assume that X = G/PX is the cominuscule flag variety defined by the cominuscule
simple root γ ∈ ∆.

The Bruhat order on WX is a distributive lattice [Pro84] with meet and join
operations defined by Xu∩v = Xu ∩Xv and Xu∪v = Xu ∩Xv for u, v ∈WX . The
minimal representatives in WX can be identified with shapes of boxes as follows
[Pro84, Per07, BS16]. The root system Φ has a natural partial order defined by
α′ ≤ α if and only if α− α′ is a sum of positive roots. Let PX ⊂ Φ+ be the subset

PX = {α ∈ Φ | α ≥ γ} ,
with the induced partial order (see Table 1). A lower order ideal λ ⊂ PX is called
a shape in PX . There is a natural bijection between WX and the set of shapes in
PX that sends w ∈WX to its inversion set

I(w) = {α ∈ Φ+ | w.α ∈ Φ−} .
This correspondence is compatible with the Bruhat order, so that v ≤ u holds in
WX if and only if I(v) ⊂ I(u). In addition, we have ℓ(w) = |I(w)|. The elements
of PX will frequently be called boxes. There exists a natural labeling δ : PX → ∆
defined by δ(α) = w.α, where w ∈ WX is the unique element with shape I(w) =
{α′ ∈ PX : α′ < α}. Given u ∈ WX , write I(u) = {γ = α1, α2, . . . , αℓ}, where
the boxes of I(u) are listed in non-decreasing order, that is, αi ≤ αj implies i ≤ j.
Then u = sδ(αℓ) · · · sδ(α2)sδ(α1) is a reduced expression for u.

If λ ⊂ PX is any shape and w ∈WX is the corresponding element with I(w) = λ,
then the Schubert varieties defined by w will also be denoted by

Xλ = Xw and Xλ = Xw .

2.3. Curve neighborhoods. LetMd =M0,3(X, d) denote the Kontsevich moduli
space of 3-pointed stable maps to X of degree d and genus zero, see [FP97]. The
evaluation maps are denoted evi :Md → X, for 1 ≤ i ≤ 3. Given opposite Schubert
varieties Xu and Xv in X and a degree d ≥ 0, let

Md(Xu, X
v) = ev−1

1 (Xu) ∩ ev−1
2 (Xv)

be the Gromov-Witten variety of stable maps that send the first two marked points
to Xu and Xv, respectively. This variety is empty or unirational with rational
singularities [BCMP13, §3]. The curve neighborhood

Γd(Xu, X
v) = ev3(Md(Xu, X

v))

is the union of all stable curves of degree d in X that connect Xu and Xv. In par-
ticular, Γd(Xu) = Γd(Xu, X) is the union of all stable curves of degree d that pass
through Xu. Since this variety is a Schubert variety in X [BCMP13, Prop. 3.2(b)],
we can define elements u(d), v(−d) ∈WX by

Γd(Xu) = Xu(d) and Γd(X
v) = Xv(−d) .

Define zd ∈WX by Γd(1.PX) = Xzd .
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Table 1. Partially ordered sets PX of cominuscule varieties with
I(z1) highlighted. In each case the partial order is given by α′ ≤ α
if and only if α′ is weakly north-west of α.

Grassmannian Gr(3, 7) of type A Max. orthog. Grassmannian OG(6, 12)

1 2 3 4 5 6

3 4 5 6
2 3 4 5
1 2 3 4

1 2 3 4
5

6

6 4 3 2 1
5 4 3 2

6 4 3
5 4

6

Lagrangian Grassmannian LG(6, 12) Cayley Plane E6/P6

1 2 3 4 5 6

6 5 4 3 2 1
6 5 4 3 2

6 5 4 3
6 5 4

6 5
6

1

2

3 4 5 6

6 5 4 2
3 4 5 6
1 3 4 5

2 4 3 1

Even quadric Q10 ⊂ P11 Freudenthal variety E7/P7

1 2 3 4
5

6

1 2 3 4 5
6 4 3 2 1

Odd quadric Q11 ⊂ P12

1 2 3 4 5 6

1 2 3 4 5 6 5 4 3 2 1

1

2

3 4 5 6 7

7 6 5 4 3 1
2 4 3

5 4 2
6 5 4 3 1
7 6 5 4 3

2 4
5
6
7

The curve neighborhood Γd(Xu, X
v) can be constructed as a projected Richard-

son variety as follows [BCMP18b]. Given x, y ∈ X, let dist(x, y) ∈ H2(X,Z) = Z
denote the minimal degree of a rational curve in X that meets both x and y. The
diameter of X is the distance dX(2) = dist(1.PX , w0.PX) between two general
points. For 0 ≤ d ≤ dX(2), we can choose points x, y ∈ X with dist(x, y) = d. Let
Γd(x, y) be the union of all stable curves of degree d that pass through x and y.



SEIDEL AND PIERI PRODUCTS IN COMINUSCULE QUANTUM K-THEORY 9

Then Γd(x, y) is a non-singular Schubert variety, whose stabilizer PYd
is a parabolic

subgroup of G. The set of all G-translates of Γd(x, y) can therefore be identified
with the flag variety Yd = G/PYd

. Let Zd = G/PZd
be the flag variety defined by

PZd
= PX ∩ PYd

, and let pd : Zd → X and qd : Zd → Yd be the projections. Set

Yd(Xu, X
v) = qd(p

−1
d (Xu)) ∩ qd(p−1

d (Xv)) and

Zd(Xu, X
v) = q−1

d (Yd(Xu, X
v)) .

These varieties are Richardson varieties in Yd and Zd. By [BCMP18b, Thm. 4.1]
and [BCMP22, Thm. 10.1] we then have Γd(Xu, X

v) = pd(Zd(Xu, X
v)), and the

restricted projection

(3) pd : Zd(Xu, X
v)→ Γd(Xu, X

v)

is cohomologically trivial. We let κd = (w0,Yd
)X = wZd

0,Yd
∈ WX be the unique

element such that Xκd
= p(q−1(1.PYd

)) is a translate of Γd(x, y). A combinatorial
description of the elements κd, zd ∈WX can be found in [BCMP22, Def. 5.2].

2.4. Quantum cohomology. The (small) quantum cohomology ring QH(X) is a
Z[q]-algebra, which is defined by QH(X) = H∗(X,Z) ⊗Z Z[q] as a Z[q]-module.
When X is cominuscule, the multiplicative structure is given by

[Xu] ⋆ [X
v] =

∑
d≥0

(pd)∗[Zd(Xu, X
v)] qd .

This follows from the quantum equals classical theorem [Buc03, BKT03, CMP08,
BM11, CP11, BCMP18b]. A mostly type-uniform proof was given in [BCMP22].
Notice that we have

(pd)∗[Zd(Xu, X
v)] =

{
[Γd(Xu, X

v)] if dimΓd(Xu, X
v) = dimZd(Xu, X

v),

0 otherwise,

for example because the projection (3) is cohomologically trivial. Let

QH(X)q = QH(X)⊗Z[q] Z[q, q−1]

be the localization of QH(X) at the deformation parameter q. The set B =
{qd [Xu] | u ∈WX and d ∈ Z} is a natural Z-basis of QH(X)q.

2.5. Quantum K-theory. Let K(X) denote the K-theory ring of algebraic vector
bundles on X. Given u ∈ W , we let Ou = [OXu ] and Ou = [OXu ] denote the
corresponding K-theoretic Schubert classes. For any shape λ ⊂ PX , we similarly
write Oλ = [OXλ

] and Oλ = [OXλ ].
The quantum K-theory ring QK(X) is an algebra over the power series ring

ZJqK, which is given by QK(X) = K(X)⊗ZZJqK as a ZJqK-module. An undeformed
product on QK(X) is defined by

Ou ⊙Ov =
∑
d≥0

(pd)∗[OZd(Xu,Xv)] q
d =

∑
d≥0

[OΓd(Xu,Xv)] q
d .

This product Ou ⊙ Ov is not associative. Let ψ : QK(X) → QK(X) be the
line neighborhood operator, defined as the ZJqK-linear extension of the map ψ =
(ev2)∗(ev1)

∗ : K(X) → K(X), where ev1 and ev2 are the evaluation maps from
M0,2(X, 1). Equivalently, we have ψ(Ou) = Ou(−1) for u ∈ WX . Givental’s asso-
ciative quantum product on QK(X) is then given by [BCMP18a, Prop. 3.2]

Ou ⋆Ov = (1− qψ)(Ou ⊙Ov) .
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Let QK(X)q be the localization obtained by adjoining the inverse of q to QK(X).
The set B′ = {qdOu | u ∈ WX and d ∈ Z} is a Z-basis of QK(X)q, in the sense
that every element of F ∈ QK(X)q can be uniquely expressed as an infinite linear
combination

F =
∑
d≥d0

∑
u∈WX

au,d q
dOu

of B′, with au,d ∈ Z and the degrees d bounded below.

3. The Seidel representation on quantum K-theory

Let X = G/PX be a fixed cominuscule flag variety. In this section we prove that
certain productsOu⋆Ov in QK(X) are equal to a single element qdOw from B′. The
same statement was proved in [Bel04, CMP09] for products of Schubert classes in
the quantum cohomology ring QH(M) of any flag varietyM = G/PM . For u, v ∈W
we let dmin(u, v) and dmax(u, v) denote the minimal and maximal powers of q in the
quantum cohomology product [Xu] ⋆ [Xv] ∈ QH(X). Let dmax(u) = dmax(u,w

X
0 )

be the maximal power of q in [Xu] ⋆ [1.PX ].

Lemma 3.1. Let u ∈ WX and dmax(u) ≤ d ≤ dX(2). Then Γd(1.PX , X
u) =

(wX0 )−1.Xv, where v = wX0 (u ∪ κd)(zdκd)−1 ∈WX .

Proof. Using that κd ∈WYd
, we obtain qd(p

−1
d (Xu)) = qd(p

−1
d (Xu∪κd)), and hence

Γd(1.PX , X
u) = Γd(1.PX , X

u∪κd), so we may replace u with u ∪ κd and assume
that d = dmax(u) (see [BCMP22, §7.1]). We have qd(pd

−1(1.PX)) = PX .PYd
and

qd(p
−1
d (Xu)) = (Yd)

uκd by Lemma 2.1, and since κd ≤ uYd
≤ wZd

0,Yd
= κd = κ−1

d , we

obtain uκd ∈ WYd . It therefore follows from Proposition 2.2 that Yd(1.PX , X
u) =

(PX .PYd
)∩Y uκd

d = (wX0 )−1.Y vd , where v = wX0 (uκd)κ
−1
d = wX0 u ∈WYd . The result

follows from this and Lemma 2.1, using that pd : Zd(1.PX , X
u)→ Γd(1.PX , X

u) is

birational [BCMP22, Prop. 7.1] and wZd

0,X = zdκd [BCMP22, Lemma 6.1]. □

Corollary 3.2. For u ∈ W we have [1.PX ] ⋆ [Xu] = qdmax(u) [XwX
0 u] in QH(X)

and [O1.PX
] ⋆Ou = qdmax(u)OwX

0 u in QK(X).

Proof. This follows from Lemma 3.1 together with [BCMP22, Prop. 7.1, Thm. 8.3,
and Thm. 8.10]. Notice that the product [O1.PX

] ⋆ Ou has no exceptional degree
by the inequality in [BCMP22, Def. 8.2]. □

Let W comin ⊂ W be the subset of point representatives of cominuscule flag
varieties of G, together with the identity element:

W comin = {wF0 | F is a cominuscule flag variety of G} ∪ {1} .
Remarkably, this is a subgroup of W , which is also isomorphic to the quotient of
the coweight lattice of Φ by the coroot lattice. The isomorphism sends wF0 to the
class of the fundamental coweight corresponding to F .

The classes qd[Xw] ∈ QH(X)q and qdOw ∈ QK(X)q given by w ∈ W comin and
d ∈ Z are called Seidel classes. The cohomological Seidel classes qd[Xw] form
a subgroup of the group of units QH(X)×q by [Bel04, CMP09]. We will see in
Corollary 3.7 below that the K-theoretic Seidel classes similarly form a subgroup
of QK(X)×q .

The following lemma shows that [Xu] is a Seidel class if and only if the dual
class [Xu] is a Seidel class (when X is cominuscule).
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Lemma 3.3. Let X = G/PX and F = G/PF be flag varieties. The dual element
of (wF0 )

X in WX is ((wF0 )
−1wX0 )X .

Proof. Using that w0 = wF0 w0,F , we obtain (wF0 )
−1w0 = w0,F = (w0,F )

−1 = w0w
F
0 ,

so the dual element of (wF0 )
X is (w0w

F
0 )

X = ((wF0 )
−1w0)

X = ((wF0 )
−1wX0 )X . □

The following combinatorial lemma is justified with a case-by-case argument.
We hope to give a type-independent proof in later work.

Lemma 3.4. Let X be a cominuscule flag variety, let α ∈ I(z1)∖ {γ}, and define
u ∈WX by I(u) = {α′ ∈ PX | α′ ≤ (z1sγ).α}. The following are equivalent.

(a) u = wX for some w ∈W comin.

(b) δ(α) is a cominuscule simple root.

(c) α ̸≤ (z1sγ).α.

(d) PX ∖ I(u) = {α′ ∈ PX | α′ ≥ α}.
When these conditions hold we have u∨ = (wF0 )

X , where F = G/PF is the comi-
nuscule flag variety defined by δ(α).

Proof. The action of w0,X restricts to an order-reversing involution of PX , and
z1sγ : I(z1) ∖ {γ} → w0,X .(I(z1) ∖ {γ}) is an order isomorphism, see [BCMP22,
Lemma 4.4 and Prop. 5.10]. This uniquely determines (z1sγ).α for most comi-
nuscule flag varieties. In this proof we will identify shapes labeled by simple root
numbers with the product of the corresponding simple reflections in south-east to
north-west order. For example, the set PX labeled by simple root numbers, as in
Table 1, is identified with wX0 .

Assume first that the root system Φ has type An−1, with simple roots ∆ =
{β1, . . . , βn−1}. All simple roots are cominuscule. Let X = Gr(m,n) be defined by
γ = βm. Then PX is a rectangle with m rows and n−m columns, and I(z1)∖ {γ}
consists of the top row and leftmost column of PX , except for the minimal box γ.
Let α ∈ I(z1)∖ {γ} be the box in column c of the top row of PX . Then (z1sγ).α is
the box in column c−1 of the bottom row of PX , and I(u) is a rectangle withm rows
and c−1 columns. We also have δ(α) = βm+c−1, which defines F = Gr(m+c−1, n).
The shape of (wF0 )

X is a rectangle with m rows and n −m − c + 1 columns; this
follows because the top part of I(wF0 ) cancels when w

F
0 is reduced moduloWX . For

example, for X = Gr(3, 8) and c = 4, we obtain F = Gr(6, 8) and

wX0 =
3 4 5 6 7
2 3 4 5 6
1 2 3 4 5

, wF0 =

6 7
5 6
4 5
3 4
2 3
1 2

, and (wF0 )
X =

3 4
2 3
1 2

= s2s1s3s2s4s3 .

The marked box is α. It follows that u is dual to (wF0 )
X in WX , and conditions

(a)-(d) are satisfied. A symmetric argument applies when α belongs to the leftmost
column of PX .

We next assume that Φ has type Dn, with simple roots ∆ = {β1, . . . , βn}. The
three cominuscule flag varieties of this type are Q = Dn/P1, X

′ = Dn/Pn−1, and
X ′′ = Dn/Pn. Here Q ∼= Q2n−2 is a quadric and X ′ ∼= X ′′ ∼= OG(n, 2n) are



12 ANDERS S. BUCH, PIERRE–EMMANUEL CHAPUT, AND NICOLAS PERRIN

maximal orthogonal Grassmannians. For n = 6, the point representatives are

wQ0 = 1 2 3 4 5
6 4 3 2 1

, wX
′

0 =

5 4 3 2 1
6 4 3 2
5 4 3
6 4

5

, and wX
′′

0 =

6 4 3 2 1
5 4 3 2
6 4 3

5 4
6

.

Let X = Q. The elements in WQ representing Seidel classes other than 1 and
[1.PX ] are the two elements of length n− 1. For n = 6, we obtain

(wX
′

0 )Q = 1 2 3 4 5 and (wX
′′

0 )Q = 1 2 3 4
6
.

The set I(z1) ∖ {γ} contains all boxes of PQ, except γ and the maximal box.
The two incomparable boxes of PQ are α′ = θ + βn−1 and α′′ = θ + βn, where
θ = β1 + · · · + βn−2. Since z1sγ swaps α′ and α′′ and fixes all other boxes of
I(z1)∖ {γ}, it follows that (a)-(d) are satisfied if and only if α ∈ {α′, α′′}. Assume
that α = α′′. We obtain u = sn−1sn−2 · · · s2s1, δ(α) = βn, and F = X ′′. If n

is even, then the bottom label of wX
′

0 is n − 1, hence u = (wX
′

0 )Q, and otherwise

u = (wX
′′

0 )Q. This is consistent with the lemma, since the elements (wX
′

0 )Q and

(wX
′′

0 )Q are dual to each other when n is even and self-dual when n is odd. A
symmetric argument applies when α = α′.

Let X = X ′. The shape of (wQ0 )
X′

is a single row of n− 1 boxes, and (wX
′′

0 )X
′

is dual to (wQ0 )
X′

in WX′
. For n = 6, we have

(wQ0 )
X′

= 5 4 3 2 1 and (wX
′′

0 )X
′
=

5 4 3 2
6 4 3
5 4

6

.

The set I(z1) ∖ {γ} consists of the first two rows of PX′ , with γ removed. Let
α1, αn ∈ I(z1) ∖ {γ} be the unique boxes with labels δ(α1) = β1 and δ(αn) = βn.
Then (z1sγ).αn = α1, and (z1sγ).α1 is the second to last diagonal box of PX . It
follows that conditions (a)-(d) hold if and only if α ∈ {α1, αn}, and the description
of u∨ is accurate.

If X is a Lagrangian Grassmannian LG(n, 2n), an odd quadric Q2n−1, or the
Freudenthal variety E7/P7, then no boxes of I(z1)∖ {γ} satisfy conditions (a)–(d).
The Cayley plane E6/P6 is similar to the cases of typeDn and left to the reader. □

Lemma 3.5. Let X be a minuscule flag variety, let u1, u2, . . . , uℓ ∈ WX , and
assume that Ou1 ⋆ Ou2 ⋆ · · · ⋆ Ouℓ = qd for some d ∈ Z. Then Oui ⋆ B′ ⊂ B′ for
each i, where B′ = {qeOv | v ∈WX , d ∈ Z} is the Z-basis of QK(X)q.

Proof. It follows from [BCMP22, Thm. 8.4] that QK(X)q has non-negative struc-
ture constants relative to the basis

B′′ = {(−1)ℓ(v)+
∫
d
c1(TX) qdOv | v ∈WX and d ∈ Z} .

The lemma therefore follows from the proof of [BW21, Lemma 3]. Namely, if the
expansion of Oui ⋆Ov contains more than one term, then so does the expansion of
Ou1 ⋆ · · · ⋆Ouℓ ⋆Ov = qdOv, which is a contradiction. □

Theorem 3.6. Let X be a cominuscule flag variety and let u ∈WX . The following
are equivalent.

(S1) u = wX for some w ∈W comin.
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(S2) [Xu]⋆B ⊂ B, where B = {qd [Xv] | v ∈WX , d ∈ Z} is the Z-basis of QH(X)q.

(S3) Ou ⋆B′ ⊂ B′, where B′ = {qdOv | v ∈WX , d ∈ Z} is the Z-basis of QK(X)q.

(S4) [Xu] ⋆ [X
u] = [1.PX ] ∈ QH(X).

(S5) Ou ⋆Ou = [O1.PX
] ∈ QK(X).

(S6) dmax(u
∨, u) = 0.

(S7) We have u ∈ {1, wX0 }, or ∃ α ∈ I(z1) such that α /∈ I(u) and (z1sγ).α ∈ I(u).
Furthermore, if α is as in condition (S7), then I(u) = {α′ ∈ PX | α′ ≤ (z1sγ).α},
δ(α) is a cominuscule simple root, and u∨ = (wF0 )

X where F = G/PF is the
cominuscule flag variety defined by δ(α).

Proof. We may assume u /∈ {1, wX0 } by Corollary 3.2. The implications (S3)⇒ (S2)
⇒ (S4) and (S3) ⇒ (S5) ⇒ (S4) are clear, noting that the quantum cohomology
product [Xu]⋆ [Xv] is the leading term of Ou ⋆Ov, and is non-zero by Corollary 3.2
since [Xu] ⋆ [Xu] ⋆ [Xv] ̸= 0. The implication (S4) ⇒ (S6) is also clear. Using
the notation u1, u

1 ∈ W defined in [BCMP22, Def. 6.5], it follows from [BCMP22,
Prop. 7.1 and Cor. 7.4] that dmax(u

∨, u) = 0 is equivalent to u1 ̸≤ u1, noting that
dmax(u) > 0 and dmax(u

∨) > 0. The elements u1 and u1 are cominuscule minimal
representatives, so u1 ̸≤ u1 is equivalent to I(u1) ̸⊂ I(u1). By [BCMP22, Prop. 6.2
and Prop. 6.7(b)] these inversion sets are given by

I(u1) = z−1
1 .(I(u) ∩ (I(s∨γ )∖ I(z∨1 ))) and I(u1) = sγ .(I(u) ∩ (I(z1)∖ {γ})) .

Since (z1sγ)
−1.(I(s∨γ )∖ I(z∨1 )) = I(z1)∖{γ} and γ ∈ I(u), we deduce that I(u1) ̸⊂

I(u1) holds if and only if (z1sγ)
−1.I(u) ∩ I(z1) ̸⊂ I(u). This proves that (S6) is

equivalent to (S7). Assume (S7), and let α ∈ I(z1) satisfy α /∈ I(u) and (z1sγ).α ∈
I(u). Then α ̸≤ (z1sγ).α, so Lemma 3.4 implies that δ(α) is a cominuscule simple
root. This is only possible when X is minuscule. Using (S6), it follows from
[BCMP22, Thm. 8.3] that Ou ⋆Ou = [O1.PX

]. By Corollary 3.2, this implies that
(Ou⋆Ou)⋆m is a power of q for some positive integerm, so it follows from Lemma 3.5
that Ou ⋆ B′ ⊂ B′. This proves the implication (S7) ⇒ (S3). We finally show that
(S1) is equivalent to (S7). The implication (S7) ⇒ (S1) follows immediately from
Lemma 3.4. If (S1) holds, then u∨ = (wF0 )

X , where F = G/PF is the cominuscule
flag variety defined by some cominuscule simple root γ′ ∈ ∆∖ {γ}. Let α ∈ I(z1)
be any root for which δ(α) = γ′, and define v ∈ WX by I(v) = {α′ ∈ PX | α′ ≤
(z1sγ).α}. Then Lemma 3.4 shows that u = v, which proves the implication (S1)
⇒ (S7). The last claims of the theorem also follow from Lemma 3.4. □

The following result provides the action of the subgroup of Seidel classes in
QK(X)×q on the basis B′. The statement was proved for the quantum cohomology
of arbitrary flag varieties in [Bel04, CMP09].

Corollary 3.7. Let X be a cominuscule flag variety, and let w ∈ W comin and
v ∈W . Then, Ow ⋆Ov = qdmin(w,v)Owv holds in QK(X).

Proof. It follows from [Bel04, CMP09] that [Xw] ⋆ [Xv] = qdmin(w,v) [Xwv] holds in
the quantum cohomology ring QH(X). The result follows from this since [Xw]⋆[Xv]
is the leading term of Ow ⋆Ov, and Ow ⋆Ov is a power of q times a single Schubert
class by Theorem 3.6. □

Example 3.8. Let X = Q2n−2 be the quadric of type Dn, let P ∈ H4n−4(X) be
the point class, and let σ, τ ∈ H2n−2(X) be the two Schubert classes of middle
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degree. Since W comin has order 4 and deg(q) = deg(P ), we deduce that the Seidel
classes in H∗(X) consist of 1, σ, τ , and P . If n is even, then σ · τ = P and
σ2 = τ2 = 0 hold in H∗(X). It follows that σ ⋆ τ = P , σ2 = τ2 = q, σ ⋆ P = q τ ,
and τ ⋆P = q σ hold in QH(X). Similarly, if n is odd, then σ2 = τ2 = P , σ ⋆ τ = q,
σ ⋆ P = q τ , and τ ⋆ P = q σ hold in QH(X). Any product of a Seidel class with
a non-Seidel Schubert class in QH(X) is the unique element in B of the correct
degree. This determines all products with Seidel classes in QH(X). Products of
arbitrary Schubert classes in QH(X) and QK(X) are determined by this together
with Corollary 3.7 and the quantum Chevalley formulas [FW04, BCMP18a].

Example 3.9. Let X = Gr(2, 4). Then

[X ] ⋆ [X ] = q [X ]

holds in QH(X). Let {e1, e2, e3, e4} be the standard basis of C4. We claim that

Γ1(X ,X ) = {V ∈ X | V ∩ ⟨e1, e4⟩ ≠ 0} ,

that is, Γ1(X ,X ) is a translate of the Schubert divisor X . The curve neighbor-
hood Γ1(X ,X ) is the union of all lines connecting the Schubert varieties

X = {A ∈ X | ⟨e1⟩ ⊂ A ⊂ ⟨e1, e2, e3⟩} and

X = {B ∈ X | ⟨e4⟩ ⊂ B} .

Given V ∈ Γ1(X ,X ), we can find A ∈ X and B ∈ X such that

0 ̸= A ∩ B ⊂ V ⊂ A+B ̸= C4 .

Since V and ⟨e1, e4⟩ are both contained in A+B, we obtain V ∩ ⟨e1, e4⟩ ≠ 0. This
proves the claim, since Γ1(X ,X ) is a divisor in X.

Set Y1 = Fl(1, 3; 4), Z1 = Fl(4), and let p1 : Z1 → X and q1 : Z1 → Y1 be
the projections. We have q1p

−1
1 (X ) = (Y1)3142 and q1p

−1
1 (X ) = (Y1)

1243, so it
follows from Monk’s formula that

[Y1(X ,X )] = [Y 2143
1 ] · [Y 1243

1 ] = [Y 3142
1 ] + [Y 2341

1 ] .

We deduce that Y1(X ,X ) is not a Schubert variety in Y1.

Remark 3.10. Let M = G/PM be any flag variety of G. Recall that H2(M,Z)
can be identified with the coroot lattice of G modulo the coroot lattice of PM , by
identifying each curve class [Msβ ] with the simple coroot β∨ (see e.g. [BM15, §2]).
Let u ∈ W , w ∈ W comin, and let β ∈ ∆ ∩ I(w) be the cominuscule simple root
defining the cominuscule flag variety corresponding to w. Set d = ω∨

β − u−1.ω∨
β ∈

H2(M,Z), where ω∨
β is the fundamental coweight dual to β. It was proved in

[Bel04, CMP09] that the identity

[Mw] ⋆ [Mu] = qd[Mwu]

holds in the small quantum cohomology ring QH(M). This is consistent with the
following conjecture.

Conjecture 3.11. Let M = G/PM be any flag variety. For u ∈ W , w ∈ W comin,
I(w) ∩∆ = {β}, and d = ω∨

β − u−1.ω∨
β ∈ H2(M,Z), we have

Γd(Mw0w,M
u) = w−1.Mwu .
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This conjecture follows from Proposition 2.2 when d = 0, from Lemma 3.1 when
M is cominuscule and w = wM0 , and from [LLSY22, Cor. 4.6] when M is a Grass-
mannian of type A and [Mw] is a special Seidel class. In response to this paper,
it was proved in [Tar23] that Conjecture 3.11 is true for all flag varieties of type
A, and the general conjecture follows from the special case where PM is a maximal
parabolic subgroup.

4. Quantum shapes

Let X = G/PX be a cominuscule flag variety. An infinite partially ordered

set P̂X extending PX was constructed in [BCMP22], such that elements of the

set B = {qd[Xu] | u ∈ WX , d ∈ Z} correspond to order ideals in P̂X that
we call quantum shapes. Isomorphic partially ordered sets were constructed in
[Hag04, Pos05, Gre13]. Products of Seidel classes with arbitrary Schubert classes
have simple combinatorial descriptions in terms of quantum shapes, and our Pieri
formulas also have their simplest expressions in terms of these shapes. In this sec-
tion we summarize the facts we need. Proofs of our claims and more details can be
found in [BCMP22, §7.2]. Some claims are justified by Proposition 4.4 proved at
the end of this section.

Recall that B is a Z-basis of QH(X)q. Define a partial order on B by

qe[Xv] ≤ qd[Xu] ⇐⇒ Γd−e(Xu, X
v) ̸= ∅ .

The condition Γd−e(Xu, X
v) ̸= ∅ says that some rational curve in X of degree at

most d− e intersects both Xu and Xv. Equivalently, qe[Xv] ≤ qd[Xu] holds if and

only if qd[Xu] occurs with non-zero coefficient in the expansion of qe[Xv] ⋆ qd
′
[Xw]

in QH(X)q, for some w ∈ WX and d′ ≥ 0 [BCMP22, §7.2]. The following was
proved in [BCMP22, Thm. 7.8].

Theorem 4.1. Let u, v ∈ WX and d ∈ Z. The power qd occurs in [Xu] ⋆ [Xv] if
and only if [Xv] ≤ qd[Xu] ≤ [point] ⋆ [Xv].

Corollary 4.2. Assume that u, u′, v, v′ ∈ WX satisfy u′ ≤ u and v′ ≤ v. Then
dmin(u

′, v′) ≤ dmin(u, v) and dmax(u
′, v′) ≤ dmax(u, v).

Proof. Set d = dmin(u, v). Then [Xv′ ] ≤ [Xv] ≤ qd[Xu] ≤ qd[Xu′ ]. Using

that [Xu′
] ⋆ [Xv′ ] ̸= 0, this shows that dmin(u

′, v′) ≤ d. Similarly, if we set

d = dmax(u
′, v′), then qd[Xu] ≤ qd[Xu′ ] ≤ [point] ⋆ [Xv′ ] ≤ [point] ⋆ [Xv] and

[Xu] ⋆ [Xv] ̸= 0 implies that d ≤ dmax(u, v), as required. □

The following special case is useful for showing that a quantum product [Xu] ⋆
[Xv] has only classical terms.

Corollary 4.3. Let u, v ∈ WX . Assume that u ≤ w and v ≤ w0w for some
w ∈W comin. Then dmax(u, v) = 0.

Proof. This follows from Corollary 4.2 and condition (S6) of Theorem 3.6. □

The partially ordered set B is a distributive lattice by [BCMP22, Prop. 7.10].

Let P̂X ⊂ B be the subset of all join-irreducible elements. These elements will

be called boxes. Define a quantum shape in P̂X to be any non-empty proper lower

order ideal λ ⊂ P̂X . A quantum shape will also be called a shape when it cannot be

misunderstood to be a classical shape in PX . A skew shape in P̂X is the difference
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λ/µ := λ∖ µ between two shapes µ ⊂ λ ⊂ P̂X . All shapes in P̂X are infinite, and

all skew shapes in P̂X are finite. Given qd[Xu] ∈ B, define

I(qd[Xu]) = {α̂ ∈ P̂X | α̂ ≤ qd[Xu]} .

Notice that if qd[Xu] ∈ P̂X , then qd[Xu] is the unique maximal box of I(qd[Xu]).
By [BCMP22, Thm. 7.13], the map I is an order isomorphism of B with the set of

all shapes in P̂X , where shapes are ordered by inclusion. For any shape λ ⊂ P̂X
we will write Oλ = qdOu, where qd[Xu] ∈ B is the unique element with shape
I(qd[Xu]) = λ.

Given α ∈ PX , define ξ(α) ∈ WX by I(ξ(α)) = {α′ ∈ PX | α′ ≤ α}. Then

the quantum shape I([Xξ(α)]) ⊂ P̂X contains a unique maximal box τ(α) distinct

from 1 ∈ B, the identity element of QH(X). The map τ : PX → P̂X is an order

isomorphism of PX onto an interval in P̂X by [BCMP22, Thm. 7.13]. We identify

PX with the image τ(PX) ⊂ P̂X . Given a classical shape λ ⊂ PX , we will abuse
notation and also use λ to denote the corresponding quantum shape I([Xλ]) =

τ(λ) ∪ I(1) ⊂ P̂X , see Proposition 4.4(c). Both of these shapes define the same
class Oλ ∈ QK(X).

Quantum multiplication by any Seidel class σ = qd[Xw] in QH(X)q defines an

order automorphism of B, which restricts to an order automorphism of P̂X . Since

1 ∈ P̂X by Proposition 4.4(a), it follows that all Seidel classes belong to P̂X . Given

any shape λ ⊂ P̂X , we define a new quantum shape by σ ⋆ λ = {σ ⋆ α̂ | α̂ ∈ λ}. We
then have

OI(σ) ⋆Oλ = Oσ⋆λ

in QK(X)q, where OI(σ) = qdOw is the Seidel class in QK(X)q corresponding to

σ. The action of Seidel classes on P̂X therefore determines arbitrary products with
Seidel classes in QH(X)q and QK(X)q. For multiplication by powers of q, we use

the notation λ[d] = qd ⋆ λ = {qd ⋆ α̂ | α̂ ∈ λ}, so that Oλ[d] = qdOλ. The shifting
operations on shapes in PX (see [BCMP22, §6.2]) are then given by λ(d) = λ[d]∩PX
(when λ ⊂ PX is identified with the quantum shape λ ∪ I(1) ⊂ P̂X).

The following figures show the partially ordered set P̂X for the quadrics of di-
mensions 7 and 12, as well as the exceptional cominuscule flag varieties. Each set
has the west-to-east order, where any node is covered by the nodes immediately
northeast, east, or southeast of it. The elements of PX are colored gray. Sei-
del classes are represented by lines marking the eastern borders of their quantum
shapes. We use P to denote the point class, and σ and σ′ are used to represent
Seidel classes in H∗(X,Z) that are not in the subgroup of QH(X)×q generated by P
and q. Multiplication by any Seidel class corresponds to the rigid transformation

of P̂X that moves the border of 1 to the border of the Seidel class. This rigid
transformation is a horizontal translation, possibly combined with a reflection in a
horizontal line.

Q7:

q−1 q−1P q qP

q−2P 1 P q2
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Q12:

q−1σ q−1P σ′ q qσ

q−1σ′ 1 σ P qσ′

E6/P6:

q−1 q−1σ q−1P q qσ qP

q−2P 1 σ P q2

E7/P7:

q−2P q−1P P qP

1 q q2

The following results will be used to describe the quantum posets P̂X of classical
Grassmannians in the next three sections.

Proposition 4.4. Let X = G/PX be a cominuscule flag variety.

(a) We have P̂X ∩H∗(X) = {τ(α) | α ∈ PX ∖ I(z∨1 )} ∪ {1}.
(b) The map (P̂X ∩H∗(X))× Z→ P̂X defined by ([Xu], d) 7→ qd[Xu] is bijective.

(c) We have τ(PX) = I([1.PX ])∖ I(1) ⊂ P̂X .

Proof. Parts (a) and (b) follow from [BCMP22, Def. 7.11 and Thm. 7.13], noting
that τ(α) = [Xξ(α)] holds if and only if α ∈ PX ∖ I(z∨1 ). Let α ∈ PX . Then
τ(α) ≤ τ(ρ) = [1.PX ], where ρ ∈ PX is the highest root. Since [Xξ(α)] = τ(α) ∪ 1
by [BCMP22, Thm. 7.13(a)], and [Xξ(α)] ̸= 1, we obtain τ(α) ̸≤ 1. This proves that

τ(α) ∈ I([1.PX ])∖ I(1). Given α̂ ∈ I([1.PX ])∖ I(1), we may write α̂ = q−d[Xξ(α′)]
for some α′ ∈ PX ∖ I(z∨1 ) and d ∈ Z. The condition α̂ ≤ [1.PX ] implies d ≥ 0,
and α̂ ̸≤ 1 implies that α′ /∈ I(zd) by [BCMP22, Lemma 7.12]. It therefore follows
from [BCMP22, Prop. 5.9(a) and Cor. 5.11] that α = (z1sγ)

−d.α′ ∈ PX , and from
[BCMP22, Def. 7.11] that τ(α) = α̂. This proves part (c). □

Lemma 4.5. Let α be any non-minimal box in PX ∖ I(z∨1 ), and let α̂′ ⋖ τ(α) be a

covering in P̂X . Then α̂′ = τ(α′) for some α′ ∈ PX , such that α′ ⋖α is a covering
in PX .

Proof. Since α is not minimal in PX ∖ I(z∨1 ), it follows from Proposition 4.4(a)
that α̂′ ̸≤ 1, hence α̂′ = τ(α′) for some α′ ∈ τ(PX) by Proposition 4.4(c). Proposi-
tion 4.4(c) also implies that α′ ⋖ α is a covering in PX , as required. □
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5. Pieri formula for Grassmannians of type A

5.1. Quantum shapes. LetX = Gr(m,n) be the Grassmannian ofm-dimensional
vector subspaces of Cn. The quantum cohomology ring QH(X) was computed by
Witten [Wit95] and Bertram [Ber97], and a Pieri formula for the ordinary K-theory
ring K(X) was obtained by Lenart [Len00]. The Grassmannian X is minuscule of
type An−1, and the corresponding partially ordered set PX is a rectangle of boxes
with m rows and n −m columns, endowed with the northwest-to-southeast order
discussed below.

PX =

Each shape λ ⊂ PX can be identified with a partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0)

with λ1 ≤ n−m, where λi is the number of boxes in the i-th row of λ. If λ ⊂ PX
consists of a single row of boxes, then λ will also be identified with the integer
p = |λ|. The special Schubert classes in K(X) are the classes Op for 1 ≤ p ≤ n−m.
Another family of special classes consists of O(1)r for 1 ≤ r ≤ m, where (b)a denotes
a rectangle with a rows and b columns.

Let Z2 denote a grid of boxes (i, j) that fill the plane, where the row number
i increases from north to south, and the column number j increases from west
to east. We endow Z2 with the northwest-to-southeast partial order, defined by
(i′, j′) ≤ (i, j) if and only if i′ ≤ i and j′ ≤ j. The quotient Z2/Z(m,m − n) is
ordered by (i′, j′) + Z(m,m − n) ≤ (i, j) + Z(m,m − n) if and only if (i′, j′) ≤
(i + am, j + am − an) for some a ∈ Z. The cylinder Z2/Z(m,m − n) was used to
study the quantum cohomology ring QH(X) in [Pos05, §3]. This partially ordered
set was also defined in [Hag04, §8].

Proposition 5.1. Let X = Gr(m,n) and set σ = [Xn−m] and τ = [X(1)m ].

(a) The group of Seidel classes in QH(X)×q is generated by σ and τ .

(b) We have σm = τn−m = [1.PX ] and σ ⋆ τ = q in QH(X).

(c) The map ϕ : Z2/Z(m,m−n)→ P̂X defined by ϕ(i, j) = σi ⋆ τ j ⋆ [1.PX ]−1 is an
order isomorphism, which identifies PX with the rectangle [1,m]× [1, n−m].

(d) The actions of σ and τ on P̂X are determined by σ ⋆ ϕ(i, j) = ϕ(i + 1, j) and
τ ⋆ ϕ(i, j) = ϕ(i, j + 1).

Proof. Noting that σ = [XwF
0 ] and τ = [XwF ′

0 ], where F = Gr(1, n) and F ′ =
Gr(n− 1, n), it follows that σ and τ are Seidel classes in QH(X). Part (b) follows
from Bertram’s quantum Pieri formula [Ber97], and is also an easy consequence of
Corollary 3.7. These results also show that

σi = [X(n−m)i ] and τ j = [X(j)m ]

for 1 ≤ i ≤ m and 1 ≤ j ≤ n−m. Part (a) follows from this, noting that σ and τ
generate n distinct Seidel classes in H∗(X).

The map ϕ is well defined by part (b), and order-preserving since, if (i′, j′) ≤
(i, j), then ϕ(i, j) occurs in the expansion of the product ϕ(i′, j′) ⋆ (σi−i

′
⋆ τ j−j

′
).

The maximal box of (n −m)i is the i-th box of the rightmost column of PX , and
the maximal box of (j)m is the j-th box of the bottom row of PX . Since these
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maximal boxes include all boxes of PX ∖I(z∨1 ), it follows from Proposition 4.4 that
ϕ is surjective. If σi ⋆ τ j = 1 in QH(X)q, then since σ has order n and inverse τ in
QH(X)/(q−1), we must have j = i−an for some a ∈ Z. Since σi⋆τ j = 1 has degree
(n−m)i+mj = 0 in QH(X)q, we obtain (i, j) = a(m,m−n). This implies that ϕ
is bijective. To show that ϕ is an order isomorphism, we must show that, if α̂′ ⋖ α̂

is a covering in P̂X , then ϕ−1(α̂′) < ϕ−1(α̂). If X = P1, then this follows because
Z2/Z(1,−1) is totally ordered, so assume that n ≥ 3. Using that ϕ is surjective and
quantum multiplication by the Seidel classes σ and τ define order automorphisms of

P̂X , we may assume that α̂ = [1.PX ] = ϕ(m,n−m) is the maximal box of PX ⊂ P̂X .
We then deduce from Lemma 4.5 that α̂′ = ϕ(m−1, n−m) or α̂′ = ϕ(m,n−m−1),
and in either case we obtain ϕ−1(α̂′) < ϕ−1(α̂). Noting that ϕ(m,n−m) = [1.PX ]
and ϕ(m, 0) = ϕ(0, n − m) = 1, it follows from Proposition 4.4(c) that PX is
identified with the rectangle [1,m] × [1, n − m]. This proves part (c). Part (d)
follows from the definition of ϕ, which completes the proof. □

Example 5.2. Let X = Gr(2, 5) and set σ = [X3], τ = [X(1,1)], and P = [1.PX ].
The following figure shows the rectangle [0, 3] × [0, 4] ⊂ Z2, with each box (i, j)
labeled by ϕ(i, j). The framed 2× 3 rectangle can be identified with PX .

P−1

σ−1

τ−2

1

1

σ−1τ

τ−1

σ

σ

τ

τ

τ−1σ

q

q

τ2

qτ

P

qτ2

qσ

qP

Remark 5.3. Let X = Gr(m,n). The map from Proposition 5.1(c) defines an

order-preserving bijection ϕ : [1,m] × Z → P̂X , which is an order isomorphism

if and only if m = 1. In particular, P̂X does not have ‘cylinder’ behavior when
X = Pn−1 is projective space. A non-empty proper lower order ideal λ ⊂ [1,m]×Z
can be represented by the decreasing sequence (λ1 ≥ λ2 ≥ · · · ≥ λm), where λi ∈ Z
is maximal such that (i, λi) ∈ λ. The image ϕ(λ) is a shape in P̂X if and only if

λ1−λm ≤ n−m, and any shape in P̂X has this form. In this case the corresponding
basis element qd[Xµ] is obtained by removing rim-hooks from λ, see [BCFF99].

5.2. Pieri formula. Let θ ⊂ P̂X be a skew shape. A row of θ means a subset of
the form θ ∩ ϕ({k} × Z), where k ∈ Z and ϕ is the map defined in Proposition 5.1,

and a column of θ is a subset of the form θ ∩ ϕ(Z× {k}). The skew shape θ ⊂ P̂X
is called a horizontal strip if each column of θ contains at most one box. Let r(θ)
denote the number of non-empty rows in θ. For p ≥ 1 we define

A(θ, p) =

{
(−1)|θ|−p

(
r(θ)−1
|θ|−p

)
if θ is a horizontal strip,

0 otherwise.

A Pieri formula for products of the formOp⋆Oλ in QK(X) was proved in [BM11].
We proceed to show that this formula is an easy consequence of Corollary 3.7,
Lenart’s Pieri formula for K(X) [Len00], and a bound on the q-degrees in quantum
K-theory products proved in [BCMP22].
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Theorem 5.4. Let X = Gr(m,n), let λ ⊂ P̂X be any quantum shape, and let
1 ≤ p ≤ n−m. Then

Op ⋆Oλ =
∑
ν

A(ν/λ, p)Oν

holds in QK(X)q, where the sum is over all quantum shapes ν ⊂ P̂X containing λ.

Proof. Set τ = O(1)m and choose k ∈ Z maximal such that ϕ(m, k) ∈ λ. By
Corollary 3.7 and Proposition 5.1 we have τ−k ⋆ Oλ = Oµ, where µ ⊂ PX is a
classical shape with µm = 0. Corollary 4.3 then implies that dmax(p, µ) = 0, so
[BCMP22, Cor. 8.3] shows that Op ⋆Oµ agrees with the classical product Op · Oµ
in K(X). Notice that, if ν ⊃ µ is any quantum shape such that ν/µ is a horizontal
strip, then ν is a classical shape. It therefore follows from [Len00, Thm. 3.2] that

Op ⋆Oµ =
∑
ν

A(ν/µ, p)Oν

holds in QK(X), where the sum is over all shapes ν ⊂ P̂X containing µ. Since quan-
tum multiplication by τk defines a module automorphism of QK(X) and defines an

order automorphism of P̂X , this identity is equivalent to the theorem. □

The following version of Theorem 5.4 is equivalent to the Pieri formula for QK(X)
proved in [BM11].

Corollary 5.5. Let λ ⊂ PX be any shape and let 1 ≤ p ≤ n−m. Then

Op ⋆Oλ =
∑
µ

A(µ/λ, p)Oµ + q
∑
ν

A(ν[1]/λ, p)Oν

holds in QK(X), where the first sum is over all shapes µ ⊂ PX containing λ, and
the second sum is over all shapes ν ⊂ PX for which ν[1] contains λ.

Proof. This is a direct translation of Theorem 5.4, using that Oν[1] = qOν . □

Example 5.6. Let X = Gr(3, 7). By Remark 5.3 we can represent a shape λ ⊂ P̂X
by a non-empty proper lower order ideal λ = (λ1 ≥ λ2 ≥ λ3) in [1, 3]×Z, such that
λ1 − λ3 ≤ 4. When λ3 ≥ 0, this order ideal will be displayed as a Young diagram
with at most 3 rows. We will also identify the shape λ with the class Oλ in QK(X).
With this notation we have

O3 ⋆ =
+

+ +
+

+ +

+
−

+ +

+ +
,

where added boxes are indicated by pluses. This is equivalent to

O3 ⋆ = + q − q .

Notice that the shape
+ + +

+

is not included, as the box added to the third row is in the same column of P̂X as
the rightmost box added to the first row.
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6. Pieri formula for maximal orthogonal Grassmannians

6.1. Quantum shapes. Let X = OG(n, 2n) be the maximal orthogonal Grass-
mannian, parametrizing one component of the maximal isotropic subspaces of C2n

endowed with an orthogonal bilinear form. The quantum cohomology ring QH(X)
was computed in [KT04], and a Pieri formula for the ordinary K-theory ring K(X)
was obtained in [BR12].

The orthogonal GrassmannianX is minuscule of typeDn. We identify the simple
roots of type Dn with the vectors

∆ = {en − en−1, . . . , e3 − e2, e2 − e1, e2 + e1} ,

where γ = e1 + e2 is the cominuscule simple root defining X. We then obtain

PX = {ei + ej | 1 ≤ i < j ≤ n} ,

where the partial order is given by ei′ + ej′ ≤ ei+ ej if and only if i′ ≤ i and j′ ≤ j.
We represent PX as a staircase shape with n− 1 rows, where ei+ ej is represented
by the box in row i and column j:

POG(6,12) =

Each shape λ ⊂ PX can be identified with a strict partition

λ = (λ1 > λ2 > · · · > λℓ > 0)

with λ1 ≤ n− 1, where λi is the number of boxes in the i-th row of λ. If λ ⊂ PX
consists of a single row of boxes, then λ will also be identified with the integer
p = |λ|. The special Schubert classes in K(X) are the classes Op for 1 ≤ p ≤ n− 1.

Define the set

PX = {(i, j) ∈ Z2 | i < j < i+ n} ,
and give PX the northwest-to-southeast order (i′, j′) ≤ (i, j) if and only if i′ ≤ i
and j′ ≤ j. We represent PX as an infinite set of boxes (i, j) in the plane, where the
row number i increases from north to south, and the column number j increases
from west to east. Each row in PX contains n − 1 boxes. The set PX will be
identified with the subset {(i, j) ∈ Z2 | 1 ≤ i < j ≤ n} ⊂ PX .

POG(6,12) =

Recall the map τ : PX → P̂X from Section 4.

Proposition 6.1. Let X = OG(n, 2n).

(a) The group of Seidel classes in QH(X)×q is generated by [1.PX ] and [Xn−1].

(b) We have [Xn−1]2 = q and [1.PX ]2 = [Xn−1]n in QH(X).

(c) The map ϕ : PX → P̂X defined by ϕ(i, j) = [Xn−1]j−n ⋆ τ(ei+n−j + en) is an
order isomorphism which identifies PX with the set {(i, j) ∈ Z2 | 1 ≤ i < j ≤ n}.
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(d) The action of Seidel classes on P̂X is given by [Xn−1] ⋆ ϕ(i, j) = ϕ(i+1, j +1)
and [1.PX ] ⋆ ϕ(i, j) = ϕ(j, i+ n).

Proof. Let F = Q2n−2 be the quadric of type Dn. Then we have the relation
wF0 = s1 · · · sn−2sn−1snsn−2 · · · s1, hence (wF0 )

X = s1 · · · sn−2sn. This shows that

[Xn−1] = [XwF
0 ]. Since (wF0 )

2 = 1 holds in W , it follows from Corollary 3.7 that
[Xn−1]2 is a power of q. Using that deg(q) = 2n− 2, we obtain [Xn−1]2 = q. Since
W comin has order 4, we have (wX0 )2 ∈ {1, wF0 }, so Corollary 3.7 implies that either
[1.PX ]2 or [Xn−1] ⋆ [1.PX ]2 is a power of q. In either case, [1.PX ]2 is a power of
[Xn−1], and since dim(X) =

(
n
2

)
, we must have [1.PX ]2 = [Xn−1]n. Parts (a) and

(b) follow from these observations.
For convenience we set αi = ei + en for 1 ≤ i ≤ n − 1 and α′

i = ei + en−1

for 1 ≤ i ≤ n − 2, so that PX ∖ I(z∨1 ) = {α′
1, . . . , α

′
n−2, α1, . . . , αn−1}. Then

I(τ(αi)) ∩ PX consists of the top i rows of PX , and I(τ(α′
i)) ∩ PX is obtained by

removing the rightmost column in this shape. Notice also that τ(α1) = [Xn−1],
τ(αn−1) = [1.PX ], and ϕ(i, j) = [Xn−1]j−n ⋆ τ(αi+n−j). It follows from [KT04] or
Corollary 3.7 that [Xn−1] ⋆ τ(α′

i) = τ(αi+1) holds in QH(X) for 1 ≤ i ≤ n − 2.
Proposition 4.4 therefore implies that

P̂X ∩H∗(X) = {1, τ(α′
1), . . . , τ(α

′
n−2), τ(α1), . . . , τ(αn−1)}

= {[Xn−1]ϵ ⋆ τ(αi) | 1 ≤ i ≤ n− 1 and ϵ ∈ {0,−1}}

and that ϕ is bijective. Since αi < αi+1 holds in PX and [Xn−1] is a Seidel class,
we obtain ϕ(i, j) < ϕ(i+ 1, j) for i+ 1 < j < i+ n. For i < j < i+ n− 1 we have

ϕ(i, j) = [Xn−1]j−n ⋆ τ(αi+n−j) = [Xn−1]j+1−n ⋆ τ(α′
i+n−j−1)

< [Xn−1]j+1−n ⋆ τ(αi+n−j−1) = ϕ(i, j + 1) .

This implies that ϕ is order-preserving. Assume that α̂′⋖α̂ is a covering in P̂X . We
must show that ϕ−1(α̂′) < ϕ−1(α̂). Since ϕ is surjective and quantum multiplication

by [Xn−1] is an order automorphism of P̂X , we may assume that α̂ = τ(αi) for
some i. Lemma 4.5 then shows that α̂′ = τ(α′) for some α′ ∈ PX . We deduce
that α̂′ = τ(α′

i) or α̂
′ = τ(αi−1). In either case we obtain ϕ−1(α̂′) < ϕ−1(α̂). This

proves that ϕ is an order isomorphism. Finally, using that ϕ(0, n − 1) = 1 and
ϕ(n− 1, n) = [1.PX ], the last claim in part (c) follows from Proposition 4.4(c).

The identity [Xn−1] ⋆ ϕ(i, j) = ϕ(i + 1, j + 1) follows from the definition of ϕ.
Quantum multiplication by [1.PX ] corresponds to an order automorphism of PX
that commutes with multiplication by [Xn−1], and any such order automorphism
of PX is a translation along a northwest-to-southeast line, possibly combined with
a reflection in such a line. Using that [1.PX ] ⋆ ϕ(0, n− 1) = ϕ(n− 1, n), we deduce
that multiplication by [1.PX ] corresponds to the automorphism (i, j) 7→ (j, i + n)
of PX , which proves part (d). □

We may identify P̂X with the set of boxes PX . Given a shape λ ⊂ P̂X and d ∈ Z,
it follows from Proposition 6.1 that the shifted shape λ[d] = qd ⋆ λ is obtained by
moving λ by 2d diagonal steps in southeast direction.

Remark 6.2. It is natural to extend the notation λ[d] to half-integer shifts by
setting λ[k/2] = [Xn−1]k ⋆ λ. We then have (On−1)k ⋆Oλ = Oλ[k/2] in QK(X)q.
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6.2. Pieri formula. The Pieri formula for the K-theory ring K(X) proved in
[BR12] expresses the structure constants of Pieri products as signed counts of KOG-
tableaux, defined as follows.

Definition 6.3 (KOG-tableau, [BR12]). Given a skew shape θ ⊂ PX , a KOG-
tableau of shape θ is a labeling of the boxes of θ with positive integers, such that
(i) each row of θ is strictly increasing from left to right; (ii) each column of θ is
strictly increasing from top to bottom; and (iii) each box of θ is either smaller than
or equal to all boxes south-west of it, or it is greater than or equal to all boxes
south-west of it. The content of a KOG-tableau is the set of integers contained in
its boxes. Let B(θ, p) denote (−1)|θ|−p times the number of KOG-tableaux of shape
θ with content {1, 2, . . . , p}.

The skew shape θ is called a rim if no box in θ is strictly south and strictly east
of another box in θ. If θ is not a rim, then there are no KOG-tableau of shape θ,
hence B(θ, p) = 0 for all p.

Theorem 6.4. Let X = OG(n, 2n), let λ ⊂ P̂X be any quantum shape, and let
1 ≤ p ≤ n− 1. Then

Op ⋆Oλ =
∑
ν

B(ν/λ, p)Oν

holds in QK(X)q, where the sum is over all quantum shapes ν ⊂ P̂X containing λ.

Proof. Choose k maximal such that ϕ(k, k + n − 1) ∈ λ. By Corollary 3.7 and
Proposition 6.1 we have (On−1)−k ⋆ Oλ = Oµ, where µ ⊂ PX is a classical shape
with µ1 ≤ n − 2. Corollary 4.3 then implies that dmax(p, µ) = 0, so [BCMP22,
Cor. 8.3] shows that Op ⋆ Oµ agrees with the classical product Op · Oµ in K(X).
Notice that, if ν ⊃ µ is any quantum shape such that ν/µ is a rim, then ν is a
classical shape. It therefore follows from [BR12, Cor. 4.8] that

Op ⋆Oµ =
∑
ν

B(ν/µ, p)Oν

holds in QK(X), where the sum is over all shapes ν ⊂ P̂X containing µ. Since
quantum multiplication by (On−1)k defines a module automorphism of QK(X) and

defines an order automorphism of P̂X , this identity is equivalent to the theorem. □

Corollary 6.5. Let λ ⊂ PX be any shape and let 1 ≤ p ≤ n− 1. Then

Op ⋆Oλ =
∑
µ

B(µ/λ)Oµ + q
∑
ν

B(ν[1]/λ)Oν

holds in QK(X), where the first sum is over all shapes µ ⊂ PX containing λ, and
the second sum is over all shapes ν ⊂ PX for which ν[1] contains λ.

Proof. This is a direct translation of Theorem 6.4, using that Oν[1] = qOν . □

Example 6.6. Let X = OG(5, 10). Then the following holds in QK(X).

O2 ⋆O(4,2) = 2O(4,3,1) −O(4,3,2) + q − 2 qO1 + qO2 .

The corresponding KOG-tableaux are:

1
2

2
1

1
1 2

1 2
1 2

1
1 2

2
1 2

1 2
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7. Pieri formula for Lagrangian Grassmannians

7.1. Quantum shapes. Let X = LG(n, 2n) be the Lagrangian Grassmannian of
maximal isotropic subspaces of C2n endowed with a symplectic bilinear form. The
quantum cohomology ring QH(X) was computed in [KT03], and a Pieri formula
for the ordinary K-theory ring K(X) was obtained in [BR12].

The Lagrangian Grassmannian X is cominuscule, but not minuscule, of type Cn.
We identify the simple roots of type Cn with the vectors

∆ = {en − en−1, . . . , e3 − e2, e2 − e1, 2e1} ,

where γ = 2e1 is the cominuscule simple root defining X. We then obtain

PX = {ei + ej | 1 ≤ i ≤ j ≤ n} ,

where the partial order is given by ei′ + ej′ ≤ ei+ ej if and only if i′ ≤ i and j′ ≤ j.
We represent PX as a staircase shape with n rows, where ei + ej corresponds to
the box in row i and column j:

PLG(6,12) =

Each shape λ ⊂ PX can be identified with a strict partition

λ = (λ1 > λ2 > · · · > λℓ > 0)

with λ1 ≤ n, where λi is the number of boxes in the i-th row of λ. If λ ⊂ PX
consists of a single row of boxes, then λ will also be identified with the integer
p = |λ|. The special Schubert classes in K(X) are the classes Op for 1 ≤ p ≤ n.

Define the set

PX = {(i, j) ∈ Z2 | i ≤ j ≤ i+ n} ,
and give PX the northwest-to-southeast order (i′, j′) ≤ (i, j) if and only if i′ ≤ i
and j′ ≤ j. We represent PX as an infinite set of boxes (i, j) in the plane, where the
row number i increases from north to south, and the column number j increases
from east to west. Each row in PX contains n + 1 boxes. The set PX will be
identified with the subset {(i, j) ∈ Z2 | 1 ≤ i ≤ j ≤ n} ⊂ PX .

PLG(6,12) =

Recall that zd ∈WX is defined by Xzd = Γd(1.PX) for d ≥ 0.

Proposition 7.1. Let X = LG(n, 2n).

(a) The group of Seidel classes in QH(X)×q is generated by [1.PX ] and q.

(b) We have [1.PX ]2 = qn in QH(X).

(c) The map ϕ : PX → P̂X defined by ϕ(i, j) = qj−n [Xzi+n−j ] is an order isomor-
phism which identifies PX with the set {(i, j) ∈ Z2 | 1 ≤ i ≤ j ≤ n}.
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(d) The action of Seidel classes on P̂X is determined by q ⋆ ϕ(i, j) = ϕ(i+1, j +1)
and [1.PX ] ⋆ ϕ(i, j) = ϕ(j, i+ n).

Proof. Since the root system of type Cn has only one cominuscule root, we have
W comin = {1, wX0 }. It follows that [1.PX ]2 is a power of q in QH(X), and since
dim(X) =

(
n+1
2

)
and deg(q) = n + 1, we must have [1.PX ]2 = qn. Parts (a) and

(b) follow from this.
We have PX ∖ I(z∨1 ) = {e1 + en, . . . , en−1 + en, 2en}. Since ei+ en is the unique

maximal box of I(zi), it follows from Proposition 4.4 that the map ϕ is bijective.

Notice that for a, b ∈ [0, n] and d ∈ Z, [Xza ] ≤ qd[Xzb ] holds in P̂X if and only
if d ≥ 0 and Γd(Xzb) ∩ Xza ̸= ∅, which is equivalent to d ≥ 0 and a ≤ b + d, see

[BCMP22, Lemma 7.9]. It follows that ϕ(i′, j′) ≤ ϕ(i, j) holds in P̂X if and only
if (i′, j′) ≤ (i, j) holds in PX . This shows that ϕ is an order isomorphism. The
last claim in part (c) follows from Proposition 4.4(c), noting that ϕ(0, n) = 1 and
ϕ(n, n) = [1.PX ].

The identity q ⋆ ϕ(i, j) = ϕ(i+ 1, j + 1) follows from the definition of ϕ. Quan-
tum multiplication by [1.PX ] corresponds to an order automorphism of PX that
commutes with multiplication by q, and any such order automorphism of PX is
a translation along a northwest-to-southeast line, possibly combined with a reflec-
tion in such a line. Using that [1.PX ] ⋆ ϕ(0, n) = ϕ(n, n), we deduce the formula
[1.PX ] ⋆ ϕ(i, j) = ϕ(j, i+ n), proving part (d). □

We may identify P̂X with the set of boxes PX . Given a shape λ ⊂ P̂X and d ∈ Z,
it follows from Proposition 7.1 that the shifted shape λ[d] = qd ⋆ λ is obtained by
moving λ by d diagonal steps in southeast direction.

7.2. Pieri formula. The Pieri formula for the K-theory ring K(X) proved in
[BR12] expresses the structure constants of Pieri products as signed counts of KLG-
tableaux, defined as follows.

Definition 7.2 (KLG-tableau, [BR12]). Let θ ⊂ PX be a rim. A KLG-tableau of
shape θ is a labeling of the boxes of θ with elements from the ordered set

{1′ < 1 < 2′ < 2 < · · · }
such that (i) each row of θ is strictly increasing from left to right; (ii) each column
of θ is strictly increasing from top to bottom; (iii) each box containing an unprimed
integer is larger than or equal to all boxes southwest of it; (iv) each box containing
a primed integer is smaller than or equal to all boxes southwest of it; (v) no SW
diagonal box contains a primed integer. The content of a KLG-tableau is the set of
integers i such that some box contains i or i′. Define C(θ, p) to be (−1)|θ|−p times
the number of KLG-tableaux of shape θ with content {1, 2, . . . , p}. If θ ⊂ PX is a
skew shape that is not a rim, then set C(θ, p) = 0.

In contrast to the case of maximal orthogonal Grassmannians, we need to adjust
the definition of KLG-tableau with extra conditions in the quantum case.

Definition 7.3 (QKLG-tableau). Let T be a KLG-tableau whose shape is a rim

contained in P̂X . A box of T is called unrepeated if its label is distinct from all
other labels when ignoring primes. A box of T is a quantum box if it belongs to the

NE diagonal of P̂X or is connected to an unrepeated quantum box. A box of T is

terminal if it is not on the SW diagonal of P̂X and is not connected to a box to the
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left or below it. We say that T is a QKLG-tableau if (vi) every primed non-terminal
quantum box is unrepeated, and (vii) every terminal quantum box is primed. For

any rim θ contained in P̂X , we let N (θ, p) denote (−1)|θ|−p times the number of

QKLG-tableaux of shape θ with content {1, 2, . . . , p}. If θ ⊂ P̂X is a skew shape
that is not a rim, then set N (θ, p) = 0.

The integers N (θ, p) can also be defined recursively, see Definition 10.5.

Theorem 7.4. Let X = LG(n, 2n), let λ ⊂ P̂X be any quantum shape, and let
1 ≤ p ≤ n. Then

Op ⋆Oλ =
∑
ν

N (ν/λ, p)Oν

holds in QK(X)q, where the sum is over all quantum shapes ν ⊂ P̂X containing λ.

The proof of Theorem 7.4 is given in the three remaining sections of this paper.

Corollary 7.5. Let λ ⊂ PX be any shape and let 1 ≤ p ≤ n. Then

Op ⋆Oλ =
∑
µ

C(µ/λ, p)Oµ + q
∑
ν

N (ν[1]/λ, p)Oν

holds in QK(X), where the first sum is over all shapes µ ⊂ PX containing λ, and
the second sum is over all shapes ν ⊂ PX for which ν[1] contains λ.

Example 7.6. Let X = LG(7, 14) and set λ = (7, 5, 4, 2) and ν = (7, 5, 3, 2). Then

ν[1]/λ meets both the SW diagonal and the NE diagonal of P̂X . The coefficient of
qOν in O6 ⋆Oλ is −4, due to the following list of QKLG-tableaux of shape ν[1]/λ
with content {1, 2, 3, 4, 5, 6}:

1′

2′ 6
3′

4′

4 5

1′

2′ 6
3′

3′

4 5

1′

2′ 6
3′

4′

5 6

1′

2′ 6
6

3′

4 5

Quantum boxes are indicated with a think border. There are five additional KLG-
tableaux of shape ν[1]/λ with content {1, 2, 3, 4, 5, 6} which do not satisfy the ad-
ditional conditions of Definition 7.3:

1′

2′ 6
5

3′

3 4

1′

2′ 6
5

3′

4 5

1′

2′ 6
5

2′

3 4

1′

1′ 6
2′

3′

4 5

1′

1′ 6
5

2′

3 4

The first two violate condition (vii) and the last three violate condition (vi).

8. Perpendicular incidences of symplectic Richardson varieties

Let Y QP be a Richardson variety in the symplectic Grassmannian Y = SG(m, 2n).

Each point L ∈ P2n−1 defines the subvariety Y QP ∩ L⊥ = {V ∈ Y QP | V ⊂ L⊥}. Let
PQP ⊂ P2n−1 be the subset of points L for which Y QP ∩L⊥ is not empty. In this section

we show that PQP is a complete intersection defined by explicitly given equations.

We also show that Y QP ∩L⊥ is rational for all points L in a dense open subset of PQP .
This will be used in Section 9 to compute the Gromov-Witten invariants required to
prove our Pieri formula for the quantum K-theory of Lagrangian Grassmannians.
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8.1. Symplectic Grassmannians. Let {e1, . . . , e2n} denote the standard basis
of C2n. Define the symplectic vector space E = C2n, where the skew-symmetric
bilinear form on E is given by (ei, ej) = δi+j,2n+1 for 1 ≤ i ≤ j ≤ 2n. Given
0 ≤ m ≤ n, let Y = SG(m,E) = SG(m, 2n) denote the symplectic Grassmannian
of m-dimensional isotropic subspaces of E,

Y = SG(m,E) = {V ⊂ E | dim(V ) = m and (V, V ) = 0} .

This space has a transitive action by the symplectic group G = Sp(E). Let B ⊂ G
be the Borel subgroup of upper triangular matrices, let B− ⊂ G be the opposite
Borel subgroup of lower triangular matrices, and let T = B ∩ B− be the maximal
torus of symplectic diagonal matrices.

For a, b ∈ Z, let [a, b] = {x ∈ Z | a ≤ x ≤ b} denote the corresponding integer
interval. Given any subset P ⊂ [1, 2n], we let EP = SpanC{ep | p ∈ P} be the span
of the basis elements corresponding to P . A Schubert symbol for SG(m, 2n) is a
subset P ⊂ [1, 2n] of cardinality m, such that p′ + p′′ ̸= 2n + 1 for all p′, p′′ ∈ P .
The subspace EP is a point of SG(m, 2n) if and only if P is a Schubert symbol, and
the T -fixed points of SG(m,E) are exactly the points EP for which P is a Schubert
symbol for Y . Each Schubert symbol P defines the Schubert varieties

YP = B.EP and Y P = B−.EP ⊂ Y .

These varieties can also be defined by (see [BKT15, §4.1])

YP = {V ∈ Y | dim(V ∩ E[1,b]) ≥ #(P ∩ [1, b]) ∀ b ∈ [1, 2n]} and

Y P = {V ∈ Y | dim(V ∩ E[a,2n]) ≥ #(P ∩ [a, 2n]) ∀ a ∈ [1, 2n]} .

Given Schubert symbols P and Q for Y , we will denote the elements of these sets
by P = {p1 < p2 < · · · < pm} and Q = {q1 < q2 < · · · < qm}. The Bruhat order
on Schubert symbols is defined by Q ≤ P if and only if qi ≤ pi for 1 ≤ i ≤ m. With
this notation we have

Q ≤ P ⇔ EQ ∈ YP ⇔ YQ ⊂ YP ⇔ YP ∩ Y Q ̸= ∅ .

Define the length ℓ(P ) to be

ℓ(P ) =

m∑
i=1

(pi − i) − #{i < j : pi + pj > 2n+ 1} .

We then have dim(YP ) = codim(Y P , Y ) = ℓ(P ). Notice also that Y P is a translate
of YP∨ , where P∨ = {2n+ 1− p | p ∈ P} is the Poincare dual Schubert symbol.

8.2. Richardson varieties. Two Schubert symbols P and Q for Y = SG(m, 2n)
such that Q ≤ P define the Richardson variety

Y QP = YP ∩ Y Q .

This variety is known to be rational [Ric92]. Using that dim(Y QP ) = ℓ(P ) − ℓ(Q),
we obtain

(4) dim(Y QP ) =

m∑
i=1

(pi − qi) − #{i < j : qi + qj < 2n+ 1 < pi + pj} .

For any point V ∈ Y QP we have V ⊂ E[q1,pm] and V ∩E[qi,pi] ̸= 0 for 1 ≤ i ≤ m; this
holds because dim(V ∩E[1,pi]) ≥ i, dim(V ∩E[qi,2n]) ≥ m+1− i, and dim(V ) = m.
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Let Y = SG(m,E) and Y ′ = SG(m−1, E), and define the 2-step symplectic flag
variety

Z = SF(m− 1,m;E) = {(V ′, V ) ∈ Y ′ × Y | V ′ ⊂ V } .
Let a : Z → Y and b : Z → Y ′ be the projections. The T -fixed points in Z have the
form (EP ′ , EP ), where P

′ and P are Schubert symbols for Y ′ and Y , respectively,
such that P ′ ⊂ P . The corresponding Schubert varieties are denoted

ZP ′,P = B.(EP ′ , EP ) and ZP
′,P = B−.(EP ′ , EP ) .

A Richardson variety in Z is denoted by ZQ
′,Q

P ′,P = ZP ′,P∩ZQ
′,Q. Recall our standing

notation P = {p1 < · · · < pm} and Q = {q1 < · · · < qm} for Schubert symbols for
SG(m, 2n).

Proposition 8.1. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n), and let
1 ≤ k ≤ m. Set Q′ = Q ∖ {qk} and P ′ = P ∖ {pk}. Then the restricted map

a : ZQ
′,Q

P ′,P → Y QP is birational. In addition, the restricted map b : ZQ
′,Q

P ′,P → Y ′Q′

P ′ is

surjective if and only if dim(Y ′Q′

P ′) ≤ dim(Y QP ).

We will prove Proposition 8.1 after introducing some additional notation and
results. We will identify the Weyl group of Sp(2n) with the group of permutations

W = {w ∈ S2n | w(i) + w(2n+ 1− i) = 2n+ 1 for i ∈ [1, 2n]} .
This group is generated by the simple reflections s1, . . . , sn ∈W defined by

si(i) = i+ 1 , si(i+ 1) = i , and si(j) = j for j ∈ [1, n]∖ {i, i+ 1} .
The simple reflection sn corresponds to the unique long simple root of the root
system of type Cn. The parabolic subgroup PY ⊂ G defining Y = SG(m, 2n)
corresponds to the subgroup WY ⊂ W generated by si for i ̸= m. Let WY ⊂ W
be the subset of minimal representatives of the cosets in W/WY . Then WY is in
bijective correspondence with the Schubert symbols of Y . The Schubert symbol
P = {p1 < p2 < · · · < pm} corresponds to the permutation w ∈WY defined by

w(j) = pj for 1 ≤ j ≤ m, and w(m+ 1) < w(m+ 2) < · · · < w(n) ≤ n .
This correspondence preserves the Bruhat order.

The permutation ŵ ∈ WZ corresponding of a T -fixed point (EP ′ , EP ) of Z =
SF(m− 1,m; 2n), with P ′ = P ∖ {pk}, is defined by

ŵ(j) =


pj if 1 ≤ j < k,

pj+1 if k ≤ j < m,

pk if j = m,

and ŵ(m+1) < ŵ(m+2) < · · · < ŵ(n) ≤ n. Equivalently, if w ∈WY corresponds
to P , then

ŵ = wsksk+1 . . . sm−1 .

Let w′ ∈ WY ′
be the permutation corresponding to P ′. Then w′ is obtained from

ŵ by first replacing the value ŵ(m) with min(pk, 2n+1−pk), and then rearranging
the values ŵ(m), . . . , ŵ(n) in increasing order. Since ŵ(m + 1) < · · · < ŵ(n) ≤ n,
we can write w′ = ŵy, where y is the product of the first ℓ(ŵ) − ℓ(w′) simple
reflections in the product

(5) smsm+1 · · · sn−1snsn−1 · · · sm+1sm .



SEIDEL AND PIERI PRODUCTS IN COMINUSCULE QUANTUM K-THEORY 29

Let F = Sp(2n)/B be the variety of complete symplectic flags, and let M =
Sp(2n)/PM be any flag variety of G = Sp(2n). For τ ≤ σ in W , let Πτσ(M) ⊂ M
denote the projected Richardson variety obtained as the image of F τσ under the
projection F → M . Recall from [BCMP22, §2] that the M -Bruhat order ≤M on
W can be defined by

τ ≤M σ ⇐⇒ τ ≤ σ and σM ≤L τM ,

where σ = σMσM and τ = τMτM are the parabolic factorizations with respect to
WM , and ≤L is the left weak Bruhat order on W . We need the following properties
of projected Richardson varieties from [KLS14] (see also [BCMP22, §3]).

Proposition 8.2 ([KLS14]). Let τ ≤ σ in W . The projected Richardson variety
Πτσ(M) satisfies the following properties.

(a) We have Πτσ(M) ⊂Mτ
σ .

(b) If σ ∈WM , then equality Πτσ(M) =Mτ
σ holds if and only if τ ∈WM .

(c) The projection F τσ → Πτσ(M) is birational if and only if τ ≤M σ.

(d) For any simple reflection si ∈WM with σsi < σ, we have Πτσ(M) = Π
min(τ,τsi)
σsi .

Here min(τ, τsi) denotes the smaller element among τ and τsi in the Bruhat
order on W .

Proof of Proposition 8.1. Let u ∈WY correspond to P and let v ∈WY correspond

to Q. Then Y QP = Y vu and ZQ
′,Q

P ′,P = Z v̂û, where û = ux and v̂ = vx, with x =

sksk+1 · · · sm−1. Since û, v̂ ∈ WZ , we have Z v̂û = Πv̂û(Z) by Proposition 8.2(b).
Using that û = ux and v̂ = vx are parabolic factorizations with respect to WY ,
we obtain v̂ ≤Y û, so Proposition 8.2(d,b,c) shows that Πv̂û(Y ) = Πvu(Y ) = Y vu and

a : Z v̂û → Y vu is birational. This proves the first claim.

Since Z v̂û = Πv̂û(Z), we have b(ZQ
′,Q

P ′,P ) = Πv̂û(Y
′). Let u′, v′ ∈ WY ′

be the

elements corresponding to P ′ and Q′. Then u′ = ûy and v′ = v̂z, where y is the
product of the first ℓ(û)− ℓ(u′) simple reflections in (5), and z is the product of the
first ℓ(v̂)− ℓ(v′) simple reflections. Using Proposition 8.2(d), we obtain

Πv̂û(Y
′) = Π

v̂min(y,z)
ûy (Y ′) .

By Proposition 8.2(b), this variety is equal to Y ′v′
u′ if and only if z ≤ y, which is

equivalent to ℓ(u′)− ℓ(v′) ≤ ℓ(û)− ℓ(v̂). The second claim follows from this. □

8.3. Matrix representations of Richardson varieties. We need a parametriza-

tion of an open subset of Y QP by matrices with perpendicular rows, which is based

on a combinatorial diagram used in [BKT09, Rav15]. Let MQ
P be the variety of

all m × (2n)-matrices A = (ai,j), with ai,j ∈ C, such that for 1 ≤ i ≤ m we have
ai,qi = 1, ai,pi ̸= 0, and ai,j = 0 for j /∈ [qi, pi], and such that each pair of rows of
A are perpendicular as vectors in E, that is,

(6)

n∑
t=1

(ai,t aj,2n+1−t − ai,2n+1−t aj,t) = 0

for 1 ≤ i < j ≤ m. Notice that this equation is vacuous unless

qi + qj < 2n+ 1 < pi + pj .
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We will say that rows i and j inMQ
P are correlated if i ̸= j and this inequality holds.

We will show in Theorem 8.5 that MQ
P is isomorphic to a dense open subset of the

Richardson variety Y QP . In particular, MQ
P is non-empty and irreducible. Identity

(4) states that dim(Y QP ) is equal to the number of entries ai,j that are not explicitly

assigned to a constant value, minus the number of pairs of correlated rows in MQ
P .

Example 8.3. Let Y = SG(4, 12), Q = {2, 3, 8, 9}, and P = {5, 7, 10, 12}. Then

MQ
P is the variety of all matrices of the form

A =


0 1 a1,3 a1,4 a1,5 0 0 0 0 0 0 0
0 0 1 a2,4 a2,5 a2,6 a2,7 0 0 0 0 0
0 0 0 0 0 0 0 1 a3,9 a3,10 0 0
0 0 0 0 0 0 0 0 1 a4,10 a4,11 a4,12

 ,

such that a1,5 ̸= 0, a2,7 ̸= 0, a3,10 ̸= 0, a4,12 ̸= 0, and the rows of A are pairwise

perpendicular. The variety MQ
P has 12 unassigned entries and 4 pairs of correlated

rows, so dim(Y QP ) = 8.

Remark 8.4. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n) and 1 ≤ k ≤ m.
Set Q′ = Q ∖ {qk} and P ′ = P ∖ {pk}. Then Q′ ≤ P ′ are Schubert symbols for
Y ′ = SG(m− 1, 2n) and we have

dimY QP −dimY ′Q′

P ′ = (pk−qk)−#{j ∈ [1,m] | j ̸= k and qj+qk < 2n+1 < pj+pk} .

This is the number of unassigned entries in row k of MQ
P , minus the number of

rows correlated to row k.

Let
◦
Y QP ⊂ Y

Q
P be the open subvariety defined by

◦
Y QP = {V ∈ Y QP | ∀ 1 ≤ i ≤ m : V ∩ E[qi+1,pi] = V ∩ E[qi,pi−1] = 0} .

The following result confirms a conjecture of Ravikumar [Rav13, Conj. 6.5.3].

Theorem 8.5. The variety
◦
Y QP is a dense open subset of Y QP . Moreover, the map

MQ
P →

◦
Y QP sending a matrix to its row span is an isomorphism of varieties.

Proof. Since Y QP is irreducible and the subsets

ULi = {V ∈ Y QP | V ∩ E[qi+1,pi] = 0} and

URi = {V ∈ Y QP | V ∩ E[qi,pi−1] = 0}

are open in Y QP , the first claim will follow if we can show that ULi and URi are

non-empty for all 1 ≤ i ≤ m. By replacing Y QP with Y P
∨

Q∨ , if required, we may

assume that q1+ pm ≥ 2n+1. The sets ULm and UR1 are non-empty since EQ ∈ ULm
and EP ∈ UR1 . Set Ω = {V ∈ Y | V ⊂ E[1,pm−1]}. Then YP ∩ Ω is a B-stable
proper closed subset of YP , so YP ∩ Ω is a union of Schubert varieties YP̂ that are

properly contained in YP . It follows that Y
Q
P ∩Ω is a union of Richardson varieties

Y Q
P̂

that are properly contained in Y QP . Therefore, ULm ∖ Ω is a dense open subset

of Y QP .
Set Y ′ = SG(m− 1, 2n), Q′ = {q1 < · · · < qm−1}, and P ′ = {p1 < · · · < pm−1}.

By induction we may assume
◦
Y ′Q

′

P ′ ̸= ∅. By Remark 8.4, the condition q1 + pm ≥
2n + 1 implies that dim(Y ′Q′

P ′) ≤ dim(Y QP ). In fact, if row i of MQ
P is correlated
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to row m, then 2n + 1 − pm ≤ q1 ≤ qi < 2n + 1 − qm, so row m is correlated
to at most pm − qm rows. Using Proposition 8.1, we can therefore choose a point

(V ′, V ) ∈ ZQ
′,Q

P ′,P such that V ′ ∈
◦
Y ′Q

′

P ′ and V ∈ ULm ∖ Ω. Since V ′ ⊂ E[1,pm−1] and

V ̸⊂ E[1,pm−1], we have V ′ = V ∩ E[1,pm−1]. The condition V ′ ∈
◦
Y ′Q

′

P ′ therefore

implies that V ∈ ULi ∩ URi for 1 ≤ i ≤ m − 1. Set L = V ∩ E[qm,pm]. Since
V ′ ⊂ E[1,pm−1], we obtain V

′ ∩L ⊂ V ′ ∩E[qm−1+1,pm−1] = 0, hence V = V ′⊕L and
dim(L) = 1. Since V ′ ⊂ E[1,pm−1] and V ̸⊂ E[1,pm−1], it follows that L ̸⊂ E[1,pm−1].

We deduce that V ∩E[qm,pm−1] = L∩E[qm,pm−1] = 0, so that V ∈ URm. We conclude

that V ∈
◦
Y QP , so this set is a dense open subset of Y QP .

It is clear from the definitions that A 7→ Span(A) is a well defined morphism of

varietiesMQ
P →

◦
Y QP . On the other hand, given V ∈

◦
Y QP , each space Li = V ∩E[qi,pi]

is one-dimensional, for 1 ≤ i ≤ m. In addition, if we write Li = Cui with ui ∈ E,
then the qi-th and pi-th coordinates of ui are non-zero. By rescaling ui, we may
assume that the qi-th coordinate is 1. Let A be the m × (2n) matrix whose i-th

row is ui. Then A ∈MQ
P and Span(A) = V . This completes the proof. □

Let Q ≤ P be Schubert symbols for Y = SG(m, 2n), let 1 ≤ k ≤ m, and let

A = (ai,j) ∈ MQ
P . Define the submatrix of constraints on row k in A to be the

matrix A[k] with entries ai,j for which i ̸= k, qi + qk < 2n + 1 < pi + pk, and
2n + 1 − pk ≤ j ≤ 2n + 1 − qk. This matrix has one row for each row correlated

to the k-th row of MQ
P . For example, if A is the matrix of Example 8.3, then the

submatrix of constraints on row 2 is the matrix

A[2] =

[
0 0 1 a3,9 a3,10
0 0 0 1 a4,10

]
.

The constraints (6) on row k in A imposed by the other rows depend only on
the entries of A[k]. We will say that the vector v = (vqk , . . . , vpk) ∈ Cpk−qk+1 is
perpendicular to A[k] if the entries of v satisfy the quadratic equations (6) imposed
on the k-th row in A, that is,

n∑
t=1

(ai,t v2n+1−t − ai,2n+1−t vt) = 0

for all i ̸= k with qi + qk < 2n+ 1 < pi + pk, where we set vt = 0 for t /∈ [qk, pk].
Set Q′ = Q ∖ {qk}, P ′ = P ∖ {pk}, and Y ′ = SG(m − 1, 2n). Motivated by

Proposition 8.1 and Theorem 8.5, we will say that the k-th row of MQ
P is solvable

if dim(Y ′Q′

P ′) ≤ dim(Y QP ). By Remark 8.4, this means that there are at most

pk − qk constraints on the k-th row of MQ
P . The k-th row of MQ

P is movable if

dim(Y ′Q′

P ′) < dim(Y QP ), that is, there are fewer than pk− qk constraints on the k-th

row. If the k-th row of MQ
P is movable, then for each matrix A ∈ MQ

P , we can
vary the k-th row of A in a positive dimensional parameter space while fixing the
remaining rows.

Corollary 8.6. Let Q ≤ P be Schubert symbols for SG(m, 2n), and assume that

the k-th row of MQ
P is solvable. Then MQ

P contains a dense open subset of points A
for which the submatrix A[k] of constraints on row k has linearly independent rows.

Proof. Set Q′ = Q∖{qk} and P ′ = P ∖{pk}. Given A ∈MQ
P , let A′ ∈MQ′

P ′ denote
the result of removing the k-th row from A. It follows from Proposition 8.1 and
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Theorem 8.5 that A 7→ A′ defines a dominant morphism MQ
P →MQ′

P ′ . This implies

that, for all points A in a dense open subset of MQ
P , the fiber over A′ in MQ

P is

non-empty of dimension dim(MQ
P ) − dim(MQ′

P ′ ). This fiber can be identified with
the set of vectors v = (1, vqk+1, . . . , vpk), with vpk ̸= 0, that are perpendicular to
A[k]. We deduce that the rows of A[k] are linearly independent by Remark 8.4. □

8.4. Perpendicular incidence varieties. Let Y = SG(m, 2n) and define the
perpendicular incidence variety

S = {(V,L) ∈ Y × P(E) | V ⊂ L⊥} .
Let f : S → P(E) and g : S → Y be the projections. Given Schubert symbols

Q ≤ P for Y , we set SQP = g−1(Y QP ). Since g is locally trivial with fibers g−1(V ) =

P(V ⊥) by [BCMP13, Prop. 2.3], it follows that SQP is irreducible with dim(SQP ) =

dim(Y QP ) + 2n−m− 1.

Following [BKT09, Rav15], we define a cut of MQ
P to be an integer c ∈ [0, 2n]

such that pi ≤ c or c < qi holds for each i ∈ [1,m]. This implies that no row of

MQ
P contains non-zero entries in both column c and column c+1. A lone star is an

integer s ∈ [1, 2n] such that qi = pi = s for some i ∈ [1,m]. This implies that s− 1

and s are cuts of MQ
P . The integer c is a double-cut of MQ

P if both c and 2n− c are
cuts. A component of MQ

P is a pair of integers (a, b), with 0 ≤ a < b ≤ n, such that
(i) a is a double-cut, (ii) b is a double-cut or b = n, and (iii) no double-cut belongs

to [a+1, b− 1]. We will say that row i of MQ
P is contained in the component (a, b)

if a < qi ≤ pi ≤ b, or 2n− b < qi ≤ pi ≤ 2n− a, or b = n and a < qi ≤ pi ≤ 2n− a.
Each row of MQ

P belongs to a unique component, and two rows can be correlated
only if they belong to the same component. Any component (a, b) contains at most
b−a rows. The component (a, b) is called a quadratic component if b is a double-cut,
b− a ≥ 2, and (a, b) contains b− a rows.

Let PQP ⊂ P(E) denote the closed subvariety defined by the linear equations

x2n+1−s = 0 for all lone stars s of MQ
P , as well as the quadratic equations

xa+1x2n−a + · · ·+ xbx2n+1−b = 0

given by all quadratic components (a, b) of MQ
P . Using that the quadratic equa-

tions involve pairwise disjoint sets of variables, it follows that PQP is an irreducible
complete intersection in P(E) with rational singularities.

Example 8.7. Let Y = SG(8, 20) and define Q = {1, 2, 4, 6, 9, 11, 16, 18} and

P = {2, 3, 7, 8, 11, 12, 16, 20}. The shape of non-zero entries in MQ
P is given by the

diagram:

⋆ ⋆ · · · · · · · · · · · · · · · · · ·
· ⋆ ⋆ · · · · · · · · · · · · · · · · ·
· · · ⋆ ⋆ ⋆ ⋆ · · · · · · · · · · · · ·
· · · · · ⋆ ⋆ ⋆ · · · · · · · · · · · ·
· · · · · · · · ⋆ ⋆ ⋆ · · · · · · · · ·
· · · · · · · · · · ⋆ ⋆ · · · · · · · ·
· · · · · · · · · · · · · · · ⋆ · · · ·
· · · · · · · · · · · · · · · · · ⋆ ⋆ ⋆


Here we ignore that the lone star in column 16 forces the entry in column 5 to

vanish. The double-cuts of MQ
P are indicated with vertical lines. The components
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of MQ
P are (0, 3), (3, 8), and (8, 10), and we have

PQP = Z(x5 , x1x20 + x2x19 + x3x18) ⊂ P(E) .

Our main result about perpendicular incidences is the following theorem, which
will be proved at the end of this section.

Theorem 8.8. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n). Then f

restricts to a surjective morphism f : SQP → PQP with rational general fibers.

The analogue of Theorem 8.8 with S ⊂ Y × P(E) defined by the condition
L ⊂ V has been established in [BKT09, BR12, Rav15]. When Y = LG(n, 2n) is a
Lagrangian Grassmannian, the conditions V ⊂ L⊥ and L ⊂ V are equivalent, so
this case of Theorem 8.8 is equivalent to [BR12, Lemma 5.2]. One new complication

in our case is that S is not a flag variety, so the map f : SQP → PQP is not a projection
from a Richardson variety, as studied in e.g. [BC12, KLS14, BCMP22].

Lemma 8.9. Let Q ≤ P be Schubert symbols for SG(m, 2n) and let 1 ≤ k ≤ m. If

qk ≤ n < pk, then row k of MQ
P is movable.

Proof. Assume that row j is correlated to row k. If j < k, then 2n+1−pk < pj < pk,
which holds for at most pk − n − 1 rows j. If j > k, then qk < qj < 2n + 1 − qk,
which holds for at most n− qk rows j. It follows that row k is correlated to at most
pk − qk − 1 rows. □

Proposition 8.10. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n), and let

(a, b) be a component of MQ
P with b− a ≥ 2. Then (a, b) is a quadratic component

if and only if no row contained in (a, b) is movable. In this case all rows contained

in (a, b) are solvable, and MQ
P has no cuts c with a < c < b or 2n− b < c < 2n−a.

Proof. Since two rows of MQ
P can be correlated only if they belong to the same

component, we may assume that (a, b) = (0, n) is the only component of MQ
P . By

Lemma 8.9 we may further assume that n is a cut. By replacing MQ
P with MP∨

Q∨ ,
if necessary, we may also assume that pm = 2n. Set r = pm − qm ≥ 1. If row m

of MQ
P is not movable, then since 1 /∈ P and r + 1 = 2n + 1 − qm /∈ Q, we must

have qi = i < pi for 1 ≤ i ≤ r. The same conclusion holds if (0, n) is a quadratic

component of MQ
P , since in this case we have x ∈ Q or 2n + 1 − x ∈ Q for all

x ∈ [1, n]. Set Q′ = (Q ∖ {r, qm}) ∪ {r + 1, qm + 1}, so that the shape of MQ′

P is

obtained from the shape ofMQ
P by removing the leftmost entry from rows r and m.

Then MQ
P and MQ′

P have the same pairs of correlated rows, except that rows r and

m are correlated in MQ
P but not in MQ′

P . It follows that any row is movable in MQ
P

if and only if it is movable in MQ′

P , and the same holds with movable replaced by

solvable. The component (0, n) is quadratic if and only if m = n. SinceMQ′

P has no

empty components, m = n holds if and only if all components ofMQ′

P are quadratic

or lone stars. By induction on
∑m
i=1(pi − qi), this holds if and only if MQ′

P has no
movable rows, which proves the first claim. Assuming that (0, n) is a quadratic

component, it also follows by induction that all rows of MQ
P are solvable. Noting

that all double-cuts of MQ′

P belong to the set {0, r, n}, it follows by induction that

all cuts of MQ′

P belong to {0, r, n, 2n− r, 2n}. The last claim follows from this since

r and 2n− r are not cuts of MQ
P . □
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Corollary 8.11. Let Q ≤ P be Schubert symbols, and assume that row k in MQ
P

is movable. Then PQP = PP ′

Q′ , where Q′ = Q∖ {qk} and P ′ = P ∖ {pk}.

Proof. This holds because a movable row cannot be a lone star and cannot belong
to a quadratic component by Proposition 8.10. □

Given Schubert symbols Q ≤ P for Y = SG(m, 2n), define the variety

M̂Q
P = {(A, u) ∈MQ

P × E | A ⊥ u} ,

where A ⊥ u indicates that u is perpendicular to all rows of A. The variety M̂Q
P is

irreducible with dim(M̂Q
P ) = dim(MQ

P ) + 2n−m.

Proposition 8.12. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n) and assume

that the k-th row of MQ
P is movable. Set Q′ = Q ∖ {qk}, P ′ = P ∖ {pk}, and

r = dim(MQ
P ) − dim(MQ′

P ′ ) > 0. Let π : M̂Q
P → M̂Q′

P ′ be the projection that forgets

row k in its first argument. There exists a morphism ϕ : M̂Q
P → Cr−1, given by

projection to r − 1 of the entries of the k-th row of MQ
P , such that the morphism

π × ϕ : M̂Q
P → M̂Q′

P ′ × Cr−1 is birational.

Proof. By Corollary 8.6 we can choose A ∈ MQ
P such that the submatrix A[k] of

constraints on row k has linearly independent rows. The number of rows in A[k] is
equal to pk − qk − r by Remark 8.4. We can therefore choose a vector

(u2n+1−pk , . . . , u2n+1−qk) ∈ Cpk−qk+1

which is perpendicular to the k-th row of A and not in the row span of A[k]. Using
that ai,qi = 1 and ai,pi ̸= 0 for each row i, we can extend this vector to u ∈ E, such

that u is perpendicular to all rows of A. Let A′ ∈MQ′

P ′ be the result of removing the

k-th row from A. Then the fiber of π : M̂Q
P → M̂Q′

P ′ over (A′, u) contains (A, u), so it
is not empty. This fiber can be identified with the set of vectors (1, vqk+1, . . . , vpk),
with vpk ̸= 0, which are perpendicular to both A[k] and (u2n+1−pk , . . . , u2n+1−qk).

Therefore the fiber has dimension r − 1 = dim(M̂Q
P ) − dim(M̂Q′

P ′ ). Since M̂Q′

P ′ is

irreducible, this implies that π : M̂Q
P → M̂Q′

P ′ is dominant. It also follows that
(A, u) is determined by (A′, u) together with some collection of r − 1 entries ak,j
from the k-th row of A. Since this holds whenever a particular minor in (A′, u) is
non-zero, we deduce that (A, u) is determined by (A′, u) and the same r− 1 entries

from row k, for all points (A, u) in a dense open subset of M̂Q
P . The result follows

from this. □

Assume that c ∈ [1, n−1] is a double-cut of MQ
P , and set Q′ = Q∩ [c+1, 2n− c],

P ′ = P ∩ [c + 1, 2n − c], Q′′ = Q ∖ Q′, and P ′′ = P ∖ P ′. Set m′ = #P ′,
Y ′ = SG(m′, 2n), m′′ = #P ′′, Y ′′ = SG(m′′, 2n), and let S′ ⊂ Y ′×P(E) and S′′ ⊂
Y ′′×P(E) be the corresponding perpendicular incidence varieties, with projections

f ′ : S′ → P(E) and f ′′ : S′′ → P(E). Since we have PQP = PQ
′

P ′ ∩ PQ
′′

P ′′ , the following

lemma shows that Theorem 8.8 can be proved under the assumption that MQ
P has

only one component (0, n).

Lemma 8.13. The map (V ′, V ′′) 7→ V ′⊕V ′′ is an isomorphism Y ′Q′

P ′×Y ′′Q′′

P ′′ ∼= Y QP ,

and we have f(SQP ) = f ′(S′Q′

P ′) ∩ f ′′(S′′Q′′

P ′′). For all points L ∈ f(SQP ), the fiber of
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f : SQP → f(SQP ) over L is the product of the fibers of f ′ : S′Q′

P ′ → f ′(S′Q′

P ′) and

f ′′ : S′′Q′′

P ′′ → f ′′(S′′Q′′

P ′′) over L.

Proof. Set E′ = E[c+1,2n−c] and E
′′ = E[1,c]∪[2n−c+1,2n]. Using that V ′ ⊂ E′ holds

for all V ′ ∈ Y ′Q′

P ′ , and V ′′ ⊂ E′′ holds for all V ′′ ∈ Y ′′Q′′

P ′′ , it follows that the

map Y ′Q′

P ′ × Y ′′Q′′

P ′′ → Y QP is well defined. The inverse map V 7→ (V ∩ E′, V ∩ E′′)
is well defined because dim(V ∩ E′) = m′, dim(V ∩ E[1,c]) = #(P ∩ [1, c]), and

dim(V ∩E[2n−c+1,2n]) = #(P ∩ [2n− c+ 1, 2n]) holds for all V ∈ Y QP . This proves

the first claim. The remaining claims follow because V ′ ⊕ V ′′ ⊂ L⊥ is equivalent
to V ′ ⊂ L⊥ and V ′′ ⊂ L⊥. □

Proof of Theorem 8.8. We may assume that (0, n) is the only component of MQ
P

by Lemma 8.13. If MQ
P has no movable rows, then Proposition 8.10 implies that

m = n, so the claim follows from [BR12, Lemma 5.2]. Otherwise MQ
P has at

least one movable row, say row k. Set Y ′ = SG(m − 1, 2n), Q′ = Q ∖ {qk},
P ′ = P ∖ {pk}, and r = dim(MQ

P ) − dim(MQ′

P ′ ). Let S ⊂ Y × P(E) and S′ ⊂
Y ′ × P(E) be the perpendicular incidence varieties, with projections f : S → P(E)

and f ′ : S′ → P(E). It follows from Proposition 8.12 that f(SQP ) = f ′(S′Q′

P ′), and

for all points L in a dense open subset of f(SQP ), the fiber f
−1(L)∩SQP is birational

to (f ′
−1

(L) ∩ S′Q′

P ′)× Cr−1. The result therefore follows by induction on m. □

9. Gromov-Witten invariants of Pieri type

9.1. Incidences of projected Richardson varieties. Let X = LG(n, 2n) be a
Lagrangian Grassmannian and Y = SG(m, 2n) a symplectic Grassmannian. Set
Z = SF(m,n; 2n) and let p : Z → X and q : Z → Y be the projections. We

also set X̂ = SF(1, n; 2n), with projections η : X̂ → P2n−1 and π : X̂ → X. Our
computation of Gromov-Witten invariants of X is based on the following result.

Theorem 9.1. Let Q ≤ P be Schubert symbols for Y = SG(m, 2n), and let XQ
P =

p(q−1(Y QP )) be the corresponding projected Richardson variety in X = LG(n, 2n).

Then η restricts to a cohomologically trivial morphism η : π−1(XQ
P )→ PQP .

Proof. Define Ẑ = Z ×X X̂ = {(K,V, L) ∈ Y × X × P2n−1 | K ⊂ V ⊃ L} and
S = {(K,L) ∈ Y ×P2n−1 | K ⊂ L⊥}. Consider the following commutative diagram,
where all morphisms are the natural projections.

S
f

**

g

��

Ẑ
p̂
//

τ

��

σ

__

X̂
η
//

π

��

P2n−1

Z
p
//

q

��

X

Y

Since the morphisms of this diagram are equivariant for the action of Sp(2n), and all
targets other than S are flag varieties of Sp(2n), it follows that all morphisms other



36 ANDERS S. BUCH, PIERRE–EMMANUEL CHAPUT, AND NICOLAS PERRIN

than σ are locally trivial fibrations with non-singular fibers [BCMP13, Prop. 2.3].

Let ZQP , Ẑ
Q
P , and S

Q
P be the inverse images of Y QP in Z, Ẑ, and S, respectively, and

set X̂Q
P = π−1(XQ

P ). Since Y QP and XQ
P have rational singularities [Bri02, BC12,

KLS14], it follows that ZQP , Ẑ
Q
P , S

Q
P , and X̂

Q
P have rational singularities as well.

All fibers of σ are rational. In fact, for (K,L) ∈ S we have σ−1(K,L) =

LG(m′, (K + L)⊥/(K + L)), where m′ = n − dim(K + L). Since ẐQP = σ−1(SQP ),

this implies that σ : ẐQP → SQP is cohomologically trivial [BM11, Thm. 3.1].

Since f : SQP → f(SQP ) is cohomologically trivial by Theorem 8.8, it follows that

ηp̂ = fσ : ẐQP → f(SQP ) is cohomologically trivial [BCMP18b, Lemma 2.4].
Using that the outer rectangle and the right square of the following diagram are

fiber squares, it follows that p̂ : ẐQP → X̂Q
P is the base extension of p : ZQP → XQ

P

along π.

ẐQP p̂
//

τ

��

X̂Q
P ⊂

//

π

��

X̂

π

��
ZQP p

// XQ
P ⊂

// X

This implies that p̂ : ẐQP → X̂Q
P is cohomologically trivial, for example because

its general fibers are Richardson varieties by [BCMP22, Cor. 2.11]. It follows that

η : X̂Q
P → f(SQP ) is cohomologically trivial. In particular, η(X̂Q

P ) = f(SQP ) is a
complete intersection of the required form. This completes the proof. □

9.2. Gromov-Witten invariants of Pieri type. The Schubert varieties in X =
LG(n, 2n) are indexed by shapes λ ⊂ PX . The Schubert symbol P corresponding to
λ ⊂ PX is obtained as follows. The border of λ forms a path from the upper-right
corner of PX to the diagonal. Number the steps of this path from 1 to n, starting
from the upper-right corner. Then P consists of the integers i for which the i-th
step is horizontal, and the integers 2n + 1 − i for which the i-th step is vertical.
By observing that the map from shapes to Schubert symbols is compatible with
the Bruhat order, this description of the Schubert varieties in X follows from e.g.
[BS16, Lemma 2.9].

Example 9.2. Let X = LG(7, 14) and λ = (7, 4, 2, 1). Then λ corresponds to the
Schubert symbol P = {2, 3, 5, 8, 9, 11, 14}.

Recall that a classical shape λ ⊂ PX is identified with the quantum shape

I([Xλ]) = λ∪ I(1) in P̂X , and λ[d] is the result of shifting this shape by d diagonal
steps for each d ∈ Z.

Let λ, µ ⊂ PX be shapes and d ≥ 0 a degree. Then Γd(Xλ, X
µ) ̸= ∅ if and only

if µ ⊂ λ[d]. When this holds, we let λ[d]/µ be the skew shape in P̂X of boxes in λ[d]
that are not contained in µ. Let R(λ[d]/µ) denote the size of a maximal rim in this
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skew shape, and let N(λ[d]/µ) be the number of connected components of λ[d]/µ

that are disjoint from both of the diagonals in P̂X . The following result interprets
Theorem 9.1 when the projected Richardson variety in X is a curve neighborhood
Γd(Xλ, X

µ).

Corollary 9.3. Let X = LG(n, 2n) and let λ, µ ⊂ PX be shapes such that
Γd(Xλ, X

µ) ̸= ∅. Set θ = λ[d]/µ. If R(θ) = n + 1, then η(π−1(Γd(Xλ, X
µ))) =

P2n−1. Otherwise η(π−1(Γd(Xλ, X
µ))) is a complete intersection in P2n−1 of

dimension n + R(θ) − 1, defined by N(θ) quadratic equations and n − R(θ) −
N(θ) linear equations. Moreover, the restricted map η : π−1(Γd(Xλ, X

µ)) →
η(π−1(Γd(Xλ, X

µ))) is cohomologically trivial.

Proof. Write Xλ = XP and Xµ = XQ, where P = {p1 < · · · < pn} and Q = {q1 <
· · · < qn} are the Schubert symbols corresponding to λ and µ. Then q(p−1(Xλ)) =

YP ′ and q(p−1(Xµ)) = Y Q
′
, where P ′ = {pd+1, . . . , pn} and Q′ = {q1, . . . , qn−d},

so we have Γd(Xλ, X
µ) = XQ′

P ′ . Theorem 9.1 shows that

η : π−1(Γd(Xλ, X
µ))→ PQ

′

P ′

is cohomologically trivial. It remains to show that PQ
′

P ′ is a complete intersection
defined by the expected equations. If R(θ) = n + 1, then we can make d and λ
smaller and µ larger until we obtain R(θ) = n and N(θ) = 0. This will make
Γd(Xλ, X

µ) smaller, while the corollary still asserts that η(π−1(Γd(Xλ, X
µ))) =

P2n−1. We may therefore assume that R(θ) ≤ n, which implies that the borders of
µ and λ[d] meet somewhere. In particular, µ has at least d vertical steps, and λ[d]
has at least d horizontal steps.

Let ℓ(µ) be the number of vertical steps of µ. Then µ has n − ℓ(µ) horizontal
steps. Notice that, if 1 ≤ k ≤ n − ℓ(µ), then qk is the step number of the k-th
horizontal step of µ, while if n− ℓ(µ) < k ≤ n, then 2n+1− qk is the step number
of the (n + 1 − k)-th vertical step of µ. Since the starting point of µ is d boxes
north-west of the starting point of λ, and the endpoint of µ is north-west of the
endpoint of λ[d], we have ℓ(µ) ≤ ℓ(λ) + d. The condition R(θ) ≤ n implies that
ℓ(µ) ≥ d and ℓ(λ) ≤ n− d.

Write P ′ = {p′1, . . . , p′n−d} and Q′ = {q′1, . . . , q′n−d}, where p′i = pi+d and q
′
i = qi.

It follows from the construction of P and Q from λ and µ that the rows in MQ′

P ′

are in bijection with some of the steps of λ[d], and also with some of the steps of
µ. We will explain how to obtain the resulting bijection between steps of λ[d] and

µ, and how to obtain the rows of MQ′

P ′ from the corresponding pairs of steps in λ[d]
and µ. This will include drawing connectors between the paired steps of λ[d] and
µ, see Example 9.4.

Consider row k of MQ′

P ′ . Assume first that d+ k ≤ n− ℓ(λ). Then k ≤ n− ℓ(µ),
q′k is the step number of the k-th horizontal step of µ, and p′k is the step number
of the (d+ k)-th horizontal step of λ[d]. These steps of µ and λ[d] are in the same
column, and p′k − q′k is the distance (number of boxes) between the two steps. We
draw a vertical line segment (connector) from the k-th horizontal step of µ to the
(d+ k)-th horizontal step of λ[d].

Assume next that k > n − ℓ(µ). Then d + k > n − ℓ(λ), 2n + 1 − q′k is the
step number of the (n + 1 − k)-th vertical step of µ, and 2n + 1 − p′k is the step
number of the (n − d + 1 − k)-th vertical step of λ[d]. These steps of µ and λ[d]
are in the same row, and p′k − q′k is the distance between the two steps. We draw
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a horizontal line segment (connector) from the (n+ 1− k)-th vertical step of µ to
the (n− d+ 1− k)-th vertical step of λ[d].

We finally assume that d+ k > n− ℓ(λ) and k ≤ n− ℓ(µ). Then q′k is the step
number of the k-th horizontal step of µ, and 2n+ 1− p′k is the step number of the
(n−d+1−k)-th vertical step of λ[d]. In this case, if we draw a vertical line segment
going down from the horizontal step of µ, and a horizontal line segment going to
the left from the vertical step of λ[d], then these line segments meet in a diagonal

box of P̂X . In this case the connector representing row k of MQ′

P ′ is obtained by
connecting the two line segments, and p′k−q′k is the number of boxes this connector
passes through.

It follows from this description that the lone stars of MQ′

P ′ correspond to steps
shared by µ and λ[d], and there are exactly n − R(θ) − N(θ) such steps. It also

follows that, if µ and λ[d] meet after c steps, then c is a double-cut of MQ′

P ′ . The

only other cuts of MQ′

P ′ are the integers in the set [0, q′1−1]∪ [p′n−d, 2n]. We deduce

that any component of θ that is disjoint from both diagonals in P̂X produces a

quadratic component of MQ′

P ′ . If a component of θ meets the SW diagonal of P̂X ,

then the corresponding component of MQ′

P ′ contains a row that crosses the middle,
so this component is not quadratic. Finally, if a component of θ intersects the NE

diagonal of P̂X , then the corresponding component (a, b) of MQ′

P ′ has fewer than

b− a rows, so it is not quadratic. It follows that MQ′

P ′ has exactly N(θ) quadratic
components. □

Example 9.4. Let X = LG(12, 24), µ = (12, 11, 9, 6, 5), and λ = (11, 8, 6, 3, 1),
and d = 2. Then θ = λ[d]/µ is the skew shape between the two thick black paths
in the following picture. The connectors of θ are colored pink. We have R(θ) = 10
and N(θ) = 1.

The shapes µ and λ correspond to Q = {3, 5, 6, 9, 10, 11, 12, 17, 18, 21, 23, 24} and

P = {1, 3, 4, 6, 8, 9, 11, 13, 15, 18, 20, 23}. We obtain Γd(Xλ, X
µ) = XQ′

P ′ , where Q′

and P ′ are determined by the shape of MQ′

P ′ :
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· · ⋆ ⋆ · · · · · · · · · · · · · · · · · · · ·
· · · · ⋆ ⋆ · · · · · · · · · · · · · · · · · ·
· · · · · ⋆ ⋆ ⋆ · · · · · · · · · · · · · · · ·
· · · · · · · · ⋆ · · · · · · · · · · · · · · ·
· · · · · · · · · ⋆ ⋆ · · · · · · · · · · · · ·
· · · · · · · · · · ⋆ ⋆ ⋆ · · · · · · · · · · ·
· · · · · · · · · · · ⋆ ⋆ ⋆ ⋆ · · · · · · · · ·
· · · · · · · · · · · · · · · · ⋆ ⋆ · · · · · ·
· · · · · · · · · · · · · · · · · ⋆ ⋆ ⋆ · · · ·
· · · · · · · · · · · · · · · · · · · · ⋆ ⋆ ⋆ ·


This diagram has 12−R(θ)−N(θ) = 1 lone stars, and N(θ) = 1 quadratic compo-

nents. The unique quadratic component is (4, 8). The rows of MQ′

P ′ correspond to
the connectors in θ, see the proof of Corollary 9.3. Rows 6, 7, and 10 are movable.

Consider a complete intersection Y ⊂ Pa+b of dimension b, defined by a quadratic
equations. The K-theory class of Y is [OY ] = (2H −H2)a, where H ∈ K(Pa+b) is
the hyperplane class. It follows that the sheaf Euler characteristic of Y is given by
χ(OY ) = h(a, b), where h : N× Z→ Z is defined by [BR12, §4]

(7) h(a, b) =

b∑
j=0

(−1)j 2a−j
(
a

j

)
.

Here we set
(
a
j

)
= 0 unless 0 ≤ j ≤ a. Notice that for b ≥ a we have h(a, b) =

(2− 1)a = 1, and h(a, b) = 0 for b < 0. We record for later the identity

(8) h(a+ 1, b) + h(a, b− 1) = 2h(a, b) ,

which follows from the binomial formula. The following result is the quantum
generalization of [BR12, Prop. 5.3].

Corollary 9.5. The K-theoretic Gromov-Witten invariants of X = LG(n, 2n) of
Pieri type are given by Id(Oλ,Oµ,Op) = h(N(θ), R(θ)− p), with θ = λ[d]/µ.

Proof. Let L ⊂ P2n−1 be the B−-stable linear subspace of dimension n− p. Then
π : η−1(L) → Xp is a birational isomorphism, so Op = π∗(η

∗([OL])). Using
[BCMP18b, Thm. 4.1], the projection formula, and Corollary 9.3, we obtain

Id(Oλ,Oµ,Op) = χ
X
([OΓd(Xλ,Xµ)] · π∗η∗[OL])

= χ
P2n−1 ([Oη(π−1(Γd(Xλ,Xµ)))] · [OL]) .

If R(θ) ≤ n, then this is the sheaf Euler characteristic of a complete intersection of
dimension R(θ)−p defined by N(θ) quadratic equations as well as linear equations
in P2n−1, which proves the result. Finally, if R(θ) = n+ 1, then Id(Oλ,Oµ,Op) =
h(N(θ), R(θ)− p) = 1, so the corollary also holds in this case. □

9.3. Quantum multiplication by special Schubert classes. We finish this
section by proving some preliminary formulas for quantum products with special
Schubert classes. We start with the undeformed product Op ⊙Oµ, see Section 2.5
or [BCMP18a, §2.5].

Given a skew shape θ ⊂ P̂X , let θ◦ ⊂ θ be the skew shape obtained by removing

all maximal boxes from θ that do not belong to the north-east diagonal of P̂X .
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For p ∈ Z we then define

(9) H(θ, p) =
∑

θ◦⊂φ⊂θ

(−1)|θ|−|φ| h(N(φ), R(φ)− p) ,

the sum over all subsets φ of θ that contain θ◦.

Proposition 9.6. For any shape µ ⊂ P̂X and 1 ≤ p ≤ n, we have

Op ⊙Oµ =
∑
ν

H(ν/µ, p)Oν

in QK(X)q, where the sum is over all shapes ν ⊂ P̂X containing µ.

Proof. Given a shape ν ⊂ PX we let Iν ∈ K(X) denote the dual element of Oν ,
defined by χ

X
(Iν · Oλ) = δν,λ for all shapes λ ⊂ PX . We have [BR12, Lemma 3.5]

Iν =
∑

ν/κ rook strip

(−1)|ν/κ|Oκ ,

where the sum is over all shapes κ ⊂ ν such that ν/κ is a rook strip, that is, ν/κ
has at most one box in each row and column. Assume that µ ⊂ PX is a classical
shape. By Corollary 9.5 and equation (9) we have

Id(Op,Oµ, Iν) =
∑

ν/κ rook strip

(−1)|ν/κ| Id(Op,Oµ,Oκ)

=
∑

ν/κ rook strip

(−1)|ν/κ| h
(
N(κ[d]/µ), R(κ[d]/µ)− p

)
= H(ν[d]/µ, p) ,

where the sums are over all shapes κ ⊂ PX such that µ ⊂ κ[d] ⊂ ν[d] and ν/κ is
a rook strip. By the definition of the undeformed product [BCMP18a, §2.5], we
obtain

Op ⊙Oµ =
∑
ν,d

Id(Op,Oµ, Iν) qdOν =
∑
ν,d

H(ν[d]/µ, p)Oν[d] ,

with the sum over ν ⊂ PX and d ≥ 0 such that µ ⊂ ν[d]. The proposition is
equivalent to this identity. □

We next consider the associative quantum product Op ⋆Oµ. Given a skew shape

θ ⊂ P̂X , let θ− ⊂ θ be the skew shape obtained by removing the maximal box on
the north-east diagonal, if any, as well as any boxes in the same row that do not
have a box immediately below them in θ.
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For p ∈ Z we then define

(10) N̂ (θ, p) = H(θ, p)−
∑

θ−⊂φ⊊θ

H(φ, p) ,

the sum over all proper lower order ideals φ in θ that contain θ−.

We will prove in Corollary 10.11 that N̂ (θ, p) = N (θ, p) holds for all skew shapes

θ ⊂ P̂X and p ∈ Z, that is, N̂ (θ, p) is equal to (−1)|θ|−p times the number of QKLG-
tableaux of shape θ with content {1, 2, . . . , p}. Theorem 7.4 is therefore equivalent
to the following statement.

Proposition 9.7. For any shape µ ⊂ P̂X and 1 ≤ p ≤ n, we have

Op ⋆Oµ =
∑
ν

N̂ (ν/µ, p)Oν

in QK(X)q, where the sum is over all shapes ν ⊂ P̂X containing µ.

Proof. For any shape λ ⊂ P̂X , set λ+ = λ ∪ I(qd+1), where d ∈ Z is maximal with

I(qd) ⊂ λ. In other words, λ+ ⊂ P̂X is the smallest shape that contains λ and

contains one more box than λ on the north-east diagonal of P̂X . We then have

q ψ(Oλ) = Oλ+

, where ψ is the line neighborhood operator from Section 2.5. It
therefore follows from Proposition 9.6 that the coefficient of Oν in the product

(11) Op ⋆Oµ = Op ⊙Oµ − q ψ(Op ⊙Oµ)

is equal to

H(ν/µ, p)−
∑

λ:µ⊂λ and λ+=ν

H(λ/µ, p) = N̂ (ν/µ, p) ,

as required. □

Remark 9.8. The constants N̂ (θ, p) have alternating signs by Corollary 10.11, but
the constants H(θ, p) do not have easily predictable signs.

10. Combinatorial Identities

In this section we complete the proof of Theorem 7.4. Let X = LG(n, 2n) be a
Lagrangian Grassmannian. Any shape λ ⊂ PX and integer 1 ≤ p ≤ n define three
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products

Op · Oλ =
∑
ν

C(ν/λ, p)Oν ∈ K(X) ,

Op ⊙Oλ =
∑
ν

H(ν/λ, p)Oν ∈ QK(X) , and

Op ⋆Oλ =
∑
ν

N̂ (ν/λ, p)Oν ∈ QK(X) .

The first sum is over all shapes ν ⊂ PX containing λ, and the two last sums are over

all quantum shapes ν ⊂ P̂X containing λ. The constants H(θ, p) and N̂ (θ, p) are

defined whenever θ is a skew shape in P̂X , and these constants depend on where θ is

located in P̂X , including whether θ meets the two diagonals in P̂X . The constants

H(θ, p) and N̂ (θ, p) are therefore bound to our chosen Lagrangian Grassmannian
X = LG(n, 2n). On the other hand, the constant C(θ, p) does not depend on
any NE diagonal, and its definition extends naturally to any (finite) skew shape θ

in the partially ordered set P∞
X =

⋃
m P̂LG(m,2m), which is unbounded in north-

east direction. This is equivalent to considering C(θ, p) as a structure constant

of lim←−K(LG(m, 2m)). Notice that C(θ, p) = H(θ, p) = N̂ (θ, p) holds whenever

θ ⊂ P̂X is disjoint from the NE diagonal.

Theorem 7.4 states that each quantum structure constant N̂ (θ, p) is equal to the

(signed) number N (θ, p) of QKLG-tableaux. We prove this by showing that N̂ (θ, p)
and N (θ, p) are determined by the same recursive identities. These identities si-
multaneously provide an alternative definition of these constants. We also prove an
analogous recursive definition of the undeformed structure constants H(θ, p) when
θ contains at most one box on the NE diagonal of P̂X . Our recursive definitions
refer to (quantum or undeformed) structure constants computed in the quantum
K-theory of smaller Lagrangian Grassmannians X ′ = LG(n′, 2n′). For this reason
we will introduce additional notation to make it easier to refer to the constants
H(θ, p) and N̂ (θ, p) when θ is regarded as a skew shape in P̂X′ . We summarize this
notation here and give precise definitions below. We will regard any skew shape

θ as a subset of P∞
X . Suppose θ is contained in a specific set P̂X′ , and we wish

to refer to the constants H(θ, p) and N̂ (θ, p) computed in QK(X ′). If θ is disjoint

from the NE diagonal of P̂X′ , then we can use the structure constant C(θ, p) of
the ordinary K-theory ring K(X). On the other hand, if θ meets the NE diag-

onal of P̂X′ , then the values of H(θ, p) and N̂ (θ, p) computed in QK(X ′) will be
denoted Hq(θ, p) and Nq(θ, p). Equivalently, given any skew shape θ ⊂ P∞

X , we

can define Hq(θ, p) and Nq(θ, p) as the values of H(θ, p) and N̂ (θ, p) computed
in QK(X ′), where X ′ = LG(n′, 2n′) is the smallest Lagrangian Grassmannian for

which θ ⊂ P̂X′ .
Define P∞

X = {(i, j) ∈ Z2 | i ≤ j}, and equip this set with the partial order
defined by (i′, j′) ≤ (i′′, j′′) if and only if i′ ≤ i′′ and j′ ≤ j′′. We will consider

PX and P̂X as subsets of P∞
X . Define a skew shape in P∞

X to be any finite subset
obtained as the difference between two lower order ideals. Given a skew shape
θ ⊂ P∞

X , let R(θ) denote the size of a maximal rim contained in θ, and let N ′(θ)
be the number of components of θ that are disjoint from the SW diagonal. Let θ′

denote the skew shape obtained by removing all south-east corners from θ. Given an
integer p ∈ Z, it was proved in [BR12] that the constant C(θ, p) from Definition 7.2
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is given by

C(θ, p) =
∑

θ′⊂φ⊂θ

(−1)|θ|−|φ| h(N ′(φ), R(φ)− p) ,

where the function h : N× Z→ Z is defined by (7).
Let θ ⊂ P∞

X be a non-empty skew shape. Then θ contains a unique north-east
box Q. A skew shape in P∞

X will be called a line if its boxes are contained in a
single row or a single column. The north-east arm of θ is the largest line ψ that
can be obtained by intersecting θ with a square whose upper-right box is Q.

We will say that the north-east arm ψ is a row if θ contains no box immediately
below Q, and ψ is a column if θ contains no box immediately to the left of Q.
Notice that ψ can be both a row and a column (if it is a disconnected single box),

and it can be neither a row nor a column (only if θ is not a rim). We let θ̂ = θ∖ψ

denote the complement of the north-east arm. This set θ̂ is a skew shape if and

only if ψ is a row or a column. If ψ is not connected to θ̂, then ψ is not a row if
and only if ψ is a column with at least two boxes, and ψ is not a column if and
only if ψ is a row with at least two boxes. We set χ(true) = 1 and χ(false) = 0.

Proposition 10.1 ([BR12]). Let θ ⊂ P∞
X be any skew shape and let p ∈ Z. If θ

is not a rim, then C(θ, p) = 0, and C(∅, p) = χ(p ≤ 0). If θ is a non-empty rim

with north-east arm ψ = θ∖ θ̂ of size a, then C(θ, p) is determined by the following
rules.

(i) If θ̂ = ∅ and θ meets the SW diagonal, then C(θ, p) = δp,|θ| if θ is a row, and
C(θ, p) = δp,|θ| − δp,|θ|−1 if θ is not a row.

(ii) If θ̂ = ∅ and θ is disjoint from the SW diagonal, then C(θ, p) = 2 δp,|θ| − χ(p ≥
1) δp,|θ|−1.

(iii) If θ̂ ̸= ∅ and ψ is connected to θ̂, then C(θ, p) = C(θ̂, p− a)− C(θ̂, p− a+ 1).

(iv) If θ̂ ̸= ∅ and ψ is not connected to θ̂, then C(θ, p) = 2 C(θ̂, p−a)−2 C(θ̂, p−a+1)

if a = 1, and C(θ, p) = 2 C(θ̂, p− a)− 3 C(θ̂, p− a+ 1) + C(θ̂, p− a+ 2) if a ≥ 2.

Given a non-empty skew shape θ ⊂ P∞
X with north-east box Q, let N ′

q(θ) =
max(N ′(θ) − 1, 0) be the number of components of θ that do not meet the SW
diagonal and do not contain Q, and let θ′q = θ′ ∪ Q be the result of removing all
south-east corners except Q (in case Q is a south-east corner). For p ∈ Z we define

(12) Hq(θ, p) =
∑

θ′q⊂φ⊂θ

(−1)|θ|−|φ| h(N ′
q(φ), R(φ)− p) .

Remark 10.2. Assume that θ ⊂ P̂X is a skew shape containing at most one box

from the NE diagonal of P̂X , for example a rim. Then the constant H(θ, p) defined
by equation (9) is given by

H(θ, p) =

{
C(θ, p) if θ is disjoint from the NE diagonal,

Hq(θ, p) if θ contains one box on the NE diagonal.
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If θ ⊂ P̂X contains two or more boxes from the NE diagonal, then θ is not a
skew shape in P∞

X and Hq(θ, p) is not defined. Our next result together with
Proposition 10.1 provides a recursive definition of the constants Hq(θ, p).

Proposition 10.3. Let θ ⊂ P∞
X be any non-empty skew shape and let p ∈ Z. If θ

is not a rim, then Hq(θ, p) = 0. If θ is a rim with north-east arm ψ = θ∖ θ̂ of size
a, then Hq(θ, p) is determined by the following rules.

(i′′) If θ̂ = ∅, then Hq(θ, p) = χ(p ≤ |θ|) if θ is a row, and Hq(θ, p) = δp,|θ| if θ is
not a row.

(iii′′) If θ̂ ̸= ∅ and ψ is connected to θ̂, then Hq(θ, p) = Hq(θ̂, p − a) if ψ is a row

or p ≥ |θ|, and Hq(θ, p) = C(θ̂, p − a) − Hq(θ̂, p − a) + Hq(θ̂, p − a + 1) if ψ is a
column and p < |θ|.
(iv′′) If θ̂ ̸= ∅ and ψ is not connected to θ̂, then Hq(θ, p) = C(θ̂, p−a) if ψ is a row,

and Hq(θ, p) = C(θ̂, p− a)− C(θ̂, p− a+ 1) if ψ is not a row.

Proof. If θ is not a rim, then let B ∈ θ be a south-east corner such that θ contains a
box strictly north and strictly west of B. For any skew shape φ with θ′q ⊂ φ ⊂ θ∖B
we have h(N ′

q(φ), R(φ) − p) = h(N ′
q(φ ∪ B), R(φ ∪ B) − p), which implies that

Hq(θ, p) = 0. We can therefore assume that θ is a non-empty rim. If θ = ψ is a
row, then Hq(θ, p) = h(0, |θ| − p) = χ(p ≤ |θ|). If θ = ψ is not a row, and B is the
bottom box of θ, then Hq(θ, p) = h(0, |θ| − p)− h(0, |θ ∖B| − p) = δp,|θ|.

Assume that θ̂ ̸= ∅ and ψ is a row connected to θ̂. Then the skew shapes occurring

in (12) have the form φ∪ψ, where θ̂′ = (θ̂)′ ⊂ φ ⊂ θ̂. Since h(N ′
q(φ∪ψ), |φ∪ψ|−p) =

h(N ′
q(φ), |φ| − p+ a), we obtain Hq(θ, p) = Hq(θ̂, p− a).

Assume that θ̂ ̸= ∅ and ψ is a column connected to θ̂. If p ≥ |θ|, then since
h(N ′

q(φ), |φ| − p) is non-zero only when p ≤ |φ|, we obtain

Hq(θ, p) = h(N ′
q(θ), |θ| − p) = h(N ′

q(θ̂), |θ̂| − p+ a) = Hq(θ̂, p− a) .

Assume that p < |θ| and let B be the north-east box of θ̂. Then

Hq(θ, p)− C(θ̂, p− a) +Hq(θ̂, p− a)−Hq(θ̂, p− a+ 1)

is equal to the sum over all skew shapes φ, with θ̂′ ⊂ φ ⊂ θ̂ ∖ B, of (−1)|θ̂|−|φ|

times

h(N ′
q(φ ∪ ψ), |φ ∪ ψ| − p)− h(N ′

q(φ ∪B ∪ ψ), |φ ∪B ∪ ψ| − p)
− h(N ′(φ), |φ| − p+ a) + h(N ′(φ ∪B), |φ ∪B| − p+ a)

− h(N ′
q(φ ∪B), |φ ∪B| − p+ a) + h(N ′

q(φ ∪B), |φ ∪B| − p+ a− 1) .

(13)

Using that

N ′
q(φ ∪ ψ) = N ′(φ ∪B) = N ′(φ) and N ′

q(φ ∪B ∪ ψ) = N ′
q(φ ∪B) = N ′

q(φ) ,

it follows that (13) is equal to

h(N ′(φ), |φ| − p+ a+ 1) + h(N ′
q(φ), |φ| − p+ a)− 2h(N ′

q(φ), |φ| − p+ a+ 1) .

If N ′(φ) > 0, then this expression is zero by identity (8). Otherwise we have

N ′(φ) = N ′
q(φ) = 0, which implies φ = θ̂ ∖ B, so the expression is zero because

|φ| − p+ a ≥ 0.
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We finally assume that θ̂ ̸= ∅ and ψ is not connected to θ̂. If ψ is a row, then

Hq(θ, p) =
∑

θ̂′⊂φ⊂θ̂

(−1)|θ|−|φ∪ψ| h(N ′
q(φ ∪ ψ), |φ ∪ ψ| − p)

=
∑

θ̂′⊂φ⊂θ̂

(−1)|θ̂|−|φ| h(N ′(φ), |φ| − p+ a) = C(θ̂, p− a) .

If ψ is not a row, B is the bottom box of ψ, and ψ′ = ψ ∖B, then

Hq(θ, p)

=
∑

θ̂′⊂φ⊂θ̂

(−1)|θ|−|φ∪ψ| (h(N ′
q(φ ∪ ψ), |φ ∪ ψ| − p)− h(N ′

q(φ ∪ ψ′), |φ ∪ ψ′| − p)
)

=
∑

θ̂′⊂φ⊂θ̂

(−1)|θ̂|−|φ| (h(N ′(φ), |φ| − p+ a)− h(N ′(φ), |φ| − p+ a− 1))

= C(θ̂, p− a)− C(θ̂, p− a+ 1) .

This completes the proof. □

Example 10.4. For any skew shape θ = ⊂ P∞
X and p ≤ 2, we obtain θ̂ =

and

Hq(θ, p) = C(θ̂, p− 2)−Hq(θ̂, p− 2) +Hq(θ̂, p− 1) = 0− 1 + 1 = 0 .

This illustrates that negative values of p must be allowed in Proposition 10.3 to
obtain correct recursive identities without including additional special cases.

Definition 10.5. Given a non-empty skew shape θ ⊂ P∞
X and p ∈ Z, define an

integer Nq(θ, p) as follows. If θ is not a rim, then Nq(θ, p) = 0. If θ is a rim with

north-east arm ψ = θ ∖ θ̂ of size a, then Nq(θ, p) is determined by the following
rules.

(i′) If θ̂ = ∅ and θ meets the SW diagonal, then Nq(θ, p) = δp,|θ|.

(ii′) If θ̂ = ∅ and θ is disjoint from the SW diagonal, then Nq(θ, p) = δp,|θ| if θ is a
column, and Nq(θ, p) = δp,|θ| − δp,|θ|−1 if θ is not a column.

(iii′) If θ̂ ̸= ∅ and ψ is connected to θ̂, then Nq(θ, p) = Nq(θ̂, p−a) if ψ is a column,

and Nq(θ, p) = Nq(θ̂, p− a)− C(θ̂, p− a+ 1) if ψ is a row.

(iv′) If θ̂ ̸= ∅ and ψ is not connected to θ̂, then Nq(θ, p) = C(θ̂, p−a)−C(θ̂, p−a+1)

if ψ is a column, and Nq(θ, p) = C(θ̂, p− a)− 2 C(θ̂, p− a+ 1) + C(θ̂, p− a+ 2) if ψ
is not a column.

Recall from Definition 7.3 that |N (θ, p)| is the number of QKLG-tableaux of

shape θ ⊂ P̂X with content {1, 2, . . . , p}.

Lemma 10.6. Let θ ⊂ P̂X be a rim meeting the NE diagonal of P̂X and let p ∈ Z.
Then Nq(θ, p) = N (θ, p).

Proof. Let ψ = θ ∖ θ̂ be the north-east arm and set a = |ψ|. The pictures in this

proof will be drawn for the case a = 4. Assume first that θ̂ = ∅. If θ meets the SW
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diagonal of P̂X , then there exists only one QKLG-tableau of shape θ, which is one
of the following cases:

1 2 3 a or

1′

2′

3′

a

If θ is disjoint from the SW diagonal, then there is a unique QKLG-tableau of shape
θ when θ is a column or a single box, and exactly two QKLG-tableaux of shape θ
when θ is a row with at least two boxes:

1′

2′

3′

a′

or 1′ 2 3 a and 1′ 1 2 b , where b = a− 1.

This accounts for cases (i′) and (ii′) of Definition 10.5.

Assume next that θ̂ ̸= ∅ and that ψ is connected to θ̂. Then any QKLG-tableau
of shape θ and content {1, . . . , p} must assign the following labels to the boxes of
ψ (with bi = p− a+ i):

1′

2′

3′

a′

p

or 1′ b1 b2 b3 p

The pictures also show two of the boxes from θ̂. If ψ is a column, then a′ must be an

unrepeated quantum box, so the labels of θ̂ can be any QKLG-tableau with content
{a+1, a+2, . . . , p} (with p considered on the NE diagonal). If ψ is a row, then the

labels of θ̂ must have content either {1, 2, . . . , p−a} or {1, 2, . . . , p−a+1}. In the first
case b1 is an unrepeated quantum box, so 1′ is also a quantum box, and the labels

of θ̂ can be any QKLG-tableau with content {1, 2, . . . , p − a} (with 1′ considered
on the NE diagonal). In the second case b1 is repeated, 1′ is not a quantum box,

so the labels of θ̂ can be any KLG-tableau with content {1, 2, . . . , p− a+ 1}. This
accounts for case (iii′) of Definition 10.5.

Finally, assume that θ̂ ̸= ∅ and ψ is not connected to θ̂. Then any QKLG-tableau
of shape θ and content {1, . . . , p} must assign the following labels to the boxes of
ψ (with bi = p− a+ i):

1′

2′

3′

a′

or 1′ b2 b3 p

If ψ is a column or a single box, then the labels of θ̂ must form a KLG-tableau with
content {a+1, a+2, . . . , p} or {a, a+1, . . . , p}. If ψ is a row with at least two boxes,

then the labels of θ̂ must form a KLG-tableau with content {2, 3, . . . , p − a + 1},
{1, 2, . . . , p− a+1}, {2, 3, . . . , p− a+2}, or {1, 3, . . . , p− a+2}. This accounts for
case (iv′) of Definition 10.5. □

Lemma 10.7. Let θ ⊂ P∞
X be a non-empty rim and let p ∈ Z.
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(a) For p ≤ 0 we have C(θ, p) = Nq(θ, p) = 0, and

Hq(θ, p) =

{
1 if θ is a single row of boxes,

0 otherwise.

(b) We have C(θ, |θ|) = 2N
′(θ) and Nq(θ, |θ|) = Hq(θ, |θ|) = 2N

′
q(θ).

(c) For p > |θ| we have C(θ, p) = Nq(θ, p) = Hq(θ, p) = 0.

Proof. These identities follow from the recursive definitions by induction on |θ|. □

Lemma 10.8. Let θ ⊂ P∞
X be a non-empty rim, such that the north-east arm

ψ = θ ∖ θ̂ is not a disconnected single box, and let p < |θ|. Then,

2Nq(θ, p)−Nq(θ, p+ 1) =

{
C(θ, p)− C(θ, p+ 1) if ψ is a row,

C(θ, p) if ψ is a column.

Proof. Assume that θ̂ = ∅. If ψ meets the SW diagonal or is a column, then both
sides of the identity are equal to −δp+1,|θ|, and otherwise both sides are equal to
−3 δp+1,|θ| + δp+2,|θ|.

Assume next that θ̂ ̸= ∅ and ψ is connected to θ̂. Set a = |ψ|. If ψ is a row, then

2Nq(θ, p)−Nq(θ, p+ 1)− C(θ, p) + C(θ, p+ 1)

= 2Nq(θ̂, p− a)−Nq(θ̂, p− a+ 1)− C(θ̂, p− a) ,

which vanishes by induction on |θ|, since the north-east arm of θ̂ is a column. If ψ
is a column, then

2Nq(θ, p)−Nq(θ, p+ 1)− C(θ, p)

= 2Nq(θ̂, p− a)−Nq(θ̂, p− a+ 1)− C(θ̂, p− a) + C(θ̂, p− a+ 1)

which vanishes by induction on |θ|, since the north-east arm of θ̂ is a row.

Finally we assume that θ̂ ̸= ∅ and ψ is not connected to θ̂. If ψ is a column,
then both sides are equal to

2 C(θ̂, p− a)− 3 C(θ̂, p− a+ 1) + C(θ̂, p− a+ 2) ,

and if ψ is a row, then both sides are equal to

2 C(θ̂, p− a)− 5 C(θ̂, p− a+ 1) + 4 C(θ̂, p− a+ 2)− C(θ̂, p− a+ 3) .

The identity follows from this. □

Lemma 10.9. Let θ ⊂ P∞
X be a non-empty rim and let p < |θ|. Then,

Hq(θ, p)−Hq(θ, p+ 1) = C(θ, p)−Nq(θ, p) .

Proof. Let ψ = θ∖ θ̂ be the north-east arm of θ and set a = |ψ|. Assume first that

θ̂ = ∅. If ψ is a row, then both sides of the identity are zero, and otherwise both
sides are equal to −δp+1,|θ|.

Assume next that θ̂ ̸= ∅ and ψ is connected to θ̂. If ψ is a row, then it follows
by induction on |θ| that

Hq(θ, p)−Hq(θ, p+ 1) = Hq(θ̂, p− a)−Hq(θ̂, p− a+ 1)

= C(θ̂, p− a)−Nq(θ̂, p− a) = C(θ, p)−Nq(θ, p) .
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If ψ is a column and p ≤ |θ| − 2, then the recursive definitions and induction on |θ|
yield

Hq(θ, p)−Hq(θ, p+ 1)− C(θ, p) +Nq(θ, p)

= −Hq(θ̂, p− a) + 2Hq(θ̂, p− a+ 1)−Hq(θ̂, p− a+ 2) +Nq(θ̂, p− a)

= 2Nq(θ̂, p− a)−Nq(θ̂, p− a+ 1)− C(θ̂, p− a) + C(θ̂, p− a+ 1) .

This expression is equal to zero by Lemma 10.8, as the north-east arm of θ̂ is a
row. If ψ is a column and p = |θ| − 1, then the recursive definitions and induction
on |θ| gives

Hq(θ, p)−Hq(θ, p+ 1)− C(θ, p) +Nq(θ, p)

= Nq(θ̂, p− a)−Hq(θ̂, p− a) + C(θ̂, p− a+ 1)

= 2Nq(θ̂, p− a)−Hq(θ̂, p− a+ 1)− C(θ̂, p− a) + C(θ̂, p− a+ 1) .

This expression is equal to zero by Lemma 10.7(b) and Lemma 10.8, as p−a+1 = |θ̂|
and the north-east arm of θ̂ is a row.

Finally assume that θ̂ ̸= ∅ and ψ is not connected to θ̂. If ψ is a row, then both

sides of the identity are equal to C(θ̂, p − a) − C(θ̂, p − a + 1), and otherwise both

sides are equal to C(θ̂, p − a) − 2 C(θ̂, p − a + 1) + C(θ̂, p − a + 2). This proves the
identity. □

Proposition 10.10. Let θ ⊂ P∞
X be a non-empty skew shape with north-east arm

ψ = θ ∖ θ̂, and let p ∈ Z. Then,

Hq(θ, p)−Nq(θ, p) =

{∑
θ̂⊂φ⊊θ C(φ, p) if ψ is a row,

0 otherwise,

where the sum is over all proper lower order ideals φ of θ that contain θ̂.

Proof. We may assume that θ is a rim, since otherwise θ̂ is also not a rim, and
both sides of the identity vanish. Set a = |ψ|. Assume first that ψ is not a row.

If θ̂ = ∅, then Hq(θ, p) = δp,|θ| = Nq(θ, p). If θ̂ ̸= ∅ and ψ is connected to θ̂, then
Hq(θ, p) = Nq(θ, p) for p ≥ |θ| by Lemma 10.7(b,c), and for p < |θ| we have

Hq(θ, p)−Nq(θ, p) = C(θ̂, p− a)−Hq(θ̂, p− a) +Hq(θ̂, p− a+ 1)−Nq(θ̂, p− a) ,

which is equal to zero by Lemma 10.9. Finally, if θ̂ ̸= ∅ and ψ is not connected to

θ̂, then Hq(θ, p) = C(θ̂, p− a)− C(θ̂, p− a+ 1) = Nq(θ, p).
Assume that ψ is a row. For 0 ≤ i ≤ a− 1, we let φi be the union of θ̂ with the

leftmost i boxes of ψ. Then φ0, φ1, . . . , φa−1 are the proper lower order ideals φ in

θ that contain θ̂. If θ̂ = ∅ and ψ meets the SW diagonal, then

Hq(θ, p)−Nq(θ, p) = χ(p ≤ |θ|)− δp,|θ| = χ(p ≤ 0) +

a−1∑
i=1

δp,i =

a−1∑
i=0

C(φi, p) .
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If θ is a single box not on the SW diagonal, then Hq(θ, p)−Nq(θ, p) = χ(p ≤ 0) =

C(φ0, p). If θ̂ = ∅, |θ| ≥ 2, and ψ does not meet the SW diagonal, then

Hq(θ, p)−Nq(θ, p) = χ(p < |θ|) + δp,a−1

= χ(p ≤ 0) + 2 δp,1 +

a−1∑
i=2

(2 δp,i − δp,i−1) =

a−1∑
i=0

C(φi, p) .

If θ̂ ̸= ∅ and ψ is connected to θ̂, then since the north-east arm of θ̂ is not a row,
we obtain by induction on |θ| that

Hq(θ, p)−Nq(θ, p) = Hq(θ̂, p− a)−Nq(θ̂, p− a) + C(θ̂, p− a+ 1)

= C(θ̂, p− a+ 1) = C(θ̂, p) +
a−1∑
i=1

(C(θ̂, p− i)− C(θ̂, p− i+ 1)) =

a−1∑
i=0

C(φi, p) .

If θ̂ ̸= ∅ and ψ is a single box that is not connected to θ̂, then Hq(θ, p)−Nq(θ, p) =
C(θ̂, p) follows from the definitions. Finally, if θ̂ ̸= ∅, ψ is not connected to θ̂, and
a ≥ 2, we obtain

Hq(θ, p)−Nq(θ, p) = 2 C(θ̂, p− a+ 1)− C(θ̂, p− a+ 2)

= C(θ̂, p) +
(
2 C(θ̂, p− 1)− 2 C(θ̂, p)

)
+

a−1∑
i=2

(
2 C(θ̂, p− i)− 3 C(θ̂, p− i+ 1) + C(θ̂, p− i+ 2)

)
=

a−1∑
i=0

C(φi, p) .

The identity follows from these observations. □

We finally prove that the Pieri structure constants N̂ (θ, p) of QK(X) are signed
counts of QKLG-tableaux.

Corollary 10.11. Let θ ⊂ P̂X be a skew shape and 1 ≤ p ≤ n. Then N̂ (θ, p) =
N (θ, p).

Proof. If θ is disjoint from the NE diagonal of P̂X , then N̂ (θ, p) = C(θ, p) = N (θ, p)
by [BR12]. If θ contains two or more boxes from the NE diagonal, then N (θ, p) = 0
by definition (since θ is not a rim), and since dmax(p) = 1, it follows from [BCMP22,

Thm. 8.3] that N̂ (θ, p) = 0. Assume that θ contains exactly one box from the NE

diagonal of P̂X . Then θ− equals θ̂ if the north-east arm of θ is a row, and θ− = θ
otherwise. Lemma 10.6 shows that N (θ, p) = Nq(θ, p), and Proposition 10.10

and the definition (10) show that Nq(θ, p) = N̂ (θ, p), noting that the condition
θ− ⊂ φ ⊊ θ implies that H(φ, p) = C(φ, p) by Remark 10.2. □
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