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ABSTRACT. We prove a collection of formulas for products of Schubert classes
in the quantum K-theory ring QK(X) of a cominuscule flag variety X. This
includes a K-theory version of the Seidel representation, stating that the quan-
tum product of a Seidel class with an arbitrary Schubert class is equal to a
single Schubert class times a power of the deformation parameter q. We also
prove new Pieri formulas for the quantum K-theory of maximal orthogonal
Grassmannians and Lagrangian Grassmannians, and give a new proof of the
known Pieri formula for the quantum K-theory of Grassmannians of type A.
Our formulas have simple statements in terms of quantum shapes that repre-
sent the natural basis elements ¢?[Oxu] of QK(X). Along the way we give
a simple formula for K-theoretic Gromov-Witten invariants of Pieri type for
Lagrangian Grassmannians, and prove a rationality result for the points in a
Richardson variety in a symplectic Grassmannian that are perpendicular to a
point in projective space.
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1. INTRODUCTION

In this paper we prove a collection of explicit formulas for products of Schu-
bert classes in the quantum K-theory ring QK(X) of a cominuscule flag variety.
These formulas include a K-theory version of the Seidel representation of the quan-
tum cohomology ring QH(X) [Sei97, Bel04, CMP09], as well as Pieri formulas for
products with special Schubert classes of classical Grassmannians that generalize
earlier Pieri formulas in quantum cohomology [Ber97, KT03, KT04] and in K-
theory [Len00, BR12]. The Pieri formula for QK(X) is known from [BM11] when
X is a Grassmannian of type A, but is new for maximal orthogonal Grassman-
nians and Lagrangian Grassmannians. Our formulas have simple expressions in
terms of quantum shapes that encode the natural basis elements ¢?O% = ¢?[Oxu]
of QK(X), generalizing the familiar identification of cominuscule Schubert classes
with diagrams of boxes [Pro84].

Let X = G/Px be a flag variety defined by a complex semisimple linear algebraic
group G and a parabolic subgroup Px. Let ® be the root system of G, W the Weyl
group, and let B be a Borel subgroup contained in Px. A simple root « is called
cominuscule if, when the highest root is expressed in the basis of simple roots, the
coefficient of v is one. The flag variety X is called cominuscule if Px is a maximal
parabolic subgroup defined by a cominuscule simple root. Let wg € W be the
minimal representative of the longest element wy modulo the Weyl group Wx of
Px. The minimal representatives w}" defined by all cominuscule flag varieties of G,
together with the identity, form a subgroup of the Weyl group:

weemin — {4yl | F = G/ P is cominuscule} U {1} < W

Each element u € W defines the Schubert varieties X, = Bu.Px and X“ =
B~u.Px in X. The Schubert classes [X¥] for w € W™ will be called Seidel
classes. Tt was proved in [Bel04] and also in [CMP09] that quantum cohomology
products with Seidel classes have only one term. More precisely, for w € W™ and
u € W we have [X®]*[X] = ¢ ~* " [X®wu] in QH(X), where w" is the unique
fundamental coweight such that w.wV = wg.wY. This defines a representation
of Wemin on QH(X)/{q — 1) called the Seidel representation. Our first result
generalizes the Seidel representation to the quantum K-theory ring when X is
itself cominuscule. We denote the Schubert classes in K(X) by O, = [Ox,] and
O = [Oxu].

Theorem 1.1 (Seidel representation). Let X = G/Px be a cominuscule flag vari-
ety, and let w € W™ gnd u € W. We have in QK(X) that

O¥ x O = qdowu’
where d is determined by [, c1(Tx) + codim(X*"*) = codim(X™) + codim(X™").

When X = G/Py is a cominuscule flag variety, the subset WX C W of minimal
representatives of the cosets in W/Wx can be represented by generalized Young
diagrams [Pro84, Per07, BS16]. Set Px = {a € ® | a > ~}, where 7 is the
cominuscule simple root defining X, and give Px the partial order o/ < « if and
only if a«—«’ is a sum of positive roots. The inversion set I(u) = {a € T | u.av < 0}
of any element u € WX is a lower order ideal in Px. The set Px can be identified
with a set of boxes in the plane, which in turn identifies I(u) with a diagram of
boxes that we call the shape of u. This defines a bijection between the set of shapes
in Px and the Schubert basis {[X*]} of H*(X,Z).
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More generally, let B = {¢%[X"] | u € WX,d € Z} be the natural Z-basis of
QH(X), = QH(X) ® Z[q, ¢ ']. It was shown in [BCMP22] that B has a natural
partial order defined by ¢¢[X?] < ¢?[X*] if and only if X,, and X? can be connected
by a rational curve of degree at most d — e. Moreover, this partial order is a
distributive lattice when X is cominuscule. Let 73)( C B be the subset of join-
irreducible elements. Then 73X is an infinite partially ordered set that contains
Px as an interval. When X = Gr(m,n) is a Grassmannian of type A, Px =
72 )Z(m,m—n) is Postnikov’s cylinder from [Pos05]. This poset was also defined in
[Hag04]. The posets 73X defined by other cominuscule flag varieties are isomorphic
to certain full heaps of affine Dynkin diagrams that were constructed in [Grel3]
and used to study minuscule representations.

Define a quantum shape to be any (non-empty, proper, lower) order ideal A C 73X.
A quantum shape will also be called a shape when it cannot be misunderstood to
be a classical shape in Px. The assignment

I(g"[x")) = {a € Px | @ < ¢*[X"]}
defines an order isomorphism from B to the set of shapes in ﬁx, where shapes are
ordered by inclusion. We write O* = ¢?O% when A = I(¢?[X"]) is the quantum
shape of ¢?[X¥].
Quantum multiplication by any Seidel class o defines an order automorphism of

B, which restricts to an order automorphism of Px. If A C Py is any quantum
shape, then o x A\ = {o x & | @ € A} defines a new quantum shape such that

ox O = 07,

Here we have abused notation and identified o with the corresponding K-theory
class O1(?) € QK(X). The poset Px can be identified with an infinite set of boxes
in the plane, such that each automorphism defined by a Seidel class is represented
by a translation of the plane, possibly combined with a reflection. This gives a
simple description of products with Seidel classes in terms of quantum shapes.

Let X = G/Px be a cominuscule classical Grassmannian, that is, a Grassman-
nian Gr(m,n) of type A, a maximal orthogonal Grassmannian OG(n,2n), or a
Lagrangian Grassmannian LG(n,2n). The Chern classes of the tautological vector
bundles over X are represented by the special Schubert varieties X? C X, with
p € N. Formulas for products with the special Schubert classes [X?] are known as
Pieri formulas. Our Pieri formula for QK(X) takes the form

OPxO* =Y "c(v/A,p) O,

where the sum is over all quantum shapes v containing A\. The coefficient ¢(v/A, p)
depends on p as well as the skew shape v/\ := v~ A C ’ﬁX. For Grassmanni-
ans of type A and maximal orthogonal Grassmannians, these coefficients c(v/\, p)
are identical to those appearing in the Pieri formulas for the ordinary K-theory
ring. These coefficients are signed binomial coefficients in type A [Len00], and
are signed counts of KOG-tableaux of shape v/A for maximal orthogonal Grass-
mannians [BR12]. In fact, in these cases the Pieri formula for QK(X) is an easy
consequence of Theorem 1.1, the Pieri formula for K(X), and a bound on the
g-degrees in cominuscule quantum products proved in [BCMP22].

Assume now that X = LG(n, 2n) is a Lagrangian Grassmannian. In this case our
Pieri formula for QK(X) is more difficult to state and prove. While the coefficients
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of the Pieri formula for K(X) are expressed as signed counts of KLG-tableaux in
[BR12], we need to amend the definition of KLG-tableau with additional conditions
in the quantum case. The tableaux satisfying these conditions will be called QKLG-
tableauz. Another difference is that the Lagrangian Grassmannian X does not have
enough Seidel classes to translate the Pieri formula for K(X) to one for QK(X).
We must therefore prove our quantum Pieri formula ‘from scratch’; starting with a
geometric computation of the relevant K-theoretic Gromov-Witten invariants, and
then use combinatorics to translate these Gromov-Witten invariants to the structure
constants ¢(v/\, p) of Pieri products. While both parts resemble the proof of the
Pieri formula from [BR12], the technical challenges are harder for several reasons,
and many steps rely on results proved in [BCMP22].
Our computation of Gromov-Witten invariants targets those of the form

1a(07,0°,04) = x(evi(OF) - ev3(0°) - ev3(Ou)),

where evy, evo, evsy : MO’g(X ,d) — X are the evaluation maps from the Kontsevich
modulo space. By [BCMP18b], these can be computed as

1,07, 0%,0,) = xx([Or,(x.,x)] - O"),

where the curve neighborhood T'3(X,, X") C X is defined as the union of all stable
curves of degree d connecting X,, and X". Let X = SF(1,n;2n) be the variety of
two-step isotropic flags in the symplectic vector space C27, and let 7 : X — X and
n: X — P21 be the projections. We then have OF = 1,n*([O]) for any linear
subspace L C P2"~! of dimension n — p. The projection formula therefore gives

1(0P,0%,04) = X0, (07" [Or,(x,,x)] - [OL]) -
We compute the right hand side by showing that the restricted map
(1) o (Ca(Xy, X7) = n(rH(Ta(Xu, X))

is cohomologically trivial, and that its image is a complete intersection in P27—1!
defined by explicitly determined equations. More precisely, define the skew shape
0 = I(¢[X*])/I([X"]) in Px, let N(6) be the number of components of 6 that are
disjoint from the two diagonals in Px (Section 7), and let R(6) be the size of a maxi-
mal rim contained in 6. Assuming that R(#) < n, we show that n(7=(T(X., X?)))
is a complete intersection in P?"~! defined by N () quadratic equations and n —
R(0) — N(0) linear equations. This gives the formula

R(6)—p
(2) Id(opa Ov7 Ou) = X(OLﬂn(wfl(Fd(Xu,X“)))) = Z (_I)J 2N(6)7J (Ng@)) :
j=0

In the special case d = 0 we have I'y(X,,, X¥) = X,,N X", so (1) is the projection
of a Richardson variety in X. This map was proved to be cohomologically trivial
in [BR12] by showing that its general fibers are themselves Richardson varieties.
This result has been generalized to arbitrary projections of Richardson varieties, see
[BC12, KLS14] and [BCMP22, Thm. 2.10]. However, the variety 7= 1(I4(X,, X))
for d > 0 is not a Richardson variety, and it is difficult to determine the fibers of
the projection (1).

Let Yy = SG(n — d, 2n) be the symplectic Grassmannian of isotropic subspaces
of dimension n — d in C?*, set Z; = SF(n — d,n;2n), and let pg : Zg — X
and qq : Z3 — Y4 be the projections. By the quantum-to-classical construction
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(see [BCMP22, §5] and references therein) we have I'q(X., XV) = pa(q;'(R)),
where R = qa(p; " (X.)) N qa(p; ' (X?)) is a Richardson variety in Y. Define the
perpendicular incidence variety

S ={(K,L) €Yy xP" ' | K CL},

and let f : S — P?™ ! and g : S — Yy be the projections. We then have
Flg™ () = n(m (Pa(Xus X7)).

We prove that for any Richardson variety R C Yy, the general fibers of the
map f: g 1 (R) — f(g !(R)) are rational, and the image f(¢g~1(R)) is a complete
intersection in P?"~! defined by explicitly given linear and quadratic equations.
The required properties of the projection (1) are deduced from this result. Our
results about perpendicular incidences of Richardson varieties in Yy are stronger
than required for this paper, but of independent interest. For example, the fibers
of f:g Y(R) — f(¢g~'(R)) is a plausible definition of Richardson varieties in the
odd symplectic Grassmannian SG(n — d,2n — 1). Notice also that S is not a flag
variety, so f(g~!(R)) is not a projected Richardson variety.

A final step in our proof of the Pieri formula for QK(X) is to translate the
formula (2) for Gromov-Witten invariants of Pieri type to a formula for the Pieri
coefficients c¢(v/\,p). We first show that the structure constants I4(OP, OV, Z,,) of
the undeformed product OP ® OV (see Section 2.5) are determined by recursive
identities. These identities are used to prove that the Pieri coefficients ¢(v/A,p)
satisfy analogous recursive identities. The Pieri formula for QK(X) then follows by
checking that the signed counts of QKLG-tableaux satisfy the same identities.

This paper is organized as follows. In Section 2 we fix our notation for flag
varieties and discuss preliminaries. Section 3 contains the proof of Theorem 1.1. In
Section 4 we define quantum shapes in the partially ordered set ’ﬁX, and explain
how quantum multiplication by Seidel classes correspond to order automorphisms
of this set. The Pieri formulas for QK(X) are given in Section 5 for Grassmannians
of type A, in Section 6 for maximal orthogonal Grassmannians, and in Section 7 for
Lagrangian Grassmannians. These sections also explain in detail how the posets 73X
for the classical Grassmannians are identified with sets of boxes in the plane. While
the Pieri formulas for Gr(m,n) and OG(n,2n) have short proofs given after their
statements, the proof of the Pieri formula for Lagrangian Grassmannians is given
in the last three sections. Section 8 proves that the map f: g~ 1(R) — f(g ' (R)) is
cohomologically trivial and identifies its image as a complete intersection in P2»~1.
Section 9 uses this result to prove the formula (2) for Gromov-Witten invariants
I,(0P, 0%, 0,) of Pieri type. Finally, Section 10 proves the recursive identities that
determine the invariants I4(OP, OV, Z,,) and the Pieri coefficients c(v/\, p).

We thank Leonardo Mihalcea for inspiring collaboration on many related papers
about quantum K-theory, as well as many helpful comments to this paper. We also
thank Mihail Tarigradschi for helpful comments. Finally, we thank Prakash Belkale
and Robert Proctor for making us aware of the references [Bel04, Hag04, Grel3].

2. COMINUSCULE FLAG VARIETIES

In this section we summarize some basic notation and definitions. We follow the
notation of [BCMP22].

2.1. Flag varieties. Let G be a connected semisimple linear algebraic group over
C, and fix a Borel subgroup B and a maximal torus 7" such that T'C B C G. The
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opposite Borel subgroup B~ C G is determined by BN B~ = T. Let W be the
Weyl group of G and let ® be the root system, with simple roots A C &,

A flag variety of G is a projective variety with a transitive G-action. Given a
flag variety X of G, we let Px C G denote the stabilizer of the unique B-fixed point
in X. We obtain the identification X = G/Px = {¢9.Px | g € G}, where ¢.Px is
the g-translate of the B-fixed point.

Let Wx C W be the Weyl group of Px and let WX C W be the set of minimal
representatives of the cosets in W/Wx. Each element w € W defines the Schubert
varieties

X, = Bw.Px and X" =B-w.Px,

and for w € WX we have dim(X,,) = codim(X%, X) = ¢(w). The Bruhat order on
WX is defined by v < w if and only if X, C X,.
Any element u € W has a unique parabolic factorization u = uXuy, where

uX € WX and ux € Wx. The parabolic factorization of the longest element

wyg € W is wg = wé( wo,x, where wé( is the longest element in WX and Wo, x
is the longest element in Wx. We have wy. X" = X,v for any u € WX, where

u = wouwy,x € WX denotes the Poincare dual basis element.

Lemma 2.1. Let Z = G/Py be any flag variety with P; C Px, and let p : Z —
X be the projection. Let F = p~'(1.Px) = Px/Pz denote the fiber over 1.Px,
considered as a flag variety of Px. Let u € WX and w € W¥.

(a) We have p(Z,) = Xy = Xyux, and the general fibers of p : Zy, — X, are
translates of Fiyy = Zyy -
(b) We have p(Z¥) = X¥* = wa, and the general fibers of p : Z%¥ — XY are
translates of F™x .

(¢c) The map p: Z* — X" is birational if and only if wx = wOZ,X = (wo,x)

(d) We have p™"(Xy) = Zy 7 ,» and uwf y € W7,

qu,

(e) We have p~1(X%) = Z%, and u € W2,

Z

Proof. Parts (a) and (b) are [BCMP22, Thm. 2.8 and Remark 2.9], and part (c)
follows from (b). Parts (d) and (e) hold because the T-fixed points in p~!(u.Px)
are the points of the form ut. Pz, with t € Wx. (]

Proposition 2.2. Let Y = G/Py and X = G/Px be flag varieties, let u € WY,
and assume that (Px.Py) NY" # (). Then (Px.Py) NY" = (w{)~L.Y", where
v =wgu((woy)X)"t € WY. In particular, (Px.Py)NY" is a Schubert variety in
Y.

Proof. Set Z = G/(Px NPy),let p: Z — X and ¢ : Z — Y be the projections,
and set F' = p~1(1.Px) = Px/Pz. Let t = wouwg z be the Poincare dual element
of u in W#. By [BCMP22, Thm. 2.8] we have t.F'N Z; = tX.Z;, . The assumption
Px.Py NY" # ) implies that p(Z%) = X, hence tX = wg and tx = (wg)~1t. We
obtain

FNZ% = wo.(t.F 0 Zt) _ wo-(tX-th) — (thXwO).ZthXwU'Z — (wé()—l.Zwé{u

where wot xwo,z = wi u belongs to WZ. Since ¢ : F N Z* — (Px.Py)NY% is an
isomorphism, it follows from Lemma 2.1(c) that (wiu)y = wOZ7Y = (wo,y)™X and

(XY X X)

wu)Y = wgfu((woy)*)~t. The result now follows from Lemma 2.1(b). O
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2.2. Cominuscule flag varieties. A simple root v € A is called cominuscule if
the coefficient of v is one when the highest root of ® is expressed in the basis of
simple roots. The flag variety X = G/Px is called cominuscule if Px is a maximal
parabolic subgroup corresponding to a cominuscule simple root v, that is, s, is
the unique simple reflection in WX. A cominuscule flag variety X is also called
minuscule if the root system & is simply laced. In the remainder of this section we
assume that X = G/Px is the cominuscule flag variety defined by the cominuscule
simple root v € A.

The Bruhat order on W¥ is a distributive lattice [Pro84] with meet and join
operations defined by Xyno = X, N X, and X" = X% N X" for u,v € WX. The
minimal representatives in W% can be identified with shapes of boxes as follows
[Pro84, Per07, BS16]. The root system ® has a natural partial order defined by
o/ < o if and only if o — o/ is a sum of positive roots. Let Px C ®T be the subset

Px={ae€d|a>n~},

with the induced partial order (see Table 1). A lower order ideal A C Px is called
a shape in Px. There is a natural bijection between W* and the set of shapes in
Px that sends w € WX to its inversion set
I(w)={a € ®" |waecd }.

This correspondence is compatible with the Bruhat order, so that v < u holds in
WX if and only if I(v) C I(u). In addition, we have ¢(w) = |I(w)|. The elements
of Px will frequently be called boxes. There exists a natural labeling § : Px — A
defined by 6(a) = w.c, where w € W is the unique element with shape I(w) =
{a/ € Px : o/ < a}. Given u € WX, write I(u) = {y = ai,as,...,a}, where
the boxes of I(u) are listed in non-decreasing order, that is, o; < a; implies 7 < j.
Then u = $5(a,) "+ * $5(as)S5(ar) 18 @ reduced expression for u.

If A C Py is any shape and w € W is the corresponding element with I(w) = A,
then the Schubert varieties defined by w will also be denoted by

X=X, and X =Xv.

2.3. Curve neighborhoods. Let M, = MO,S(X, d) denote the Kontsevich moduli
space of 3-pointed stable maps to X of degree d and genus zero, see [FP97]. The
evaluation maps are denoted ev; : My — X, for 1 < i < 3. Given opposite Schubert
varieties X, and XV in X and a degree d > 0, let

My(X,, X?) = evi (Xy) Nevy H(XY)

be the Gromov- Witten variety of stable maps that send the first two marked points
to X, and XV, respectively. This variety is empty or unirational with rational
singularities [BCMP13, §3]. The curve neighborhood

La(Xu, XY) = evg(Ma(Xu, X))

is the union of all stable curves of degree d in X that connect X,, and X". In par-
ticular, I'g(X,) = I'4(Xy, X) is the union of all stable curves of degree d that pass
through X,,. Since this variety is a Schubert variety in X [BCMP13, Prop. 3.2(b)],
we can define elements u(d),v(—d) € WX by

Ta(Xy) = Xy@ and Tg(X?) =X,
Define zg € WX by I'4(1.Px) = X,,.
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TABLE 1. Partially ordered sets Px of cominuscule varieties with
I(z1) highlighted. In each case the partial order is given by o/ < «
if and only if o’ is weakly north-west of .

Grassmannian Gr(3,7) of type A | Max. orthog. Grassmannian OG(6,12)
1 2 3 4 5 6 1 2 3 4 5
O O ® O O O
6
3141516 6/413]|2]|1
213415 514[3]2
112(3|4 614]3
5|4
6]
Lagrangian Grassmannian LG(6,12) Cayley Plane Eg/Ps
1 2 3 4 5 6 1 3 4 5 6
O O O O O ® O O O O L]
l6l5]4[3]2]1 5o
6(5(4]3]2
65|43 l6]5]4]2
654 31415]6
6|5 1/3[4]5
16 2]4]3]1]
Even quadric Q'° c P! Freudenthal variety E7/P;
1 2 3 4 D05 L3 4 5 8 1
6 l
2
|1]2]3]4]5
21413
o542
0dd quadric Q' c P2 654131
1 2 3 4 5 6 716]5]4)3
[ O O O O O 214
5
[[2[3T4[sT6 514 3T2]1] 6
7

The curve neighborhood I'y(X,, X") can be constructed as a projected Richard-
son variety as follows [BCMP18b]. Given z,y € X, let dist(z,y) € Ho(X,Z) = Z
denote the minimal degree of a rational curve in X that meets both  and y. The
diameter of X is the distance dx(2) = dist(1.Px,wo.Px) between two general
points. For 0 < d < dx(2), we can choose points z,y € X with dist(z,y) = d. Let
L4(x,y) be the union of all stable curves of degree d that pass through z and y.
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Then I'y4(x, y) is a non-singular Schubert variety, whose stabilizer Py, is a parabolic
subgroup of G. The set of all G-translates of I'y(z,y) can therefore be identified
with the flag variety Yy = G/Py,. Let Zqg = G/Pz, be the flag variety defined by
Pz, = Px NPy, and let pg : Zg — X and ¢4 : Zg — Yy be the projections. Set

Ya(Xu, X¥) = qa(pg ' (Xu)) Nga(pg ' (X¥))  and

Zd(XuaXv) = qtj_l(Yd(XuaXU)) :
These varieties are Richardson varieties in Yy and Z;. By [BCMP18b, Thm. 4.1]
and [BCMP22, Thm. 10.1] we then have I'y(X,, X") = pa(Za(X,, X)), and the
restricted projection
(3) Pd : Za(Xu, X¥) = Da(Xu, X)

is cohomologically trivial. We let kg = (woy,)* = w({ 4 € WX be the unique

element such that X,, = p(¢~*(1.Py,)) is a translate of ['y(z,y). A combinatorial
description of the elements kg4, z4 € WX can be found in [BCMP22, Def. 5.2].

2.4. Quantum cohomology. The (small) quantum cohomology ring QH(X) is a
Z|q]-algebra, which is defined by QH(X) = H*(X,Z) ®z Z[q] as a Z[g]-module.
When X is cominuscule, the multiplicative structure is given by
(X% [X°] = ) (pa)<[Za(Xus X)) ¢*.
d>0
This follows from the quantum equals classical theorem [Buc03, BKT03, CMPO0S,

BM11, CP11, BCMP18b]. A mostly type-uniform proof was given in [BCMP22].
Notice that we have

(pa)s[Za(Xu X7)] = {[Fd(X“’Xv)] if dim Ta(X,, X*) = dim Zy(X,, X*),

0 otherwise,

for example because the projection (3) is cohomologically trivial. Let

QH(X), = QH(X) ®zpq Zlg, ¢ ']
be the localization of QH(X) at the deformation parameter q. The set B =
{g?[X"] | uw € WX and d € Z} is a natural Z-basis of QH(X),.

2.5. Quantum K-theory. Let K(X) denote the K-theory ring of algebraic vector
bundles on X. Given u € W, we let O, = [Ox,] and O% = [Ox=] denote the
corresponding K-theoretic Schubert classes. For any shape A\ C Px, we similarly
write O)\ = [OXA] and O)‘ = [OX)\].

The quantum K-theory ring QK(X) is an algebra over the power series ring
Z[q], which is given by QK(X) = K(X)®zZ[q] as a Z[¢]-module. An undeformed
product on QK(X) is defined by

0, 00" = Z(Pd)*[ozd(xu,xv)]qd = Z[Ord(xu,xv)]qd~
d>0 d>0
This product O, ® OV is not associative. Let ¢ : QK(X) — QK(X) be the
line neighborhood operator, defined as the Z[qg]-linear extension of the map ¢ =
(eva).(evy)* : K(X) — K(X), where evy and evy are the evaluation maps from
Mo 2(X,1). Equivalently, we have ¢(O%) = O~V for u € WX. Givental’s asso-
ciative quantum product on QK(X) is then given by [BCMP18a, Prop. 3.2]

O, +x0" = (1—q)(0, ©0").
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Let QK(X), be the localization obtained by adjoining the inverse of g to QK(X).
The set B’ = {¢?O* | u € WX and d € Z} is a Z-basis of QK(X),, in the sense
that every element of F € QK(X), can be uniquely expressed as an infinite linear

combination
F = E E Qoy,d qd o
d>do ueWX

of B/, with a, 4 € Z and the degrees d bounded below.

3. THE SEIDEL REPRESENTATION ON QUANTUM K-THEORY

Let X = G/Px be a fixed cominuscule flag variety. In this section we prove that
certain products O*+O" in QK(X) are equal to a single element ¢¢ O% from B’. The
same statement was proved in [Bel04, CMP09] for products of Schubert classes in
the quantum cohomology ring QH(M) of any flag variety M = G/ Py;. For u,v € W
we let diin (4, v) and dyax(u, v) denote the minimal and maximal powers of ¢ in the
quantum cohomology product [X %] x [X"] € QH(X). Let dmax(®) = dmax(u, wi)
be the maximal power of ¢ in [X"] x [1.Px].

Lemma 3.1. Let u € WX and dpax(u) < d < dx(2). Then T'y(1.Px, X%) =
(wi)™1. X7, where v = w§ (uU kq)(zara) "t € WX.

Proof. Using that kg € Wy,, we obtain ga(p;' (X*)) = qa(p; ' (X“*4)), and hence
[y(1.Px, X%) = Tg(1.Px, X¥4) so we may replace v with u U rgq and assume
that d = dpax(u) (see [BCMP22, §7.1]). We have qq(pa—*(1.Px)) = Px.Py, and
qd(pgl(X“)) = (Yy)"" by Lemma 2.1, and since kg < uy, < wOZ,‘i/d = Kq = ngl, we
obtain ukg € WY4. It therefore follows from Proposition 2.2 that Yi(1.Px, X") =
(Px.Py,)NY;" = (wf) 1Y}, where v = w (urg)k; " = wiu € WY, The result
follows from this and Lemma 2.1, using that pg : Z4(1.Px, X*) — I'y(1.Px, X") is
birational [BCMP22, Prop. 7.1] and wOng( = zgkq [BCMP22, Lemma 6.1]. O

Corollary 3.2. For u € W we have [1.Px] % [X%] = g%max(w) [Xw(i(“] in QH(X)
and [0 py | x O% = ghmax (u) Ow v ip, QK(X).

Proof. This follows from Lemma 3.1 together with [BCMP22, Prop. 7.1, Thm. 8.3,
and Thm. 8.10]. Notice that the product [O; p, ] * O" has no exceptional degree
by the inequality in [BCMP22, Def. 8.2]. O

Let Wemin < W be the subset of point representatives of cominuscule flag
varieties of G, together with the identity element:

weemin — L5l | Fis a cominuscule flag variety of G} U {1}.

Remarkably, this is a subgroup of W, which is also isomorphic to the quotient of
the coweight lattice of ® by the coroot lattice. The isomorphism sends w(" to the
class of the fundamental coweight corresponding to F'.

The classes ¢¢[X*] € QH(X), and ¢?O% € QK(X), given by w € Wemin and
d € Z are called Seidel classes. The cohomological Seidel classes ¢?[X®] form
a subgroup of the group of units QH(X)x by [Bel04, CMP09]. We will see in
Corollary 3.7 below that the K-theoretic Seidel classes similarly form a subgroup
of QK(X); .

The following lemma shows that [X¥] is a Seidel class if and only if the dual
class [X,] is a Seidel class (when X is cominuscule).
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Lemma 3.3. Let X = G/Px and F = G/Pr be flag varieties. The dual element
of (W)X in WX is ((wf)Twi)¥.

Proof. Using that wg = w{ wo, r, we obtain (wf)~twy = wo r = (wo, ) = wowl,
so the dual element of (wf)X is (wowd )X = (W) twe)* = (W) tw)X. O

The following combinatorial lemma is justified with a case-by-case argument.
We hope to give a type-independent proof in later work.

Lemma 3.4. Let X be a cominuscule flag variety, let o € I(z1) ~\ {7}, and define
ue WX by I(u) = {a’ € Px | &/ < (z18y).a}. The following are equivalent.

(a) u=wX for some w € Weomin,
(b) d(e) is a cominuscule simple root.

() a & (z184).c.
(d) Px ~I(u)={a' € Px | > a}.

When these conditions hold we have u¥ = (w{)X, where F = G/Pp is the comi-
nuscule flag variety defined by §(«).

Proof. The action of wg x restricts to an order-reversing involution of Px, and
218y I(z1) N {7} = wo x.(I(z1) ~ {7}) is an order isomorphism, see [BCMP22,
Lemma 4.4 and Prop. 5.10]. This uniquely determines (z1s,).cc for most comi-
nuscule flag varieties. In this proof we will identify shapes labeled by simple root
numbers with the product of the corresponding simple reflections in south-east to
north-west order. For example, the set Px labeled by simple root numbers, as in
Table 1, is identified with w§.

Assume first that the root system ® has type A,_1, with simple roots A =
{B1,...,Bn-1}. All simple roots are cominuscule. Let X = Gr(m,n) be defined by
v = Bm. Then Px is a rectangle with m rows and n — m columns, and I(z1) \ {7}
consists of the top row and leftmost column of Px, except for the minimal box ~.
Let a € I(z1) ~ {7} be the box in column c of the top row of Px. Then (215,).a is
the box in column ¢—1 of the bottom row of Px, and I(u) is a rectangle with m rows
and c—1 columns. We also have §(a) = By1c—1, which defines F' = Gr(m+c—1,n).
The shape of (w§ )X is a rectangle with m rows and n —m — ¢ + 1 columns; this
follows because the top part of I(w{’) cancels when w{" is reduced modulo Wx. For
example, for X = Gr(3,8) and ¢ = 4, we obtain F' = Gr(6, 8) and

6|7
5|6
X_34567 45 FX_34_
W —23456,w0—34,and (U)O) =|2[3]|= 525153525483 .
112]13]4]5 513 1[2
112

The marked box is . It follows that u is dual to (wd)X in WX, and conditions
(a)-(d) are satisfied. A symmetric argument applies when a belongs to the leftmost
column of Px.

We next assume that ® has type D,,, with simple roots A = {81,...,8,}. The
three cominuscule flag varieties of this type are @ = D,,/P;, X' = D,,/P,_1, and
X" = D,/P,. Here Q = Q* 2 is a quadric and X’ & X" = OG(n,2n) are
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maximal orthogonal Grassmannians. For n = 6, the point representatives are

[5[4]3]2[1 [6]4]3]2]1

, 6]4[3[2 , 5[4[3[2

w@ = 112131415 ,wy = |5[4]3], and wy' = |6]4[3].
6[4]3[2]1] 614 54

9] 6]

Let X = Q. The elements in W& representing Seidel classes other than 1 and
[1.Px] are the two elements of length n — 1. For n = 6, we obtain

(') = and ()@ = (2134

The set I(z1) \ {7} contains all boxes of Pg, except v and the maximal box.
The two incomparable boxes of Pg are o' = 6 + ,-1 and & = 6 + 3, where
0 = fB1+ -+ + Bn_2. Since z1s, swaps o and o” and fixes all other boxes of
I(z1) ~ {7}, it follows that (a)-(d) are satisfied if and only if o € {¢/, @”'}. Assume
that @ = . We obtain v = $,_18,-2--- 8281, () = Bn, and F = X". If n
is even, then the bottom label of wi is n — 1, hence u = (w )?, and otherwise
u = (wg")Q. This is consistent with the lemma, since the elements (w{ )@ and
(wX")Q are dual to each other when n is even and self-dual when n is odd. A
symmetric argument applies when o = o/'.

Let X = X’. The shape of (wl)X" is a single row of n — 1 boxes, and (wg )X’

is dual to (wdQ)X/

. ’
in WX'. For n = 6, we have

I5 4
(W)X =[B43[2[1] and (wy )X = 1O

ofx]eo
ENEN

The set I(z1) \ {7} consists of the first two rows of Px, with v removed. Let
a1, o € I(21) \ {7} be the unique boxes with labels () = £ and d(a,) = Bn.
Then (218y).an = a1, and (z15,).c1 is the second to last diagonal box of Px. It
follows that conditions (a)-(d) hold if and only if « € {a, @, }, and the description
of uV is accurate.

If X is a Lagrangian Grassmannian LG(n,2n), an odd quadric Q*"~!, or the
Freudenthal variety F7/P7, then no boxes of I(z1) \ {7} satisfy conditions (a)—(d).
The Cayley plane Eg/ Ps is similar to the cases of type D,, and left to the reader. O

Lemma 3.5. Let X be a minuscule flag variety, let uy, uso,...,uy € WX, and
assume that O « QU2 % --. % Q% = ¢ for some d € Z. Then O% xB' C B’ for
each i, where B' = {q°O" | v € WX, d € Z} is the Z-basis of QK(X)j.

Proof. It follows from [BCMP22, Thm. 8.4] that QK(X), has non-negative struc-
ture constants relative to the basis

B — {(_1)6(1))+fd c1(Tx) quv | ve WX and d € Z} )

The lemma therefore follows from the proof of [BW21, Lemma 3]. Namely, if the
expansion of O% x QY contains more than one term, then so does the expansion of
O™ %% QU x OV = ¢?O?, which is a contradiction. (]

Theorem 3.6. Let X be a cominuscule flag variety and let w € WX. The following
are equivalent.

(S1) u=wX for some w € Weemin,
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(S2) [X“]xB C B, where B = {q? [X"] | ve WX, d € Z} is the Z-basis of QH(X),.
(S3) OvxB' C B, where B = {q? O? | v e WX, d € Z} is the Z-basis of QK(X),.
(54) [Xu]* [X"] = [1.Px] € QH(X).

(S5) O, * 0" = [01.py] € QK(X).

(S6) dmax(u”,u) = 0.

(

S7) We have uw € {1,wi}, or I a € I(z1) such that o ¢ I(u) and (218,).cc € I(u).
Furthermore, if o is as in condition (S7), then I(u) = {o/ € Px | & < (z184).0},
§(a) is a cominuscule simple root, and u’ = (w{)X where F = G/Pr is the
cominuscule flag variety defined by 6(«).

Proof. We may assume u ¢ {1, w{ } by Corollary 3.2. The implications (S3) = (S2)
= (S4) and (S3) = (S5) = (S4) are clear, noting that the quantum cohomology
product [X“]x[X"] is the leading term of O x OV, and is non-zero by Corollary 3.2
since [X,] * [X"] x [X¥] # 0. The implication (S4) = (S6) is also clear. Using
the notation uy,u! € W defined in [BCMP22, Def. 6.5], it follows from [BCMP22,
Prop. 7.1 and Cor. 7.4] that dyax(u¥,u) = 0 is equivalent to u; £ u!, noting that
dmax (1) > 0 and dpax(u") > 0. The elements u; and u' are cominuscule minimal
representatives, so u; £ u! is equivalent to I(u1) ¢ I(u!). By [BCMP22, Prop. 6.2
and Prop. 6.7(b)] these inversion sets are given by
I(ur) = 21 (I(w) N (I(sy) N I(2))))  and I(u') = sy.(I(w) N (I(21) N {7}))-

Since (218,) 7" .(I(s¥) N 1(2))) = I(z1) ~ {7} and y € I(u), we deduce that I(u;) ¢
I(u') holds if and only if (218,) " .I(u) N I(z1) ¢ I(u). This proves that (S6) is
equivalent to (S7). Assume (S7), and let o € I(21) satisfy a ¢ I(u) and (z15).a €
I(u). Then o £ (z18).r, so Lemma 3.4 implies that 0(c) is a cominuscule simple
root. This is only possible when X is minuscule. Using (S6), it follows from
[BCMP22, Thm. 8.3] that O, x O = [01.p,]. By Corollary 3.2, this implies that
(O, xO%)*™ is a power of ¢ for some positive integer m, so it follows from Lemma 3.5
that O% % B’ C B’. This proves the implication (S7) = (S3). We finally show that
(S1) is equivalent to (S7). The implication (S7) = (S1) follows immediately from
Lemma 3.4. If (S1) holds, then u” = (wl')*, where F = G/Pr is the cominuscule
flag variety defined by some cominuscule simple root 7' € A\ {v}. Let o € I(21)
be any root for which (o) = 7/, and define v € WX by I(v) = {o/ € Px | o/ <
(2184).a}. Then Lemma 3.4 shows that u = v, which proves the implication (S1)
= (S7). The last claims of the theorem also follow from Lemma 3.4. O

The following result provides the action of the subgroup of Seidel classes in
QK(X),; on the basis B’. The statement was proved for the quantum cohomology
of arbitrary flag varieties in [Bel04, CMP09].

Corollary 3.7. Let X be a cominuscule flag variety, and let w € W™ and
v EW. Then, O x OV = ¢tmin(Wv) O holds in QK(X).

Proof. Tt follows from [Bel04, CMP09] that [X %] x [X?] = ¢%min(¥:¥) [X**] holds in
the quantum cohomology ring QH(X). The result follows from this since [X™]x[X"]
is the leading term of O x OV, and O x OV is a power of ¢ times a single Schubert
class by Theorem 3.6. |

Example 3.8. Let X = Q"2 be the quadric of type D,,, let P € H*"~4(X) be
the point class, and let 0,7 € H?**~2(X) be the two Schubert classes of middle
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degree. Since W™ has order 4 and deg(q) = deg(P), we deduce that the Seidel
classes in H*(X) cousist of 1, o, 7, and P. If n is even, then o -7 = P and
02 =72 =0 hold in H*(X). It follows that c x7 = P, 0?2 =72 =q, 0 x P = qT,
and 7% P = go hold in QH(X). Similarly, if n is odd, then 0? = 72 = P, ox7 = ¢,
ocx P =gq7,and 7x P = go hold in QH(X). Any product of a Seidel class with
a non-Seidel Schubert class in QH(X) is the unique element in B of the correct
degree. This determines all products with Seidel classes in QH(X). Products of
arbitrary Schubert classes in QH(X) and QK(X) are determined by this together
with Corollary 3.7 and the quantum Chevalley formulas [FW04, BCMP18a].

Example 3.9. Let X = Gr(2,4). Then
X+ [XF] = ¢[X
holds in QH(X). Let {e1,e2,e3,e4} be the standard basis of C*. We claim that
[(Xg, X)) = {(VeX|Vnie,es) #0},

that is, I'1 (Xg, X™) is a translate of the Schubert divisor X®. The curve neighbor-
hood T'y (X5, X™P) is the union of all lines connecting the Schubert varieties

Xog = {Ae X |{e1) CAC (e1,ez,e3)} and
X = {Be X |({e4) C B}.
Given V € T’ (Xg, X)), we can find A € X5 and B € X™ such that
0#ANBCV CcA+B#Ch.

Since V and (ej, e4) are both contained in A+ B, we obtain V' N (e, e4) # 0. This
proves the claim, since T'y (Xg, X™) is a divisor in X.

Set Y1 = FI(1,3;4), Z; = Fl(4), and let p; : Z; — X and ¢1 : Z1 — Y7 be
the projections. We have qlpfl(XD) = (Y1)3142 and qlpfl(XED) = (Y1) s0 it
follows from Monk’s formula that

D/l (XD,XEDH — [Y'12143] . [Y11243] — [Y13142] 4 [Y12341] )
We deduce that Y;(Xg, X™) is not a Schubert variety in Y;.

Remark 3.10. Let M = G/Py; be any flag variety of G. Recall that Ho(M,Z)
can be identified with the coroot lattice of G modulo the coroot lattice of Pys, by
identifying each curve class [M,,] with the simple coroot 3" (see e.g. [BM15, §2]).
Let w € W, w € W™ and let 3 € AN I(w) be the cominuscule simple root
defining the cominuscule flag variety corresponding to w. Set d = w%/ 1.w§ €
Hy(M,Z), where w[}/ is the fundamental coweight dual to 5. It was proved in

[Bel04, CMP09] that the identity
[M*] % [M*"] = ¢*[M*"]

—u-

holds in the small quantum cohomology ring QH(M). This is consistent with the
following conjecture.

Conjecture 3.11. Let M = G /Py be any flag variety. For uw € W, w € Weomin,
I(w)NA={8}, and d = wg — ufl.wb/ € Ho(M,Z), we have

Ta(Muygw, M) = w™ . M.
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This conjecture follows from Proposition 2.2 when d = 0, from Lemma 3.1 when
M is cominuscule and w = w}?, and from [LLSY?22, Cor. 4.6] when M is a Grass-
mannian of type A and [M™] is a special Seidel class. In response to this paper,
it was proved in [Tar23] that Conjecture 3.11 is true for all flag varieties of type
A, and the general conjecture follows from the special case where Pj; is a maximal
parabolic subgroup.

4. QUANTUM SHAPES

Let X = G/Px be a cominuscule flag variety. An infinite partially ordered
set Py extending Py was constructed in [BCMP22], such that elements of the
set B = {¢%[X%] | v € WX, d € Z} correspond to order ideals in Px that
we call quantum shapes. Isomorphic partially ordered sets were constructed in
[Hag04, Pos05, Grel3]. Products of Seidel classes with arbitrary Schubert classes
have simple combinatorial descriptions in terms of quantum shapes, and our Pieri
formulas also have their simplest expressions in terms of these shapes. In this sec-
tion we summarize the facts we need. Proofs of our claims and more details can be
found in [BCMP22, §7.2]. Some claims are justified by Proposition 4.4 proved at
the end of this section.

Recall that B is a Z-basis of QH(X),. Define a partial order on B by

qe[Xv] < qd[X"] = Ta-e(Xu, X) # 0.
The condition T'y_.(X,, X") # () says that some rational curve in X of degree at
most d — e intersects both X, and XV. Equivalently, ¢°[X?] < ¢?[X "] holds if and
only if ¢[X*“] occurs with non-zero coefficient in the expansion of ¢¢[X "]+ ¢% [X*]
in QH(X),, for some w € WX and d" > 0 [BCMP22, §7.2]. The following was
proved in [BCMP22, Thm. 7.8].

Theorem 4.1. Let u,v € WX and d € Z. The power q@ occurs in [X*] * [X"] if
and only if [X?] < ¢¢[X.] < [point] x [X*].

Corollary 4.2. Assume that u,u’,v,v" € WX satisfy v’ < u and v' < v. Then
dmin(ulyv/) S dmin(u7 U) and dmax(ula U/) S dmax(u7v)-

Proof. Set d = duyin(u,v). Then [XV] < [XY] < ¢%[X.] < ¢*X.]. Using
that [X“] x [X¥] # 0, this shows that dmi(v/,v') < d. Similarly, if we set
d = dpax(/,v), then ¢4[X,] < ¢*[X.] < [point] * [X?'] < [point] x [X*] and

[X“] % [X"] # 0 implies that d < dax(u,v), as required. O

The following special case is useful for showing that a quantum product [X*] x
[X ] has only classical terms.

Corollary 4.3. Let u,v € WX. Assume that v < w and v < wow for some
w € WM Then dypay(u,v) = 0.

Proof. This follows from Corollary 4.2 and condition (S6) of Theorem 3.6. |

The partially ordered set B is a distributive lattice by [BCMP22, Prop. 7.10].
Let 73)( C B be the subset of all join-irreducible elements. These elements will
be called bozxes. Define a quantum shape in 73X to be any non-empty proper lower
order ideal A C 73X. A quantum shape will also be called a shape when it cannot be
misunderstood to be a classical shape in Px. A skew shape in Py is the difference
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A/p = A\ p between two shapes p C A C Py. All shapes in Py are infinite, and
all skew shapes in Py are finite. Given ¢?[X*] € B, define

I(q[X"]) = {a € Px | @ < ¢?[X"]}.

Notice that if ¢?[X"] € Px, then ¢?[X"] is the unique maximal box of I(g?[X"]).
By [BCMP22, Thm. 7.13], the map I is an order isomorphism of B with the set of
all shapes in PX, where shapes are ordered by inclusion. For any shape A C PX
we will write O = ¢?O", where ¢?[X"] € B is the unique element with shape
I(g"[X"]) = A

Given a € Px, define £(a) € WX by I(£(a)) = {a’ € Px | @/ < a}. Then
the quantum shape I([X¢(®)]) C Px contains a unique maximal box 7(c) distinct
from 1 € B, the identity element of QH(X). The map 7 : Px — Py is an order
isomorphism of Px onto an interval in Px by [BCMP22, Thm. 7.13]. We identify
Px with the image 7(Px) C 73X. Given a classical shape A C Px, we will abuse
notation and also use A to denote the corresponding quantum shape I([X*]) =
7(A) UI(1) C Px, see Proposition 4.4(c). Both of these shapes define the same
class 0* € QK(X).

Quantum multiplication by any Seidel class ¢ = ¢?[X "] in QH(X)q defines an
order automorphism of 3, which restricts to an order automorphism of 73)(- Since
1le 73)( by Proposition 4.4(a), it follows that all Seidel classes belong to 73X. Given
any shape \ C 73X, we define a new quantum shape by o x A = {o*xa | a € \}. We
then have

OI(J)*OA — ch*)\
in QK(X),, where O1(?) = ¢4O" is the Seidel class in QK(X), corresponding to
0. The action of Seidel classes on ’ﬁx therefore determines arbitrary products with
Seidel classes in QH(X), and QK(X),. For multiplication by powers of ¢, we use
the notation A[d] = ¢ x A = {g®xa | @ € A}, so that O = ¢4O*. The shifting
operations on shapes in Px (see [BCMP22, §6.2]) are then given by A(d) = A[d]NPx
(when A C Py is identified with the quantum shape AU I(1) C Px).

The following figures show the partially ordered set Py for the quadrics of di-
mensions 7 and 12, as well as the exceptional cominuscule flag varieties. Each set
has the west-to-east order, where any node is covered by the nodes immediately
northeast, east, or southeast of it. The elements of Px are colored gray. Sei-
del classes are represented by lines marking the eastern borders of their quantum
shapes. We use P to denote the point class, and o and ¢’ are used to represent
Seidel classes in H*(X,Z) that are not in the subgroup of QH(X)x generated by P
and ¢. Multiplication by any Seidel class corresponds to the rigid transformation
of ’ﬁX that moves the border of 1 to the border of the Seidel class. This rigid
transformation is a horizontal translation, possibly combined with a reflection in a
horizontal line.

Q"

oooo><oooo><oooo>©ooo>@oooo
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The following results will be used to describe the quantum posets 73X of classical
Grassmannians in the next three sections.

Proposition 4.4. Let X = G/Px be a cominuscule flag variety.

(a) We have Px N H*(X) = {r(a) |« € Px ~ I(z})} U {1}.

(b) The map (Px N H*(X)) x Z — Px defined by ([X"],d) — ¢?[X"] is bijective.
(¢) We have 7(Px) = I([1.Px]) ~ I(1) C Px.

Proof. Parts (a) and (b) follow from [BCMP22, Def. 7.11 and Thm. 7.13], noting
that 7(a) = [X¢®] holds if and only if a € Px ~ I(z)). Let a € Px. Then
7(a) < 7(p) = [1.Px], where p € Px is the highest root. Since [X¢(®)] = r(a)U 1
by [BCMP22, Thm. 7.13(a)], and [X¢(®)] # 1, we obtain 7(a) % 1. This proves that
() € I([1.Px])~I(1). Given @ € I([1.Px])~ I(1), we may write @ = ¢~ ¢[X ()]
for some o/ € Px \ I(z)) and d € Z. The condition & < [1.Px] implies d > 0,
and @ £ 1 implies that o/ ¢ I(z4) by [BCMP22, Lemma 7.12]. Tt therefore follows

from [BCMP22, Prop. 5.9(a) and Cor. 5.11] that a = (218,)~%.a/ € Py, and from
[BCMP22, Def. 7.11] that 7(a)) = @. This proves part (c). O

Lemma 4.5. Let a be any non-minimal boz in Px \ I(z)), and let &' < 7(a) be a
covering in Px. Then & = 7(a') for some o € Px, such that &' <« is a covering
m Px.

Proof. Since « is not minimal in Px \ I(zy), it follows from Proposition 4.4(a)
that @’ £ 1, hence @' = 7(a’) for some o’ € 7(Px) by Proposition 4.4(c). Proposi-
tion 4.4(c) also implies that o/ < « is a covering in Px, as required. O
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5. PIERI FORMULA FOR GRASSMANNIANS OF TYPE A

5.1. Quantum shapes. Let X = Gr(m,n) be the Grassmannian of m-dimensional
vector subspaces of C™. The quantum cohomology ring QH(X) was computed by
Witten [Wit95] and Bertram [Ber97], and a Pieri formula for the ordinary K-theory
ring K (X) was obtained by Lenart [Len00]. The Grassmannian X is minuscule of
type A,_1, and the corresponding partially ordered set Px is a rectangle of boxes
with m rows and n — m columns, endowed with the northwest-to-southeast order
discussed below.

Px =

Each shape A C Px can be identified with a partition
A=A =X > > Ay >0)

with Ay < n —m, where J); is the number of boxes in the i-th row of A. If A C Px
consists of a single row of boxes, then A\ will also be identified with the integer
p = |A|. The special Schubert classes in K (X) are the classes O for 1 < p < n—m.
Another family of special classes consists of O for 1 < r < m, where (b)* denotes
a rectangle with a rows and b columns.

Let Z? denote a grid of boxes (i,5) that fill the plane, where the row number
1 increases from north to south, and the column number j increases from west
to east. We endow Z2 with the northwest-to-southeast partial order, defined by
(i',4") < (i,j) if and only if / < i and j* < j. The quotient Z?/Z(m,m — n) is
ordered by (i/,5") + Z(m,m —n) < (i,7) + Z(m,m — n) if and ouly if (¢/,5") <
(i +am, j + am — an) for some a € Z. The cylinder Z2/Z(m,m — n) was used to
study the quantum cohomology ring QH(X) in [Pos05, §3]. This partially ordered
set was also defined in [Hag04, §8].

Proposition 5.1. Let X = Gr(m,n) and set o = [X""™] and 7 = [X1"].

(a) The group of Seidel classes in QH(X)[ is generated by o and 7.

(b) We have o™ = 1"~ = [1.Px] and o x 7 = q in QH(X).

(c) The map ¢ : Z2)Z(m,m —n) — Px defined by é(i,j) = o' %19 % [1.Px] ! is an
order isomorphism, which identifies Px with the rectangle [1,m] x [1,n — m)].

(d) The actions of o and T on Px are determined by o*x¢(i,j) = ¢t +1,7) and
TxP(i,j) = ¢(i, 5+ 1).

Proof. Noting that o = [X%0] and 7 = [Xwéw], where F' = Gr(1,n) and F' =
Gr(n — 1,n), it follows that o and 7 are Seidel classes in QH(X). Part (b) follows
from Bertram’s quantum Pieri formula [Ber97], and is also an easy consequence of
Corollary 3.7. These results also show that

ol =X and 7 = [X07]
for 1 <i<mand 1< j<mn-—m. Part (a) follows from this, noting that o and 7
generate n distinct Seidel classes in H*(X).

The map ¢ is well defined by part (b), and order-preserving since, if (¢/,;) <
(i,7), then ¢(i, j) occurs in the expansion of the product ¢(i’, j') x (o~ » 79=3").
The maximal box of (n —m)? is the i-th box of the rightmost column of Py, and
the maximal box of (5)™ is the j-th box of the bottom row of Px. Since these
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maximal boxes include all boxes of Px \ I(zy), it follows from Proposition 4.4 that
¢ is surjective. If o' 77 = 1 in QH(X)g, then since ¢ has order n and inverse 7 in
QH(X)/(g—1), we must have j = i—an for some a € Z. Since c'x7/ = 1 has degree
(n—m)i+mj =0 in QH(X),, we obtain (¢, j) = a(m, m —n). This implies that ¢
is bijective. To show that ¢ is an order isomorphism, we must show that, if &’ < &
is a covering in Py, then ¢~1(a’) < ¢~1(a). If X = P!, then this follows because
Z?)7(1,—1) is totally ordered, so assume that n > 3. Using that ¢ is surjective and
quantum multiplication by the Seidel classes o and 7 define order automorphisms of
Px, we may assume that @ = [1.Px] = ¢(m, n—m) is the maximal box of Py C Px.
We then deduce from Lemma 4.5 that &’ = ¢(m—1,n—m) or & = ¢(m,n—m—1),
and in either case we obtain ¢~1(a’) < ¢~1(@). Noting that ¢(m,n —m) = [1.Px]
and ¢(m,0) = ¢(0,n —m) = 1, it follows from Proposition 4.4(c) that Px is
identified with the rectangle [1,m] x [1,n — m]. This proves part (c). Part (d)
follows from the definition of ¢, which completes the proof. ([

Example 5.2. Let X = Gr(2,5) and set o = [X?], 7 = [X(IV], and P = [1.Px].
The following figure shows the rectangle [0,3] x [0,4] C Z?, with each box (i, j)
labeled by ¢(i,7). The framed 2 x 3 rectangle can be identified with Px.

P21 1 | 7

oo trilrto| o | 4

1 T | 72| P|lgo

o | 4 |q7 |qr?|qP

Remark 5.3. Let X = Gr(m,n). The map from Proposition 5.1(c) defines an
order-preserving bijection ¢ : [1l,m] X Z — ﬁx, which is an order isomorphism
if and only if m = 1. In particular, ﬁx does not have ‘cylinder’ behavior when
X = P" ! is projective space. A non-empty proper lower order ideal A C [1,m] x Z
can be represented by the decreasing sequence (A1 > Ao > -+ > A,;,), where \; € Z
is maximal such that (i, A;) € A. The image ¢()\) is a shape in Px if and only if
A1 —Am < n—m, and any shape in 73)( has this form. In this case the corresponding
basis element ¢?[X*] is obtained by removing rim-hooks from A, see [BCFF99).

5.2. Pieri formula. Let 8 C 73X be a skew shape. A row of 6 means a subset of
the form 6 N ¢({k} x Z), where k € Z and ¢ is the map defined in Proposition 5.1,
and a column of 6 is a subset of the form 6 N ¢(Z x {k}). The skew shape 6 C Px
is called a horizontal strip if each column of 6 contains at most one box. Let r(0)
denote the number of non-empty rows in 6. For p > 1 we define

A(0p) = {(—1)9|—P (Tl(:‘)__pl) if 0 is a' horizontal strip,
0 otherwise.

A Pieri formula for products of the form OPxO* in QK(X) was proved in [BM11].
We proceed to show that this formula is an easy consequence of Corollary 3.7,
Lenart’s Pieri formula for K (X) [Len00], and a bound on the g-degrees in quantum
K-theory products proved in [BCMP22].
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Theorem 5.4. Let X = Gr(m,n), let A C 73X be any quantum shape, and let
1<p<n-—m. Then

0P« 0* =Y A(v/A,p) 0

holds in QK(X),, where the sum is over all quantum shapes v C 73X containing .

Proof. Set 7 = OMW™ and choose k € Z maximal such that ¢(m,k) € \. By
Corollary 3.7 and Proposition 5.1 we have 77 « O = O#, where 1 C Px is a
classical shape with p,, = 0. Corollary 4.3 then implies that dyax(p, ) = 0, so
[BCMP22, Cor. 8.3] shows that OF x O* agrees with the classical product OP - O
in K(X). Notice that, if v D p is any quantum shape such that v/ is a horizontal
strip, then v is a classical shape. It therefore follows from [Len00, Thm. 3.2] that

OP x OF = ZA(V/M,])) or

holds in QK(X), where the sum is over all shapes v C 73X containing u. Since quan-
tum multiplication by 7% defines a module automorphism of QK(X) and defines an

order automorphism of 73X, this identity is equivalent to the theorem. ([

The following version of Theorem 5.4 is equivalent to the Pieri formula for QK(X)
proved in [BM11].

Corollary 5.5. Let A\ C Px be any shape and let 1 < p <n —m. Then

OP % O =" A(u/A\,p) O + ¢ ) A(v[1]/A,p) O

holds in QK(X), where the first sum is over all shapes p C Px containing A, and
the second sum is over all shapes v C Px for which v[1] contains .

Proof. This is a direct translation of Theorem 5.4, using that O] = ¢ O¥. O

Example 5.6. Let X = Gr(3,7). By Remark 5.3 we can represent a shape A C Px
by a non-empty proper lower order ideal A = (A1 > Ay > A3) in [1, 3] X Z, such that
A1 — A3 < 4. When A3 > 0, this order ideal will be displayed as a Young diagram
with at most 3 rows. We will also identify the shape A with the class O in QK(X).
With this notation we have

. 7 ERER) 7]
O x 110 = + T - ,

T+ HEa [+

where added boxes are indicated by pluses. This is equivalent to

O0? * H: ]+qEP—qEB.

Notice that the shape

,+I+I+l

[+

is not included, as the box added to the third row is in the same column of ﬁx as
the rightmost box added to the first row.



SEIDEL AND PIERI PRODUCTS IN COMINUSCULE QUANTUM K-THEORY 21

6. PIERI FORMULA FOR MAXIMAL ORTHOGONAL (GRASSMANNIANS

6.1. Quantum shapes. Let X = OG(n,2n) be the maximal orthogonal Grass-
mannian, parametrizing one component of the maximal isotropic subspaces of C2"
endowed with an orthogonal bilinear form. The quantum cohomology ring QH(X)
was computed in [KT04], and a Pieri formula for the ordinary K-theory ring K (X)
was obtained in [BR12].

The orthogonal Grassmannian X is minuscule of type D,,. We identify the simple
roots of type D,, with the vectors

A={e,—en-1,...,3 — ez, €2 —e1,e2te1},
where v = e + eg is the cominuscule simple root defining X. We then obtain
Px ={e;+ej|1<i<j<n},

where the partial order is given by e;s + e, < e; +e¢; if and only if ¢/ < i and j' < j.
We represent Px as a staircase shape with n — 1 rows, where e; + e; is represented
by the box in row ¢ and column j:

L]
l

Pocs,12) =

Each shape A C Px can be identified with a strict partition
A=A >N > > X >0)

with Ay < n — 1, where A; is the number of boxes in the i-th row of A. If A C Px
consists of a single row of boxes, then A will also be identified with the integer
p = |A|l. The special Schubert classes in K (X) are the classes OP for 1 <p <n—1.
Define the set
Px={(i,j) €Z*|i<j<i+n},

and give Px the northwest-to-southeast order (i’,j') < (4,4) if and only if i’ < i
and j' < j. We represent Px as an infinite set of boxes (4, ) in the plane, where the
row number 7 increases from north to south, and the column number j increases
from west to east. Each row in Px contains n — 1 boxes. The set Px will be
identified with the subset {(i,7) € Z? |1 <i < j <n} C Px.

Poc(s,12) =

Recall the map 7: Px — ’ﬁX from Section 4.

Proposition 6.1. Let X = OG(n,2n).

(a) The group of Seidel classes in QH(X)X is generated by [1.Px] and [X"~'].

(b) We have [X"1]? = q and [1.Px]? = [X"71]" in QH(X).

(c) The map ¢ : Px — Px defined by ¢(i,j) = [X"~1)i—n * T(€ign—j + €n) is an
order isomorphism which identifies Px with the set {(i,j) € Z* |1 <i < j <n}.
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(d) The action of Seidel classes on Px is given by [X" Y| x ¢(i,§) = (i + 1,5+ 1)
and [1Px] % 8(i.5) = 6(j.i + n).

Proof. Let F = Q?"~2 be the quadric of type D,. Then we have the relation
wl =81+ 8n_250_15n5n_2 51, hence (wf)X = s1---s,_25,. This shows that
[X"=1] = [X®]. Since (wf)? = 1 holds in W, it follows from Corollary 3.7 that
[X"~1)? is a power of ¢. Using that deg(q) = 2n — 2, we obtain [X"71]2 = ¢. Since
Weemin has order 4, we have (wgl)? € {1,wt’}, so Corollary 3.7 implies that either
[1.Px]? or [X" ! % [1.Px]? is a power of q. In either case, [1.Px]? is a power of
[X™~1], and since dim(X) = (}), we must have [1.Px]? = [X"~!]". Parts (a) and
(b) follow from these observations.

For convenience we set a; = e; + e, for 1 < i <n-—1and o} = e; +e,1
for 1 < i < n—2,sothat Px \ I(z)) = {&4,...,a),_9,01,...,an_1}. Then
I(7(a;)) N Px consists of the top ¢ rows of Px, and I(7(a})) NPx is obtained by
removing the rightmost column in this shape. Notice also that 7(a;) = [X" 1],
T(an—1) = [1.Px], and ¢(i,j) = [X" 7" % 7(qtiyn—j). It follows from [KT04] or
Corollary 3.7 that [X" ! x 7(a}) = 7(i11) holds in QH(X) for 1 < i < n — 2.
Proposition 4.4 therefore implies that

Px NH*(X) = {1,7(c),....7(al, ), m(a1),. .., T(on_1)}
= {[X" %7() |1 <i<n—1andec{0,-1}}

and that ¢ is bijective. Since a; < a;11 holds in Px and [X" 1] is a Seidel class,
we obtain ¢(4,j) < p(i +1,j) fori+1 < j<i+mn. Fori <j<i+mn—1wehave

¢(i,5) = (X" V" r(ign—y) = X"V w7 (), 50)

< XM (i) = (0,5 4+ 1)

This implies that ¢ is order-preserving. Assume that &’ <a is a covering in Py. We
must show that ¢~1(@’) < ¢~1(@). Since ¢ is surjective and quantum multiplication
by [X™ 1] is an order automorphism of Px, we may assume that @ = () for
some . Lemma 4.5 then shows that &' = 7(a/) for some o € Px. We deduce
that @ = 7(a) or @ = 7(cj—1). In either case we obtain ¢~ 1(a@’) < ¢~*(@). This
proves that ¢ is an order isomorphism. Finally, using that ¢(0,n — 1) = 1 and
¢(n —1,n) = [1.Px], the last claim in part (c) follows from Proposition 4.4(c).
The identity [X™ 1] x ¢(i,5) = ¢(i + 1,5 + 1) follows from the definition of ¢.
Quantum multiplication by [1.Px] corresponds to an order automorphism of Px
that commutes with multiplication by [X"~!], and any such order automorphism
of Px is a translation along a northwest-to-southeast line, possibly combined with
a reflection in such a line. Using that [1.Px]x ¢(0,n — 1) = ¢(n — 1,n), we deduce
that multiplication by [1.Px] corresponds to the automorphism (i,7) — (4,4 + n)
of Px, which proves part (d). O

We may identify 73X with the set of boxes Px. Given a shape \ C 73X and d € Z,
it follows from Proposition 6.1 that the shifted shape A[d] = g% x A is obtained by
moving A by 2d diagonal steps in southeast direction.

Remark 6.2. Tt is natural to extend the notation A[d] to half-integer shifts by
setting A[k/2] = [X"7!¥ x \. We then have (O" ")k x O* = ONF/2 in QK(X),.
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6.2. Pieri formula. The Pieri formula for the K-theory ring K(X) proved in
[BR12] expresses the structure constants of Pieri products as signed counts of KOG-
tableaux, defined as follows.

Definition 6.3 (KOG-tableau, [BR12]). Given a skew shape § C Px, a KOG-
tableau of shape € is a labeling of the boxes of # with positive integers, such that
(i) each row of 6 is strictly increasing from left to right; (ii) each column of 6 is
strictly increasing from top to bottom; and (iii) each box of € is either smaller than
or equal to all boxes south-west of it, or it is greater than or equal to all boxes
south-west of it. The content of a KOG-tableau is the set of integers contained in
its boxes. Let B(6,p) denote (—1)?I=? times the number of KOG-tableaux of shape
6 with content {1,2,...,p}.

The skew shape 6 is called a rim if no box in 6 is strictly south and strictly east
of another box in . If € is not a rim, then there are no KOG-tableau of shape 6,
hence B(6,p) = 0 for all p.

Theorem 6.4. Let X = OG(n,2n), let A C Px be any quantum shape, and let
1<p<n-—1. Then

OP x O = ZB(V/A,p) or

holds in QK(X),, where the sum is over all quantum shapes v C 73X containing .

Proof. Choose k maximal such that ¢(k,k +n — 1) € A\. By Corollary 3.7 and
Proposition 6.1 we have (O"~1)=F x O* = O, where u C Px is a classical shape
with p3 < n — 2. Corollary 4.3 then implies that dyax(p, ) = 0, so [BCMP22,
Cor. 8.3] shows that OF x O* agrees with the classical product O - O* in K(X).
Notice that, if ¥ D p is any quantum shape such that v/p is a rim, then v is a
classical shape. It therefore follows from [BR12, Cor. 4.8] that

OF x OF = ZB(V//J,,p) o

holds in QK(X), where the sum is over all shapes v C 73X containing p. Since
quantum multiplication by (O"~1)¥ defines a module automorphism of QK (X) and
defines an order automorphism of Py, this identity is equivalent to the theorem. [

Corollary 6.5. Let A\ C Px be any shape and let 1 <p <n—1. Then
OP O = Y " B(u/A)O* +q>  Bv[1]/)) 0
o v

holds in QK(X), where the first sum is over all shapes p C Px containing A, and
the second sum is over all shapes v C Px for which v[1] contains .
Proof. This is a direct translation of Theorem 6.4, using that O[] = ¢ O¥. O
Example 6.6. Let X = OG(5,10). Then the following holds in QK(X).

0?% 042 = 203D _ W3 g 240" 4 q0?.

The corresponding KOG-tableaux are:

I OO O T O OO0 O
e i 1 [ I R 1y W2

[o]=
=
[
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7. PIERI FORMULA FOR LAGRANGIAN GRASSMANNIANS

7.1. Quantum shapes. Let X = LG(n,2n) be the Lagrangian Grassmannian of
maximal isotropic subspaces of C2" endowed with a symplectic bilinear form. The
quantum cohomology ring QH(X) was computed in [KT03], and a Pieri formula
for the ordinary K-theory ring K (X) was obtained in [BR12].

The Lagrangian Grassmannian X is cominuscule, but not minuscule, of type C,,.
We identify the simple roots of type C,, with the vectors

A={e,—en-1,...,63 —€2,63 —e€1,2e1},
where v = 2e; is the cominuscule simple root defining X. We then obtain
PX:{€i+6j|1§i§j§n},

where the partial order is given by e;s + e, < e; +e¢; if and only if ¢/ < i and j' < j.
We represent Px as a staircase shape with n rows, where e; + e; corresponds to
the box in row ¢ and column j:

L]
l

Pras,12) =

Each shape A C Px can be identified with a strict partition
A=A >N > > A >0)

with Ay < n, where \; is the number of boxes in the i-th row of A\. If A C Px
consists of a single row of boxes, then A\ will also be identified with the integer
p = |A|l. The special Schubert classes in K (X) are the classes OP for 1 < p < n.
Define the set
Px={(ij) €2’ |i<j<i+n},

and give Px the northwest-to-southeast order (i',j') < (i, ;) if and only if i’ < i
and j' < j. We represent Px as an infinite set of boxes (4, 7) in the plane, where the
row number 7 increases from north to south, and the column number j increases
from east to west. Each row in Px contains n + 1 boxes. The set Px will be
identified with the subset {(i,7) € Z? |1 <i < j <n} C Px.

fLG(6712) =

Recall that zqg € W is defined by X,, = ['4(1.Px) for d > 0.

Proposition 7.1. Let X = LG(n,2n).

(a) The group of Seidel classes in QH(X)[ is generated by [1.Px] and q.

(b) We have [1.Px]* = q" in QH(X).

(¢) The map ¢ : Px — Px defined by ¢(i,j) = ¢~ " [X#+n=3] is an order isomor-
phism which identifies Px with the set {(i,j) € Z* |1 <i < j <n}.
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(d) The action of Seidel classes on Px is determined by q* ¢(i,j) = (i + 1,5+ 1)
and [1Px] % 8(i.5) = 6(j.i + n).

Proof. Since the root system of type C,, has only one cominuscule root, we have
Weemin — £ X}, Tt follows that [1.Px]? is a power of ¢ in QH(X), and since
dim(X) = ("'QH) and deg(q) = n + 1, we must have [1.Px]? = ¢". Parts (a) and
(b) follow from this.

We have Px \I(z)/) = {e1 +en,...,en_1+€n,2e,}. Since e; + e, is the unique
maximal box of I(z;), it follows from Proposition 4.4 that the map ¢ is bijective.
Notice that for a,b € [0,n] and d € Z, [X?s] < ¢?[X#] holds in Py if and only
if d > 0 and ['y(X,,) N X?* # @, which is equivalent to d > 0 and a < b+ d, see
[BCMP22, Lemma 7.9]. It follows that ¢(i/, ;') < ¢(i,j) holds in Px if and only
if (¢,j') < (i,J) holds in Px. This shows that ¢ is an order isomorphism. The
last claim in part (c) follows from Proposition 4.4(c), noting that ¢(0,n) = 1 and
¢(n,n) = [1.Px].

The identity g x ¢(i,7) = ¢(i + 1,7 + 1) follows from the definition of ¢. Quan-
tum multiplication by [1.Px] corresponds to an order automorphism of Px that
commutes with multiplication by ¢, and any such order automorphism of Px is
a translation along a northwest-to-southeast line, possibly combined with a reflec-
tion in such a line. Using that [1.Px]* ¢(0,n) = ¢(n,n), we deduce the formula
[1.Px] % ¢(i,5) = ¢(4,i + n), proving part (d). O

We may identify Py with the set of boxes Py . Given a shape A C Py and d € Z,
it follows from Proposition 7.1 that the shifted shape A[d] = ¢¢ x ) is obtained by
moving A by d diagonal steps in southeast direction.

7.2. Pieri formula. The Pieri formula for the K-theory ring K(X) proved in
[BR12] expresses the structure constants of Pieri products as signed counts of KLG-
tableaux, defined as follows.

Definition 7.2 (KLG-tableau, [BR12]). Let § C Px be a rim. A KLG-tableau of
shape 6 is a labeling of the boxes of # with elements from the ordered set

{'<1<2'<2<---}

such that (i) each row of € is strictly increasing from left to right; (ii) each column
of 0 is strictly increasing from top to bottom; (iii) each box containing an unprimed
integer is larger than or equal to all boxes southwest of it; (iv) each box containing
a primed integer is smaller than or equal to all boxes southwest of it; (v) no SW
diagonal box contains a primed integer. The content of a KLG-tableau is the set of
integers 7 such that some box contains i or i’. Define C(6,p) to be (—1)I°/=? times
the number of KLG-tableaux of shape 6 with content {1,2,...,p}. If # C Px is a
skew shape that is not a rim, then set C(6,p) = 0.

In contrast to the case of maximal orthogonal Grassmannians, we need to adjust
the definition of KLG-tableau with extra conditions in the quantum case.

Definition 7.3 (QKLG-tableau). Let T' be a KLG-tableau whose shape is a rim
contained in ﬁx. A box of T is called unrepeated if its label is distinct from all
other labels when ignoring primes. A box of T is a quantum boz if it belongs to the
NE diagonal of 73X or is connected to an unrepeated quantum box. A box of T is
terminal if it is not on the SW diagonal of ﬁx and is not connected to a box to the
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left or below it. We say that T is a QKL G-tableau if (vi) every primed non-terminal
quantum box is unrepeated, and (vii) every terminal quantum box is primed. For
any rim 6 contained in Px, we let N'(6,p) denote (—1)1°/~? times the number of
QKLG-tableaux of shape 6 with content {1,2,...,p}. If § C Py is a skew shape
that is not a rim, then set A/(0, p) = 0.

The integers A (6, p) can also be defined recursively, see Definition 10.5.

Theorem 7.4. Let X = LG(n,2n), let A C ’ﬁX be any quantum shape, and let
1<p<n. Then

OPxO* = )" N(v/X,p) 0"

holds in QK(X),, where the sum is over all quantum shapes v C 73X containing .
The proof of Theorem 7.4 is given in the three remaining sections of this paper.
Corollary 7.5. Let A C Px be any shape and let 1 < p <mn. Then
OP %O = "Cu/X\p) 0" +q Y N (v[1]/A,p) 0"
u v

holds in QK(X), where the first sum is over all shapes p C Px containing A, and
the second sum is over all shapes v C Px for which v[1] contains .

Example 7.6. Let X = LG(7,14) and set A = (7,5,4,2) and v = (7,5,3,2). Then
v[1]/A meets both the SW diagonal and the NE diagonal of Px. The coefficient of
qO" in O x 0* is —4, due to the following list of QKLG-tableaux of shape v/[1]/A
with content {1,2,3,4,5,6}:

1] 1] 1]
2’16 2’16 2’16
3 3 3 6
4/ 3/ 4/ 3/
[4]5 [4]5 [5]6 [4]5

17
G

Quantum boxes are indicated with a think border. There are five additional KLG-
tableaux of shape v[1]/A with content {1,2,3,4,5,6} which do not satisfy the ad-
ditional conditions of Definition 7.3:

1] 1] 1] 1 1
2'16 216 2'16 116 116
5 5 5 2 5
3’ 3’ 2’ 3 2/
(3[4 [4]5 (3[4 [4]5 [(3]4

The first two violate condition (vii) and the last three violate condition (vi).

8. PERPENDICULAR INCIDENCES OF SYMPLECTIC RICHARDSON VARIETIES

Let YFC;2 be a Richardson variety in the symplectic Grassmannian Y = SG(m, 2n).
Each point L € P?"~1 defines the subvariety Ylf;2 NLt={Ve Yg |V .C Lt} Let
}P’g C P27~ be the subset of points L for which YIQ NL* is not empty. In this section
we show that Pg is a complete intersection defined by explicitly given equations.
We also show that YPQ N L+ is rational for all points L in a dense open subset of IPjQD.
This will be used in Section 9 to compute the Gromov-Witten invariants required to
prove our Pieri formula for the quantum K-theory of Lagrangian Grassmannians.
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8.1. Symplectic Grassmannians. Let {ej,...,ea,} denote the standard basis
of C?". Define the symplectic vector space £ = C?", where the skew-symmetric
bilinear form on E is given by (e;,e;) = iqjant1 for 1 < i < j < 2n. Given
0<m <n,let Y =SG(m, E) = SG(m,2n) denote the symplectic Grassmannian
of m-~dimensional isotropic subspaces of F,

Y =SG(m,E)={V C E|dim(V) =m and (V,V) =0}.

This space has a transitive action by the symplectic group G = Sp(E). Let B C G
be the Borel subgroup of upper triangular matrices, let B~ C G be the opposite
Borel subgroup of lower triangular matrices, and let T'= B N B~ be the maximal
torus of symplectic diagonal matrices.

For a,b € Z, let [a,b] = {x € Z | a < x < b} denote the corresponding integer
interval. Given any subset P C [1,2n], we let Ep = Spanc{e, | p € P} be the span
of the basis elements corresponding to P. A Schubert symbol for SG(m,2n) is a
subset P C [1,2n] of cardinality m, such that p’ + p” # 2n + 1 for all p’,p” € P.
The subspace Ep is a point of SG(m, 2n) if and only if P is a Schubert symbol, and
the T-fixed points of SG(m, F) are exactly the points Ep for which P is a Schubert
symbol for Y. Each Schubert symbol P defines the Schubert varieties

Yp=BEp and Y =B Ep CY.
These varieties can also be defined by (see [BKT15, §4.1])
Yp ={VeY |dm(VNE;y)>#PN[Lb])Vbe([l,2n]} and
VP = {VeY | dim(V N Eya,) > #(PN[a,2n]) Vae€ [1,2n]}.
Given Schubert symbols P and @ for Y, we will denote the elements of these sets
by P={p1 <p2<- - <pmtand Q@ ={q < ¢ <+ < ¢n}. The Bruhat order

on Schubert symbols is defined by @ < P if and only if ¢; < p; for 1 < i < m. With
this notation we have

Q<P & EgcYp & YoCVYp & YpNYY£(.
Define the length £(P) to be

m

U(P) = Z(pi—i) —#{i<j:pi+p;>2n+1}.

=1

We then have dim(Yp) = codim(Y ¥, Y) = ¢(P). Notice also that Y is a translate
of Ypv, where PV = {2n+ 1 — p | p € P} is the Poincare dual Schubert symbol.

8.2. Richardson varieties. Two Schubert symbols P and @ for Y = SG(m, 2n)
such that Q < P define the Richardson variety

Ve =YpNY©.

This variety is known to be rational [Ric92]. Using that dim(YPQ) ={(P) —¢(Q),
we obtain

m

4 dim(YS) = > i—a) — #{i<jia+q <2n+1<pi+p;}
=1

For any point V' € Yg we have V' C E[ql,pm] and VﬂE[thi] # 0 for 1 < i < m; this
holds because dim(V N Ejy ) > 4, dim(V N Eg, 2n)) > m+1—i, and dim(V') = m.
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Let Y = SG(m, E) and Y’ = SG(m —1, E), and define the 2-step symplectic flag
variety
Z=SF(m—-1m;E)={(V',V)eY' xY |V ' CV}.
Leta: Z — Y and b: Z — Y’ be the projections. The T-fixed points in Z have the
form (Ep/, Ep), where P’ and P are Schubert symbols for Y and Y, respectively,
such that P’ € P. The corresponding Schubert varieties are denoted

ZP/JDZB.(EP/,EP) and ZP,’P:B_.(EP’,EP)~

A Richardson variety in Z is denoted by Zg,:’g = Zp/’pﬁZQl’Q. Recall our standing
notation P = {p; < -+ <pp}tand Q = {¢1 < -+ < ¢} for Schubert symbols for
SG(m, 2n).

Proposition 8.1. Let Q < P be Schubert symbols for Y = SG(m,2n), and let
1<k<m. Set@ = Q- {q} and P = P ~ {pr}. Then the restricted map
a: Zg,”g — Yg 18 birational. In addition, the restricted map b : Zg,,’g — Y’g, 18
surjective if and only if dim(Y'g) < dim(Yg).

We will prove Proposition 8.1 after introducing some additional notation and
results. We will identify the Weyl group of Sp(2n) with the group of permutations

W ={w e Sop, | w(i) +w(2n+1—-14)=2n+1 fori e [1,2n]}.
This group is generated by the simple reflections s1,...,s, € W defined by
si(iy)=i+1, s(GE+1)=1i, and s;(j)=j forje[l,n]~{i,i+1}.

The simple reflection s,, corresponds to the unique long simple root of the root
system of type C,. The parabolic subgroup Py C G defining Y = SG(m,2n)
corresponds to the subgroup Wy C W generated by s; for i # m. Let WY ¢ W
be the subset of minimal representatives of the cosets in W/Wy. Then WY is in
bijective correspondence with the Schubert symbols of Y. The Schubert symbol
P ={p; <pz2 <+ < pp} corresponds to the permutation w € WY defined by

w(j)=p; for 1<j<m, and wm+1)<wim+2)<---<wn)<n.

This correspondence preserves the Bruhat order.
The permutation W € W# corresponding of a T-fixed point (Ep/, Ep) of Z =
SF(m — 1,m;2n), with P’ = P~ {py}, is defined by

p;  1<j<k,
W(j) = {pjy1 ifk<j<m,
Dk if j =m,

and W(m+1) < W(m +2) < --- < W(n) < n. Equivalently, if w € WY corresponds
to P, then
W= WSkSk+1 - - Sm—1 -

Let w’ € WY’ be the permutation corresponding to P’. Then w’ is obtained from
w by first replacing the value @w(m) with min(pg, 2n+1— py), and then rearranging
the values w(m),...,w(n) in increasing order. Since wW(m + 1) < --- < wW(n) < n,
we can write w’ = Wy, where y is the product of the first £(@) — ¢(w’) simple
reflections in the product

(5) SmSm+1"" Sn—15nSn—1"""Sm+1Sm -
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Let F' = Sp(2n)/B be the variety of complete symplectic flags, and let M =
Sp(2n)/ P be any flag variety of G = Sp(2n). For 7 < o in W, let II7 (M) C M
denote the projected Richardson wvariety obtained as the image of FJ under the
projection ' — M. Recall from [BCMP22, §2] that the M-Bruhat order <p; on
W can be defined by

T<ymo <= 7<o0 and oy <pTMm,

M M

where 0 = 0™ oy and 7 = 7 1), are the parabolic factorizations with respect to
W, and <y is the left weak Bruhat order on W. We need the following properties
of projected Richardson varieties from [KLS14] (see also [BCMP22, §3]).

Proposition 8.2 ([KLS14]). Let 7 < o in W. The projected Richardson variety
II7.(M) satisfies the following properties.

(a) We have II” (M) C M.

(b) If o € WM then equality 17 (M) = M7 holds if and only if T € WM.
(¢c) The projection FT — I (M) is birational if and only if 7 <ps 0.
(

Hmin(T,Tsi) )

d) For any simple reflection s; € Wi with 0s; < o, we have IIT. (M) = Igs,

Here min(7, 7s;) denotes the smaller element among 7 and 7s; in the Bruhat
order on W.

Proof of Proposition 8.1. Let u € WY correspond to P and let v € WY correspond
to Q. Then Yg =Y and Zg,:’g = Zg, where © = ux and v = vz, with z =
SkSk+1 " Sm—1. Since U,0 € WZ, we have Z2 = II2(Z) by Proposition 8.2(b).
Using that & = ux and ¥ = vx are parabolic factorizations with respect to Wy,
we obtain © <y @, so Proposition 8.2(d,b,c) shows that IIZ(Y) = II3(Y) = Y,V and
a: Zg — Y,V is birational. This proves the first claim.

Since Z2 = I12(Z), we have b(ng;ff) = T2(Y'). Let w/,v' € WY be the
elements corresponding to P’ and @’. Then v’ = uy and v’ = ¥z, where y is the
product of the first £(u) — ¢(u’) simple reflections in (5), and z is the product of the
first £(0) — ¢(v") simple reflections. Using Proposition 8.2(d), we obtain

T N\ _ 179 min(y,z) /
ME(Y") = M) (7).

By Proposition 8.2(b), this variety is equal to Y’Zl, if and only if z < y, which is
equivalent to £(u') — £(v") < £(u) — £(D). The second claim follows from this. O

8.3. Matrix representations of Richardson varieties. We need a parametriza-
tion of an open subset of Yg by matrices with perpendicular rows, which is based

on a combinatorial diagram used in [BKT09, Rav15]. Let Mg be the variety of
all m x (2n)-matrices A = (a; ;), with a; ; € C, such that for 1 < ¢ < m we have
Qiq, =1, ajp, #0, and a; ; = 0 for j ¢ [g;, p;], and such that each pair of rows of
A are perpendicular as vectors in E, that is,

n
(6) Z(ai,t Ajont1—t — Qiant1—t ajt) =0
=1

for 1 <i < j < m. Notice that this equation is vacuous unless

¢G+qi <2n+1<p;+p;.
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We will say that rows ¢ and j in Mg are correlated if i # j and this inequality holds.
We will show in Theorem 8.5 that Mg is isomorphic to a dense open subset of the
Richardson variety Yg . In particular, Mg is non-empty and irreducible. Identity
(4) states that dim(Yg ) is equal to the number of entries a; ; that are not explicitly
assigned to a constant value, minus the number of pairs of correlated rows in Mg.

Example 8.3. Let Y = SG(4,12), Q@ = {2,3,8,9}, and P = {5,7,10,12}. Then
Mg is the variety of all matrices of the form

0 1 a13 ai4 Qais 0 0 0 0 0 0 0
A— 0 0 1 Q24 Q25 QAa26 Q27 0 0 0 0 0

0 0 0 0 0 0 0 1 a3z9 as;io 0 0 ’

0 0 0 0 0 0 0 0 1 4,10 a4,11 Q4,12

such that a1 5 # 0, a7 # 0, az 10 # 0, as,12 # 0, and the rows of A are pairwise
perpendicular. The variety Mg has 12 unassigned entries and 4 pairs of correlated
rows, SO dim(Yg) =8.
Remark 8.4. Let @ < P be Schubert symbols for Y = SG(m,2n) and 1 < k < m.
Set Q@ = Q ~ {qr} and P = P~ {pr}. Then Q" < P’ are Schubert symbols for
Y’ =SG(m — 1,2n) and we have
ding—dimY’g, = (pr—qr)—#{j € [L,m] | j # k and ¢;+qr < 2n+1 < p;+pi}.
This is the number of unassigned entries in row k of Mg, minus the number of
rows correlated to row k.

Let 33'19 C Yg be the open subvariety defined by

YR ={VeVY2|VI<i<m:VNEg 1p)=VNEyg,y 1 =0}

The following result confirms a conjecture of Ravikumar [Rav13, Conj. 6.5.3].

Theorem 8.5. The variety 10/19 is a dense open subset of Yg. Moreover, the map

o
MIC;.Z — YIQ sending a matrix to its row span is an isomorphism of varieties.

Proof. Since YIQ is irreducible and the subsets
Ul ={vVeY? | VNEy,1,)=0} and
UR={VeYZ|VNE,, 1 =0}

are open in Yg, the first claim will follow if we can show that Ul and Uf are
non-empty for all 1 < ¢ < m. By replacing Yg with Yéavv, if required, we may
assume that q; +p,, > 2n+ 1. The sets UL and U{* are non-empty since Eg € Uk
and Ep € Uff. Set Q@ ={V €Y |V C Epy, 1} Then Yp N Q is a B-stable
proper closed subset of Yp, so Yp N2 is a union of Schubert varieties Y5 that are

properly contained in Yp. It follows that Yg N is a union of Richardson varieties
YI3Q that are properly contained in Y}?. Therefore, UL \ Q is a dense open subset
of YPQ .
Set Y/ =SG(m —1,2n), Q' ={q1 <+ < @Gm-1},and P ={p; < -+ < pm_1}-
o Q/
By induction we may assume Y'p, # (). By Remark 8.4, the condition ¢; + p,, >

2n + 1 implies that dim(Y’g:) < dim(Ylg). In fact, if row ¢ of Mg is correlated
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to row m, then 2n +1 —p,, < 1 < ¢ < 2n+ 1 — ¢y, S0 row m is correlated
to at most p,,, — ¢, rows. Using Proposition 8.1, we can therefore choose a point

(V'.V) € Z&"8 such that V' € V'S and V € UL ~ Q. Since V' C Eyy,, _y and

V & Epp,,—1), we have V' = V N Ey,, 1. The condition V' € f}’g/ therefore
implies that V. € UF NUf for 1 < i < m—1. Set L =V N Ey,,. . Since
V' C Epp,, ., we obtain V'NL C V' NEy,  41p,,,] =0, hence V.=V'® L and
dim(L) = 1. Since V' C Epy 5, —qyand V & Epy 1y, it follows that L ¢ Epy .
We deduce that VN Ej,, . 1] = LNEy,, p. 1] =0, sothat V € UE. We conclude
that V € 50/19, so this set is a dense open subset of YI?.

It is clear from the definitions that A — Span(A) is a well defined morphism of
varieties Mg — 10/1(52 On the other hand, given V' € 10/19, each space L; = VNE[, p.
is one-dimensional, for 1 < ¢ < m. In addition, if we write L; = Cu; with u; € F,
then the g;-th and p;-th coordinates of u; are non-zero. By rescaling u;, we may
assume that the g;-th coordinate is 1. Let A be the m X (2n) matrix whose i-th
row is u;. Then A € Mg and Span(A) = V. This completes the proof. d

Let @ < P be Schubert symbols for Y = SG(m,2n), let 1 < k < m, and let
A= (a;,) € Mg. Define the submatriz of constraints on row k in A to be the
matrix A[k] with entries a;; for which ¢ # k, ¢; + q» < 2n+ 1 < p; + pg, and
2n 4+ 1 —pr < j < 2n+ 1 — qx. This matrix has one row for each row correlated
to the k-th row of Mg. For example, if A is the matrix of Example 8.3, then the
submatrix of constraints on row 2 is the matrix

o 0 0 1 aso asio
A[2] - [0 0 0 1 a4,10
The constraints (6) on row k in A imposed by the other rows depend only on
the entries of A[k]. We will say that the vector v = (vg,...,vp,) € CPr=%T1 jg
perpendicular to A[k] if the entries of v satisfy the quadratic equations (6) imposed
on the k-th row in A, that is,
Z(ai,t Von41—t — Qi 2n+1—t V) =0
t=1
for all i # k with ¢; + qx < 2n+ 1 < p; + pi, where we set v; = 0 for ¢ ¢ [qx, px].

Set @' = Q ~{qx}, P’ = P~ {px}, and Y’ = SG(m — 1,2n). Motivated by
Proposition 8.1 and Theorem 8.5, we will say that the k-th row of Mg is solvable
if dim(Y’%,) < dim(Y¥). By Remark 8.4, this means that there are at most
Pr — qr constraints on the k-th row of Mg. The k-th row of Mg is movable if

dim(Y’g:) < dim(Ylg), that is, there are fewer than pj — ¢i constraints on the k-th

row. If the k-th row of Mg is movable, then for each matrix A € Mg, we can
vary the k-th row of A in a positive dimensional parameter space while fixing the
remaining rows.

Corollary 8.6. Let Q < P be Schubert symbols for SG(m,2n), and assume that
the k-th row of Mg is solvable. Then Mg contains a dense open subset of points A
for which the submatriz A[k] of constraints on row k has linearly independent rows.

Proof. Set Q' = Q~{qx} and P' = P~ {px}. Given A € Mg, let A’ € Mg,/ denote
the result of removing the k-th row from A. It follows from Proposition 8.1 and
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Theorem 8.5 that A — A’ defines a dominant morphism Mg — Mg,/. This implies
that, for all points A in a dense open subset of Mg, the fiber over A’ in Mg is
non-empty of dimension dim(Mg) — dim(Mg,l). This fiber can be identified with
the set of vectors v = (1,vg,41,...,Vp,), With vy, # 0, that are perpendicular to
A[k]. We deduce that the rows of A[k] are linearly independent by Remark 8.4. O

8.4. Perpendicular incidence varieties. Let Y = SG(m,2n) and define the
perpendicular incidence variety

S={(V,L)eY xP(E) |V C L*}.
Let f: S — P(F) and g : S — Y be the projections. Given Schubert symbols
Q < PforY, weset S9 =g (V). Since g is locally trivial with fibers g~ (V) =
P(V+) by [BCMP13, Prop. 2.3], it follows that S% is irreducible with dim(S%) =
dim(Yg) +2n—m —1.

Following [BKT09, Rav15], we define a cut of Mg to be an integer ¢ € [0, 2n]
such that p; < ¢ or ¢ < ¢; holds for each ¢ € [1,m]. This implies that no row of
Mg contains non-zero entries in both column ¢ and column ¢+ 1. A lone star is an
integer s € [1,2n] such that ¢; = p; = s for some i € [1,m]. This implies that s — 1
and s are cuts of Mg. The integer ¢ is a double-cut of Mg if both ¢ and 2n — ¢ are
cuts. A component of Mg is a pair of integers (a,b), with 0 < a < b < n, such that
(i) a is a double-cut, (ii) b is a double-cut or b = n, and (iii) no double-cut belongs
to [a+1,b— 1]. We will say that row 4 of Mg is contained in the component (a,b)
ifa<qg <p;<bor2n—-b<qg; <p;<2n—a,orb=nanda<q; <p; <2n—a.
Each row of Mg belongs to a unique component, and two rows can be correlated
only if they belong to the same component. Any component (a,b) contains at most
b—a rows. The component (a, b) is called a quadratic component if b is a double-cut,
b—a > 2, and (a,b) contains b — a rows.

Let ]P’g C P(E) denote the closed subvariety defined by the linear equations
ZTon+1—s = 0 for all lone stars s of MFQ,, as well as the quadratic equations

Ta41Ton—q + -+ TpTont1—b = 0

given by all quadratic components (a,b) of Mg. Using that the quadratic equa-
tions involve pairwise disjoint sets of variables, it follows that IP’ij is an irreducible
complete intersection in P(E) with rational singularities.

Example 8.7. Let Y = SG(8,20) and define Q@ = {1,2,4,6,9,11,16,18} and
P ={2,3,7,8,11,12,16,20}. The shape of non-zero entries in Mg is given by the
diagram:
. i
* K
* Kk x *x
* Kk x
* kK
* *

* k%

Here we ignore that the lone star in column 16 forces the entry in column 5 to
vanish. The double-cuts of Mg are indicated with vertical lines. The components
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of Mg are (0,3), (3,8), and (8,10), and we have
Pg = Z(£E5 , L1X20 + 219 + {E3£E18) C ]P(E) .

Our main result about perpendicular incidences is the following theorem, which
will be proved at the end of this section.

Theorem 8.8. Let Q < P be Schubert symbols for Y = SG(m,2n). Then f
restricts to a surjective morphism f : Sg — }P’g with rational general fibers.

The analogue of Theorem 8.8 with S C Y x P(E) defined by the condition
L C V has been established in [BKT09, BR12, Rav15]. When Y = LG(n,2n) is a
Lagrangian Grassmannian, the conditions V' € L+ and L C V are equivalent, so
this case of Theorem 8.8 is equivalent to [BR12, Lemma 5.2]. One new complication

in our case is that S is not a flag variety, so the map f : Sg — Pg is not a projection
from a Richardson variety, as studied in e.g. [BC12, KLS14, BCMP22].

Lemma 8.9. Let Q < P be Schubert symbols for SG(m,2n) and let 1 < k < m. If
qx < n < pg, then row k of Mg is movable.

Proof. Assume that row j is correlated to row k. If j < k, then 2n+1—pi, < p; < pi,
which holds for at most p, —n — 1 rows j. If j > k, then qx < ¢; < 2n +1 — ¢,
which holds for at most n — g rows j. It follows that row k is correlated to at most
Pr — qx — 1 rows. [

Proposition 8.10. Let Q < P be Schubert symbols for Y = SG(m,2n), and let
(a,b) be a component of Mg with b —a > 2. Then (a,b) is a quadratic component
if and only if no row contained in (a,b) is movable. In this case all rows contained
in (a,b) are solvable, and Mg has no cuts c witha < c <bor 2n—b<c<2n—a.

Proof. Since two rows of Mg can be correlated only if they belong to the same
component, we may assume that (a,b) = (0,n) is the only component of Mg. By
Lemma 8.9 we may further assume that n is a cut. By replacing Mg with Mgvv ,
if necessary, we may also assume that p,, = 2n. Set r = p,, — ¢y, > 1. If row m
of Mg is not movable, then since 1 ¢ Pand r+1=2n+1— ¢, ¢ @, we must
have ¢; =i < p; for 1 < i < r. The same conclusion holds if (0,n) is a quadratic
component of Mg, since in this case we have x € Q or 2n +1 —x € @ for all

€ [1,n]. Set Q" = (Q ~{r,¢m}) U{r+1,¢, + 1}, so that the shape of Mgl is
obtained from the shape of Mg by removing the leftmost entry from rows r and m.
Then Mg and Mg, have the same pairs of correlated rows, except that rows r and
m are correlated in Mg but not in M}(;?/. It follows that any row is movable in Mg
if and only if it is movable in Mgl, and the same holds with movable replaced by
solvable. The component (0,n) is quadratic if and only if m = n. Since Mg/ has no
empty components, m = n holds if and only if all components of M}@/ are quadratic
or lone stars. By induction on ) ;" (p; — ¢;), this holds if and only if Mgl has no
movable rows, which proves the first claim. Assuming that (0,n) is a quadratic
component, it also follows by induction that all rows of Mg are solvable. Noting
that all double-cuts of M}C;)/ belong to the set {0,r,n}, it follows by induction that
all cuts of Mgl belong to {0,7,n,2n —r,2n}. The last claim follows from this since
r and 2n — r are not cuts of Mg. (]
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Corollary 8.11. Let Q < P be Schubert symbols, and assume that row k in Mg
18 movable. Then IP’% = }P’gi, where Q' = Q ~ {qx} and P’ = P~ {py}.

Proof. This holds because a movable row cannot be a lone star and cannot belong
to a quadratic component by Proposition 8.10. (]

Given Schubert symbols @ < P for Y = SG(m, 2n), define the variety
MY ={(Au)e ME X E| A Lu},

where A | wu indicates that u is perpendicular to all rows of A. The variety J/\/.I'\}Q,2 is
irreducible with dim(Mg) = dim(Mg) +2n —m.

Proposition 8.12. Let Q < P be Schubert symbols for Y = SG(m,2n) and assume
that the k-th row of Mg is movable. Set Q' = Q ~ {qr}, P’ = P~ {pi}, and
r= dim(Mg) - dim(Mg,/) >0. Let m: J\/Zg — J\/Zg,/ be the projection that forgets
row k in its first argument. There exists a morphism ¢ : J\/Zg — C™ 1, given by
projection to r — 1 of the entries of the k-th row of Mg, such that the morphism
TX @ J/\/[\g — ]\/4\1?,/ x C™=1 is birational.

Proof. By Corollary 8.6 we can choose A € Mg such that the submatrix A[k] of
constraints on row k has linearly independent rows. The number of rows in A[k] is
equal to pp — qx — r by Remark 8.4. We can therefore choose a vector

—qpt1
(U2nt1-pps-- > U2nt1—gq,) € CPFTI

which is perpendicular to the k-th row of A and not in the row span of A[k]. Using
that a; 4, = 1 and a;p, # 0 for each row ¢, we can extend this vector to u € E, such
that u is perpendicular to all rows of A. Let A’ € Mg, be the result of removing the
k-th row from A. Then the fiber of 7 : Mg — Mg, over (A’, u) contains (4, u), so it
is not empty. This fiber can be identified with the set of vectors (1, vg,+1,-- -, Vp,),
with v,, # 0, which are perpendicular to both A[k] and (u2n+1—pys-- - U2n+1—qx)-
Therefore the fiber has dimension r — 1 = dim(Mg) — dim(Mg, ). Since Mg, is
irreducible, this implies that = : Mg — Mg, is dominant. It also follows that
(A, u) is determined by (A’,u) together with some collection of r — 1 entries ay, ;
from the k-th row of A. Since this holds whenever a particular minor in (A’ u) is
non-zero, we deduce that (A, w) is determined by (A’,u) and the same r — 1 entries

from row k, for all points (A, u) in a dense open subset of Z/W\g The result follows
from this. O

Assume that ¢ € [1,n—1] is a double-cut of Mg, and set Q' = QN[ec+1,2n—],
PP=Pnlc+1,2n—¢, Q" = QN Q, and P/ = P~ P'. Set m'" = #P’,
Y =SG(m/,2n), m" = #P",Y" = SG(m",2n), and let S’ C Y’ xP(F) and S” C
Y" x P(E) be the corresponding perpendicular incidence varieties, with projections
F18" = P(E) and f7: S" — P(E). Since we have P2 = P, NP, the following
lemma shows that Theorem 8.8 can be proved under the assumption that Mg has
only one component (0,n).

Lemma 8.13. The map (V', V") — V'®&V" is an isomorphism Y’g XY”g:: =Yg,
and we have f(S2) = f/(8'C) N f(S"%.). For all points L € f(S2), the fiber of
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f: Sg — f(Sg) over L is the product of the fibers of f’ : S'g: — f’(S’f%f) and
e S"g:: — f”(S”Q::) over L.

Proof. Set E' = Ejci1,2n—¢ and E” = Epj qujgn—ct1,2n]- Using that V'’ C E’ holds
for all V! € Y'%, and V" C E” holds for all V” € Y"%,, it follows that the
map Y/g, X Y”g/, — YIQ is well defined. The inverse map V — (VN E', V NE")
is well defined because dim(V N E') = m/, dim(V N Ep ) = #(P N[1,c]), and
dim(V N Epap—ct1,2n)) = #(P N [2n — ¢+ 1,2n]) holds for all V' € Yg. This proves

the first claim. The remaining claims follow because V' @ V" C L* is equivalent
to V' c Lt and V" C L*. O

Proof of Theorem 8.8. We may assume that (0,n) is the only component of Mg
by Lemma 8.13. If Mg has no movable rows, then Proposition 8.10 implies that
m = n, so the claim follows from [BR12, Lemma 5.2]. Otherwise Mg has at
least one movable row, say row k. Set Y/ = SG(m — 1,2n), Q" = Q ~ {q},
P’ = P~ {p}, and r = dim(MZ) — dim(M%). Let § C Y x P(E) and §' C
Y’ x P(E) be the perpendicular incidence varieties, with projections f : S — P(E)
and f': S' — P(E). It follows from Proposition 8.12 that f(S%) = ‘/"’(LS"(’_'):)7 and
for all points L in a dense open subset of f (Sg), the fiber f=1(L)N Sf_—,? is birational
to (f/'(L) N S’g:) x C"~1. The result therefore follows by induction on m. O

9. GROMOV-WITTEN INVARIANTS OF PIERI TYPE

9.1. Incidences of projected Richardson varieties. Let X = LG(n,2n) be a
Lagrangian Grassmannian and Y = SG(m,2n) a symplectic Grassmannian. Set
Z = SF(m,n;2n) and let p : Z — X and ¢ : Z — Y be the projections. We
also set X = SF(1,n;2n), with projections 7 : X =P landr: X - X. Our
computation of Gromov-Witten invariants of X is based on the following result.

Theorem 9.1. Let Q < P be Schubert symbols for Y = SG(m,2n), and let Xg =
p(q_l(YpQ)) be the corresponding projected Richardson variety in X = LG(n,2n).

Then n restricts to a cohomologically trivial morphism 1 : W_l(Xg) — Pg.

Proof. Define Z = Zxx X = {(K,V,L) e Y x X x P2» 1 | K C V 5 L} and
S={(K,L) e YxP?™~1 | K C L*}. Consider the following commutative diagram,
where all morphisms are the natural projections.

Since the morphisms of this diagram are equivariant for the action of Sp(2n), and all
targets other than S are flag varieties of Sp(2n), it follows that all morphisms other
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than o are locally trivial fibrations with non-singular fibers [BCMP13, Prop. 2.3].
Let Zg, 21?, and Sg be the inverse images of Yg in Z, A , and S, respectively, and
set )?g = W’l(Xg). Since YIQ and Xg have rational singularities [Bri02, BC12,
KLS14], it follows that Zg, Zg, Sg, and )/(\'g have rational singularities as well.

All fibers of o are rational. In fact, for (K,L) € S we have o0 }(K,L) =
LG(m’, (K + L) /(K + L)), where m’ = n — dim(K + L). Since Z2 = 671(5%),
this implies that o : 219 — Sg is cohomologically trivial [BM11, Thm. 3.1].
Since f : Sg = f (Sg) is cohomologically trivial by Theorem 8.8, it follows that
np= fo: Zg — f(Sg) is cohomologically trivial [BCMP18b, Lemma 2.4].

Using that the outer rectangle and the right square of the following diagram are
fiber squares, it follows that p : Zg — )A(g is the base extension of p : Zg — Xg
along 7.

P

This implies that p : Zg — )?g is cohomologically trivial, for example because
its general fibers are Richardson varieties by [BCMP22, Cor. 2.11]. It follows that
7 )A(g — f(Sg) is cohomologically trivial. In particular, n()?g) = f(Sg) is a
complete intersection of the required form. This completes the proof. Il

9.2. Gromov-Witten invariants of Pieri type. The Schubert varieties in X =
LG(n,2n) are indexed by shapes A C Px. The Schubert symbol P corresponding to
A C Px is obtained as follows. The border of A forms a path from the upper-right
corner of Px to the diagonal. Number the steps of this path from 1 to n, starting
from the upper-right corner. Then P consists of the integers i for which the i-th
step is horizontal, and the integers 2n + 1 — ¢ for which the i-th step is vertical.
By observing that the map from shapes to Schubert symbols is compatible with
the Bruhat order, this description of the Schubert varieties in X follows from e.g.
[BS16, Lemma 2.9].

Example 9.2. Let X = LG(7,14) and A = (7,4,2,1). Then A corresponds to the
Schubert symbol P = {2,3,5,8,9,11,14}.

Recall that a classical shape A C Px is identified with the quantum shape
I([X*]) = AUI(1) in Py, and A[d] is the result of shifting this shape by d diagonal
steps for each d € Z.

Let A\, u C Px be shapes and d > 0 a degree. Then I'y(X,, X*) # 0 if and only
if ;1 C A[d]. When this holds, we let A[d]/u be the skew shape in Px of boxes in A[d]
that are not contained in p. Let R(A[d]/p) denote the size of a maximal rim in this
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skew shape, and let N(A[d]/p) be the number of connected components of A[d]/u
that are disjoint from both of the diagonals in Px. The following result interprets

Theorem 9.1 when the projected Richardson variety in X is a curve neighborhood
La(Xn, XH).

Corollary 9.3. Let X = LG(n,2n) and let A,y C Px be shapes such that
Ta(Xx, X#) # 0. Set 0 = Nd]/p. If R(0) = n + 1, then n(m=1(Ta(Xy, XH))) =
P21 Otherwise n(m=1(Tq(Xx, X*))) is a complete intersection in P?"~1 of
dimension n + R(0) — 1, defined by N(0) quadratic equations and n — R(0) —
N(0) linear equations. Moreover, the restricted map n : 7 (Tg(Xy, X*)) —
n(r YT a(Xx, X*))) is cohomologically trivial.

Proof. Write X = Xp and X* = X9 where P = {p; < --- <p,} and Q = {q; <
.-+ < @n} are the Schubert symbols corresponding to A and u. Then q(p~1(Xy)) =
Yp and q(p~1(XH)) =YY, \,zvhere P =A{pas1,---,pn} and Q = {q1,...,Gn-da},
so we have I'y(Xy, X*) = Xg/. Theorem 9.1 shows that

0 Ta(Xa, X1)) — P,

is cohomologically trivial. It remains to show that ]P’g: is a complete intersection
defined by the expected equations. If R(f) = n + 1, then we can make d and A
smaller and g larger until we obtain R(6) = n and N(¢) = 0. This will make
[4(Xy, X#) smaller, while the corollary still asserts that n(m=1(T'y(Xy, X*))) =
P?n~1 We may therefore assume that R(f) < n, which implies that the borders of
w and A[d] meet somewhere. In particular, x4 has at least d vertical steps, and \[d]
has at least d horizontal steps.

Let £(11) be the number of vertical steps of p. Then p has n — £(u) horizontal
steps. Notice that, if 1 < k < n — #(u), then ¢ is the step number of the k-th
horizontal step of p, while if n — ¢(u) < k < n, then 2n + 1 — g, is the step number
of the (n + 1 — k)-th vertical step of u. Since the starting point of p is d boxes
north-west of the starting point of A, and the endpoint of p is north-west of the
endpoint of A[d], we have £(u) < ¢(\) + d. The condition R(f) < n implies that
() > dand LX) <n—d.

Write P’ = {p!,...,pl,_,tand Q" ={¢},...,q,_4}, where p} = p,1q and ¢, = ¢;.
It follows from the construction of P and @ from A and p that the rows in M Q,/
are in bijection with some of the steps of A[d], and also with some of the steps of
w. We will explain how to obtain the resulting bijection between steps of A[d] and
1, and how to obtain the rows of Mg,/ from the corresponding pairs of steps in A[d]
and g. This will include drawing connectors between the paired steps of A[d] and
1, see Example 9.4.

Consider row k of Mg,/. Assume first that d+ &k <n —£()\). Then k < n —£(u),
g, is the step number of the k-th horizontal step of u, and pj is the step number
of the (d + k)-th horizontal step of A[d]. These steps of u and A[d] are in the same
column, and pj, — ¢j, is the distance (number of boxes) between the two steps. We
draw a vertical line segment (connector) from the k-th horizontal step of p to the
(d + k)-th horizontal step of A[d].

Assume next that & > n — ¢(u). Then d+k > n —{(N\), 2n + 1 — g}, is the
step number of the (n + 1 — k)-th vertical step of p, and 2n 4+ 1 — pj, is the step
number of the (n —d + 1 — k)-th vertical step of \[d]. These steps of p and A[d]
are in the same row, and p) — ¢, is the distance between the two steps. We draw
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a horizontal line segment (connector) from the (n + 1 — k)-th vertical step of u to
the (n — d + 1 — k)-th vertical step of A[d].

We finally assume that d +k > n —¢(\) and k < n — ¢(n). Then g, is the step
number of the k-th horizontal step of p, and 2n + 1 — pj, is the step number of the
(n—d+1—k)-th vertical step of A[d]. In this case, if we draw a vertical line segment
going down from the horizontal step of p, and a horizontal line segment going to
the left from the vertical step of A[d], then these line segments meet in a diagonal
box of 73X. In this case the connector representing row k of Mg,/ is obtained by
connecting the two line segments, and p}, — g, is the number of boxes this connector
passes through.

It follows from this description that the lone stars of Mg,/ correspond to steps
shared by p and A[d], and there are exactly n — R(0) — N(6) such steps. It also
follows that, if 4 and A[d] meet after ¢ steps, then ¢ is a double-cut of M Q' The
only other cuts of Mg,l are the integers in the set [0, ¢} — 1] U [p],_ 4, 2n]. We deduce
that any component of 6 that is disjoint from both diagonals in 73X produces a
quadratic component of M Q/,. If a component of 6 meets the SW diagonal of 73X,
then the corresponding component of Mg,/ contains a row that crosses the middle,
so this component is not quadratic. Finally, if a component of # intersects the NE
diagonal of 73)(7 then the corresponding component (a,b) of Mg,/ has fewer than

b — a rows, so it is not quadratic. It follows that Mg,/ has exactly N(6) quadratic
components. (Il

Example 9.4. Let X = LG(12,24), u = (12,11,9,6,5), and A = (11,8,6,3,1),
and d = 2. Then 6 = A[d]/u is the skew shape between the two thick black paths

in the following picture. The connectors of 6 are colored pink. We have R(6) = 10
and N(0) = 1.

-
r—+—
| -

N

-

The shapes p and A correspond to @ = {3,5,6,9,10,11,12,17, 18,21, 23,24} and
P = {1,3,4,6,8,9,11,13,15,18,20,23}. We obtain T's(Xy, X*) = X% where @’
and P’ are determined by the shape of M Q.
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* ok
*x Kk
*x kX

* %
*x k%
*x ok k%
*x K
*x kX

R S ¢

This diagram has 12 — R(6) — N(0) = 1 lone stars, and N(0) = 1 quadratic compo-
nents. The unique quadratic component is (4,8). The rows of Mg, correspond to
the connectors in 6, see the proof of Corollary 9.3. Rows 6, 7, and 10 are movable.

Consider a complete intersection Y C P+ of dimension b, defined by a quadratic
equations. The K-theory class of Y is [Oy] = (2H — H?)?, where H € K(P%*?) is
the hyperplane class. It follows that the sheaf Euler characteristic of Y is given by
Xx(Oy) = h(a,b), where h : N x Z — Z is defined by [BR12, §4]

b
(7) h(a,b) = Y (=1)7 247 (“) .
— J
7=0
Here we set (‘;) = 0 unless 0 < j < a. Notice that for b > a we have h(a,b) =
(2—1)* =1, and h(a,b) =0 for b < 0. We record for later the identity

8) h(a+1,b) + h(a,b— 1) = 2h(a,b),

which follows from the binomial formula. The following result is the quantum
generalization of [BR12, Prop. 5.3].

Corollary 9.5. The K-theoretic Gromov- Witten invariants of X = LG(n,2n) of
Pieri type are given by I;(Ox, O, OP) = h(N(0), R(8) — p), with 8 = A[d]/p.

Proof. Let L C P?"~! be the B~ -stable linear subspace of dimension n — p. Then
7w @ n t(L) — XP is a birational isomorphism, so OP = m.(n*([OL])). Using
[BCMP18b, Thm. 4.1], the projection formula, and Corollary 9.3, we obtain

L14(Ox, 0", 07) = X ([Or,x,\,xm)] - mn*[OL])

= Xpon1 ([Onm—1axs.xm)] - [OL]) -

If R(#) < n, then this is the sheaf Euler characteristic of a complete intersection of
dimension R(6) — p defined by N (#) quadratic equations as well as linear equations
in P2"~1 which proves the result. Finally, if R(8) = n + 1, then I;(O,, O*, OP) =
h(N (), R(#) — p) = 1, so the corollary also holds in this case. O

9.3. Quantum multiplication by special Schubert classes. We finish this
section by proving some preliminary formulas for quantum products with special
Schubert classes. We start with the undeformed product O ® O, see Section 2.5
or [BCMP18a, §2.5].

Given a skew shape 6 C 73X, let 8° C 6 be the skew shape obtained by removing
all maximal boxes from 6 that do not belong to the north-east diagonal of ﬁx.
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-

For p € Z we then define
(9) HO.p) = Y (DTIA(N (), Rip) ~ ),
0°CepCO

the sum over all subsets ¢ of 6 that contain 6°.

Proposition 9.6. For any shape p C 7/5X and 1 < p < n, we have
Or©O" =Y H(v/pp) O

in QK(X)q, where the sum is over all shapes v C 7/5X containing .

Proof. Given a shape v C Px we let Z, € K(X) denote the dual element of O”,
defined by x (Z, - O*) = §,.» for all shapes A C Px. We have [BR12, Lemma 3.5

= Y (o,

v/k rook strip

where the sum is over all shapes k C v such that v/k is a rook strip, that is, v/k
has at most one box in each row and column. Assume that p C Px is a classical
shape. By Corollary 9.5 and equation (9) we have

L(OP, 0" T,)= > (=nHlor o 0,)
v/k rook strip

= Y ()M (N (sld)/p), R(xld) /1) — p)

v/k rook strip
= H(v[d]/pp),

where the sums are over all shapes k C Px such that p C k[d] C v[d] and v/k is
a rook strip. By the definition of the undeformed product [BCMP18a, §2.5], we
obtain

Or @ O" =" 1,(0°, 0" 1,) ¢ 0 = ZH )/, p) O
v,d

with the sum over v C Px and d > 0 such that ¢ C v[d]. The proposition is
equivalent to this identity. ([l

We next consider the associative quantum product OP x O*. Given a skew shape
0 C 73)(, let 8~ C 0 be the skew shape obtained by removing the maximal box on
the north-east diagonal, if any, as well as any boxes in the same row that do not
have a box immediately below them in 6.
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I

For p € Z we then define
(10) N(0.p) = H(O.p)— > H(ep),
0—CpCo

the sum over all proper lower order ideals ¢ in 6 that contain 6~.

We will prove in Corollary 10.11 that A(6, p) = N(0, p) holds for all skew shapes
9 C Px and p € Z, that is, N'(6, p) is equal to (—1)?I=? times the number of QKLG-
tableaux of shape § with content {1,2,...,p}. Theorem 7.4 is therefore equivalent
to the following statement.

Proposition 9.7. For any shape u C 73X and 1 < p <n, we have

OP x O = Z/\A/'(u/p,p) o

in QK(X),, where the sum is over all shapes v C ’ﬁX containing .

Proof. For any shape A C Px, set At = AU I(g%™!), where d € Z is maximal with
I(¢%) € A. In other words, A\* C Pyx is the smallest shape that contains A and
contains one more box than A on the north-east diagonal of Px. We then have
q (O = OA+, where v is the line neighborhood operator from Section 2.5. It
therefore follows from Proposition 9.6 that the coefficient of O" in the product

(11) OP xOF = OP © OF — qyp(OP © OF)
is equal to

H/wp)— Y, HNMwp) = N/up),
A: pCA and At =v
as required. O

Remark 9.8. The constants JV(G,p) have alternating signs by Corollary 10.11, but
the constants H (6, p) do not have easily predictable signs.

10. COMBINATORIAL IDENTITIES

In this section we complete the proof of Theorem 7.4. Let X = LG(n,2n) be a
Lagrangian Grassmannian. Any shape A C Px and integer 1 < p < n define three
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products

or-0* =3 Cv/A\p) 0" € K(X),
OP©O* =Y H(v/Ap)0” € QK(X), and
OF % O = ZN(V/A,p) 0¥ € QK(X).

The first sum is over all shapes v C Px containing A, and the two last sums are over
all quantum shapes v C Px containing A. The constants (6, p) and N'(6,p) are
defined whenever 6 is a skew shape in PX, and these constants depend on where 6 is
located in 73X, including whether 6 meets the two diagonals in 73X. The constants
H(0,p) and N (0,p) are therefore bound to our chosen Lagrangian Grassmannian
X = LG(n,2n). On the other hand, the constant C(6,p) does not depend on
any NE diagonal, and its definition extends naturally to any (finite) skew shape 6
in the partially ordered set PY = J,, ﬁLG(m,Qm), which is unbounded in north-
east direction. This is equivalent to considering C(6,p) as a structure constant
of L K(LG(m,2m)). Notice that C(6,p) = H(0,p) = N(8,p) holds whenever

0 C Px is disjoint from the NE diagonal.

Theorem 7.4 states that each quantum structure constant N (0, p) is equal to the
(signed) number N (6, p) of QKLG-tableaux. We prove this by showing that ./\7(9, p)
and N (0,p) are determined by the same recursive identities. These identities si-
multaneously provide an alternative definition of these constants. We also prove an
analogous recursive definition of the undeformed structure constants #(6, p) when
f contains at most one box on the NE diagonal of 73X. Our recursive definitions
refer to (quantum or undeformed) structure constants computed in the quantum
K-theory of smaller Lagrangian Grassmannians X’ = LG(n/,2n’). For this reason
we will introduce additional notation to make it easier to refer to the constants
H(0,p) and N (0, p) when 6 is regarded as a skew shape in Px,. We summarize this
notation here and give precise definitions below. We will regard any skew shape
6 as a subset of PS. Suppose 6 is contained in a specific set 73;(/7 and we wish
to refer to the constants #(6,p) and N'(6, p) computed in QK(X'). If § is disjoint
from the NE diagonal of 73)(/, then we can use the structure constant C(6,p) of
the ordinary K-theory ring K(X). On the other hand, if 6 meets the NE diag-
onal of ﬁx/, then the values of H(6,p) and ./\A/(G,p) computed in QK(X’) will be
denoted H4(0,p) and Ny(6,p). Equivalently, given any skew shape 0 C P, we
can define H,(0,p) and N,(0,p) as the values of H(6,p) and /\7(9,])) computed
in QK(X’), where X’ = LG(n/,2n’) is the smallest Lagrangian Grassmannian for
which § C Px.

Define P = {(i,j) € Z? | i < j}, and equip this set with the partial order
defined by (¢/,j') < (¢”,5") if and only if ' < 4" and j' < j”. We will consider
Px and Px as subsets of P. Define a skew shape in P to be any finite subset
obtained as the difference between two lower order ideals. Given a skew shape
6 C P, let R(A) denote the size of a maximal rim contained in 6, and let N'(6)
be the number of components of § that are disjoint from the SW diagonal. Let 6’
denote the skew shape obtained by removing all south-east corners from 6. Given an
integer p € Z, it was proved in [BR12] that the constant C(6, p) from Definition 7.2
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is given by

CO,p)= Y (~DYIIR(N'(p), R(¢) — p),
0'CpCo
where the function h : N x Z — Z is defined by (7).

Let 8 C PS be a non-empty skew shape. Then # contains a unique north-east
boxr (). A skew shape in P§ will be called a line if its boxes are contained in a
single row or a single column. The north-east arm of 0 is the largest line ¢ that
can be obtained by intersecting 6 with a square whose upper-right box is Q.

L

We will say that the north-east arm 1 is a row if 6 contains no box immediately
below @, and v is a column if 6 contains no box immediately to the left of Q.
Notice that ¢ can be both a row and a column (if it is a disconnected single box),

and it can be neither a row nor a column (only if € is not a rim). We let 0=10- P
denote the complement of the north-east arm. This set 0 is a skew shape if and
only if v is a row or a column. If ¢ is not connected to 5, then v is not a row if
and only if ¢ is a column with at least two boxes, and 1 is not a column if and
only if ¢ is a row with at least two boxes. We set x(true) = 1 and x(false) = 0.

Proposition 10.1 ([BR12]). Let 6 C PY¥ be any skew shape and let p € Z. If 0

is not a rim, then C(0,p) = 0, and C(0,p) = x(p < 0). If 0 is a non-empty rim

with north-east arm 1 = 0\ 6 of size a, then C(0,p) is determined by the following

rules.

(i) If = O and 6 meets the SW diagonal, then C(6,p) = dp,10) if 0 is a row, and

C(0,p) = 0p,jo| — Op,jo—1 if 0 is not a row.

(ii) If0 =0 and 0 is disjoint from the SW diagonal, then C(0,p) = 26p,19 — x(p >

1) 6p’|0‘,1 .

(iii) If 6 # 0 and ) is connected to 0, then C(6,p) = cl,p-— a) — C(é\,p —a+1).

(iv) If 8 # 0 and ¥ is not connected to 8, then C(0,p) = 2C(0 p—a)—2C(0,p—a+1)

ifa=1, and C(0,p) = 2C(8, p—a)—3C(0, p—a—|—1)+C(9 p—a+2)ifa>2.
Given a non-empty skew shape § C PY with north-east box @Q, let N¢(0) =

max(N'(0) — 1,0) be the number of components of § that do not meet the SW

diagonal and do not contain @, and let 9; = 6’ U Q be the result of removing all
south-east corners except @ (in case @ is a south-east corner). For p € Z we define

(12) HoO.p)= Y (=D R(N(p), Rlp) = p).

0,CpCo

Remark 10.2. Assume that 6 C 'ﬁX is a skew shape containing at most one box
from the NE diagonal of Py, for example a rim. Then the constant H (6, p) defined
by equation (9) is given by
H(6,p) = C(0,p) if 6 is disjoint from the NE diagonal,
" | He(0,p) if 6 contains one box on the NE diagonal.
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If 9 C Py contains two or more boxes from the NE diagonal, then € is not a
skew shape in PY and H,(f,p) is not defined. Our next result together with
Proposition 10.1 provides a recursive definition of the constants H, (6, p).

Proposition 10.3. Let 0 C P be any non-empty skew shape and let p € Z. If 0
is not a rim, then Hy(0,p) = 0. If 0 is a rim with north-east arm 1 = 0 \. 0 of size
a, then Hq(8,p) is determined by the following rules.

(i) If§: 0, then Hqy(0,p) = x(p < 10]) if 0 is a row, and Hy(0,p) = 6y 19 if 0 is
not a row.

(iii”") If§7é O and v is connected to 0, then Hq(0,p) = ’Hq(g,p —a) if ¥ is a row
orp > 0|, and He(0,p) =C(0,p —a) — Hq(0,p —a) + He(0,p—a+1) if ¥ is a
column and p < |6].

(iv"") If0 # 0 and 1 is not connected to 0, then Hq(0,p) = C(@p—a) if ¥ is a row,
and Hq(0,p) =CO,p—a) —C(0,p —a+1) if ¢ is not a row.

Proof. If 0 is not a rim, then let B € 0 be a south-east corner such that 6 contains a
box strictly north and strictly west of B. For any skew shape ¢ with 0, C ¢ C 0\ B
we have h(Ny(¢), R(p) — p) = h(N,(p U B), R(¢ U B) — p), which implies that
Hq(0,p) = 0. We can therefore assume that 6 is a non-empty rim. If § = 1 is a
row, then Hq(0,p) = h(0,]60] —p) = x(p < |6]). If = ¢ is not a row, and B is the
bottom box of 6, then H, (60, p) = h(0, |0] — p) — h(0,|0 ~ B| —p) = 6, 0|-

Assume that § # Pandisa row conEected to @ Then the skew shapes occurring
in (12) have the form Ui, where 6’ = (6)" C ¢ C 0. Since h(N,(pUv), [pUth|-p) =
h(Ng(#), ¢l = p+ a), we obtain H,(0,p) = He(0,p — a).

Assume that § # @ and 9 is a column connected to 6. If p > |4|, then since
h(N,(#), || — p) is non-zero only when p < ||, we obtain

Hq(0,p) = h(Ny(0).16] — p) = h(N;(0),16] = p + a) = Hq(0,p — a).
Assume that p < |6] and let B be the north-east box of 6. Then
Ho(0,0) —C(O.p — @) + Hy(6.p — a) = Hy(B,p —a+ 1)

is equal to the sum over all skew shapes ¢, with 0 c p C AN B, of (—1)'5‘_‘“|
times

h(N, (e U¥), lp U] —p) = h(N, (e UBU),|leUBUYp| - p)
(13) = h(N'(p), ¢l =p+a) + M(N'(¢UB),|¢UB| —p+a)
—h(Ng(¢UB),lpUB|—p+a)+h(Ny(¢UB),[pUB|—p+a—1).
Using that
Ny (pU9)=N'(pUB)=N'(p) and N,(pUBU) =N (pUB)=N,(¢),
it follows that (13) is equal to
N (), lol =p+a+1) + h(Ny (), [l = p+a) = 2h(Ny(e),lpl —p+a+1).

If N'(¢) > 0, then this expression is zero by identity (8). Otherwise we have
N'(¢) = Nj(p) = 0, which implies ¢ = 6 \ B, so the expression is zero because
lol —p+a>0.
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We finally assume that ) # () and v is not connected to b. I 1 is a row, then
Ho(0,p) = > (DI R(N (U D), [e U] - p)
5’CLpC5
= > (D)IFIRN(), ¢l —p+a) = C@O.p—a).
§’C¢C§
If ¢ is not a row, B is the bottom box of ¥, and ¥’ = ¢ . B, then
Hq(97p)
= > (=)W RN (@ U ), [p U] — p) — h(Nj (e U¢"), [p U - p))
§’C¢C§
= Y (DRI RN (@), el = p+a) = B(N'(¢), ol —=p+a—1))
§’CLPC§
= C(O.p—a)—CO,p—a+1).

This completes the proof. O

Example 10.4. For any skew shape 6 = Eﬁ C PY and p < 2, we obtain b=
and

Hq(0,p) =C(O,p—2) — Hy(B,p—2) + Hy(B,p—1) =0—1+1=0.

This illustrates that negative values of p must be allowed in Proposition 10.3 to
obtain correct recursive identities without including additional special cases.

Definition 10.5. Given a non-empty skew shape § C P and p € Z, define an
integer N, (0,p) as follows. If € is not a rim, then N, (0,p) = 0. If 6 is a rim with
north-east arm ¢ = 0 \ 0 of size a, then N,(0,p) is determined by the following
rules.

(') If § = 0 and 6 meets the SW diagonal, then Nq(0,p) = 0,0/

(i") If § = @ and 6 is disjoint from the SW diagonal, then N (6, p) = 6, g if 0 is a
column, and Ny (0, p) = 6,19 — 0p,j9/—1 if € is not a column.

(iii’) If 6 # 0 and ¥ is connected to 6, then N, (0,p) = Nq(a,p— a) if 1 is a column,
and Ny (0,p) = Ny(0,p —a) —C(0,p —a+1) if ¢ is a row.

(iv') If 0 = () and v is not connected to , then N, (0,p) = C(é\,p—a) —C(@p—aﬁ—l)
if ¢ is a column, and Ny (0,p) =C(0,p—a) —2C(O0,p—a+1)+C(0,p—a+2)if ¢

is not a column.

Recall from Definition 7.3 that |[N(0,p)| is the number of QKLG-tableaux of
shape 8 C Px with content {1,2,...,p}.

Lemma 10.6. Let 0 C ﬁx be a rim meeting the NE diagonal of ’ﬁx and letp € Z.
Then Nq(9>p) = N(eap)

Proof. Let ¢ = 6 ~ 8 be the north-cast arm and set a = [t|. The pictures in this
proof will be drawn for the case a = 4. Assume first that 6 = (). If § meets the SW
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diagonal of 73X, then there exists only one QKLG-tableau of shape 6, which is one
of the following cases:

/
(B o 2
o

If 4 is disjoint from the SW diagonal, then there is a unique QKLG-tableau of shape
6 when 6 is a column or a single box, and exactly two QKLG-tableaux of shape 6
when 6 is a row with at least two boxes:

or n and m , whereb=a—1.

This accounts for cases (i) and (ii’) of Definition 10.5.

Assume next that 6 # () and that 1) is connected to §. Then any QKLG-tableau
of shape 6 and content {1,...,p} must assign the following labels to the boxes of
Y (with b; =p —a+14):

(1]
2]
3] or
7] L]

—_
~

bi[ba|bs[ 7]

BE

The pictures also show two of the boxes from 0. If 1) is a column, then a’ must be an
unrepeated quantum box, so the labels of 9 can be any QKLG-tableau with content
{a+1,a+2,...,p} (with p considered on the NE diagonal). If ¢ is a row, then the
labels of # must have content either {1,2,...,p—a}tor{1,2,...,p—a+1}. In the first
case by is an unrepeated quantum box, so 1’ is also a quantum box, and the labels
of @ can be any QKLG-tableau with content {1,2,...,p — a} (with 1’ considered
on the NE diagonal). In the second case b; is repeated, 1’ is not a quantum box,
so the labels of @ can be any KLG-tableau with content {1,2,...,p —a+ 1}. This
accounts for case (iii’) of Definition 10.5.

Finally, assume that ) # () and 1) is not connected to 9. Then any QKLG-tableau
of shape 6 and content {1,...,p} must assign the following labels to the boxes of
Y (with b; =p —a+1):

o [Thlial?]

If ¢ is a column or a single box, then the labels of 6 must form a KLG-tableau with
content {a+1,a+2,...,p}or {a,a+1,...,p}. If ¢ is a row with at least two boxes,
then the labels of # must form a KLG-tableau with content {2,3,...,p —a+ 1},
{1,2,...,p—a+1},{2,3,...,p—a+2}, or {1,3,...,p—a+2}. This accounts for
case (iv') of Definition 10.5. O

Lemma 10.7. Let 8§ C P be a non-empty rim and let p € Z.
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(a) For p <0 we have C(0,p) = Ny(0,p) =0, and

'Hq(@,p) = {

1 if 0 is a single row of boxes,

0 otherwise.

(b) We have C(6,0]) = 2N'®) and N, (0,]0]) = H,(6,|0]) = 2V,

(c) Forp > |0] we have C(0,p) = Ny(0,p) = Hq(0,p) = 0.

Proof. These identities follow from the recursive definitions by induction on |0]. O

Lemma 10.8. Let § C P be a non-empty rim, such that the north-east arm
P =00 is not a disconnected single box, and let p < |0|. Then,

CH,p)—CO,p+1) if isa row,

2Nq(9,p) f/\fq(tﬁ),p+ ) = {C(Qm) if ¥ is a column.

Proof. Assume that 0=0.If 1) meets the SW diagonal or is a column, then both
sides of the identity are equal to —d,11 g, and otherwise both sides are equal to

=30p41j0 + Opi2g)-
Assume next that 6 # () and v is connected to 6. Set a = |¢)|. If ¢ is a row, then

2N, (0,p) —Ny(0,p+1)—C(0,p) +C(6,p+1)
= 2N,(0,p—a) —Ny(B,p—a+1)—CO,p—a),

which vanishes by induction on ||, since the north-east arm of 0 is a column. If P
is a column, then

2Ny(0,p) = Ny(0,p+1) = C(0,p)
= 2Nq(§,p—a) —Nq(é\,p—a—i— 1) —C(a,p— a) +C(§,p— a+1)

which vanishes by induction on |6]|, since the north-east arm of f is a row.

Finally we assume that ) # () and 1 is not connected to 0. If 1 is a column,
then both sides are equal to

2C(§,p—a) —3C(§,p—a+1) +C(§,p—a+2),
and if v is a row, then both sides are equal to
2C(0,p—a)—5CH,p—a+1)+4CO,p—a+2)—CH,p—a+3).
The identity follows from this. [
Lemma 10.9. Let § C PY be a non-empty rim and let p < |0]. Then,
Hq(0,p) = Hq(0,p+1) = C(6,p) —Ng(0,p).

Proof. Let ¢ =0\ 8 be the north-east arm of 0 and set a = [t|. Assume first that
0=0.If 1 is a row, then both sides of the identity are zero, and otherwise both
sides are equal to —d,41 jg|-

Assume next that 0 # () and v is connected to 0. If ¥ is a row, then it follows
by induction on |f] that

Ho(0,p) — He(0,p+1) = Hy(0,p — a) — Hy(0,p — a + 1)
=C(0,p—a) — Ny(8,p—a) = C(6,p) — Ny(6,p) .
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If 4 is a column and p < |6] — 2, then the recursive definitions and induction on |6
yield

= —Hy(0,p—a) +2Hy(0,p— a+ 1) = Hy(0,p — a+2) + Ny(0,p — a)
= 2Nq(§,p—a) —Nq(é\,p—a—i—l) —C(g,p—a) —&—C(g,p—a—i— 1).

This expression is equal to zero by Lemma 10.8, as the north-east arm of g is a
row. If ¢ is a column and p = |f| — 1, then the recursive definitions and induction
on || gives

Hq(0,p) — Hq(0,p+ 1) — C(0,p) + Ng(0,p)
= Ny(B.p—a) = Hy(B.p—a) +CHp—a+1)
= 2N,(B,p—a) —H,0,p—a+1)—Cl,p—a)+CO.p—a+1).

This expression is equal to zero by Lemma 10.7(b) and Lemma 10.8, as p—a+1 = |§\
and the north-east arm of @ is a row.

Finally assume that 7 # () and v is not connected to 0. I 1 is a row, then both
sides of the identity are equal to C(é\,p —a) — C(g,p —a+ 1), and otherwise both
sides are equal to C(0,p — a) —2C(6,p — a+ 1) + C(6,p — a + 2). This proves the
identity. O

Proposition 10.10. Let 8 C P be a non-empty skew shape with north-east arm
Y =0\0, and let p € Z. Then,

Hq(e,p) *Nq(gap) - {OZ§CLPQHC((’D’p) Zf’(/J 1S a row,

otherwise,

where the sum is over all proper lower order ideals ¢ of 0 that contain 9.

Proof. We may assume that 6 is a rim, since otherwise 9 is also not a rim, and
both sides of the identity vanish. Set a = |¢|. Assume first that ¢ is not a row.

If & = (), then Hq(0,p) = 0p o) = Ng(0,p). If 67# () and 1 is connected to 6, then
Hq(0,p) = Ny(0,p) for p > |0] by Lemma 10.7(b,c), and for p < |#| we have

Hq(0,p) — Ny(8,p) = C(0,p — a) — Hy(B,p — a) + Ho(0,p — a+1) = Ny(8,p — a),

which is equal to zero by Lemma 10.9. Finally, if 5;& () and 1) is not connected to
9, then Hq(0,p) = C(é,p —a)— C(@p —a+1) =N,(0,p).

Assume that 1) is a row. For 0 <i < a — 1, we let ¢; be the union of 0 with the
leftmost i boxes of ¥. Then g, ¢1,...,pq—1 are the proper lower order ideals ¢ in
0 that contain 0. If = () and 1) meets the SW diagonal, then

a—1

Hq(0,) = Ny(0,p) = x(p < 10]) = 01 = X(P < 0) + Y _ 6y = Z_:C(nm,p) :
=0

i=1
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If 0 is a single box not on the SW diagonal, then H,(6,p) — Ny(0,p) = x(p < 0) =
C(po,p). £ 6 =0, |8] > 2, and ¢ does not meet the SW diagonal, then

Hq(0,p) = Ny(0,p) = x(p <|0]) +0p.a—

a—1 a—1
= X(P<0)+201+ > (2055 —0pi1) = Y_Clpip).
=2 =0

Ifo # () and 1) is connected to 67, then since the north-east arm of 6 is not a Tow,
we obtain by induction on || that

H,(0,p) — Ny(0,p) = H (apfa)f./\/(apfa)JrC(a,pfaJrl)
a—1

=C(.p—a+1) = C(0,p) +Z (0,p—i)—CO,p—i+1) => Clei,p).

i=0
If § + () and 1) is a single box that is not connected to 6, then 4(0.p) =N, (9 p) =

C (9 p) follows from the definitions. Finally, if 8 # 0, v is not connected to 6, and
a > 2, we obtain

Hqa(0,p) — Ny(8,p) = 2C(,p—a+1)—C@,p—a+2)
c(@.p) + (2¢(0.p - 1)~ 2¢(0.p))

a—1

+y (2C(§,p—i) —3C(@,p—i+ 1)+C(§,p7i+2)>
i=2
a—1
i=0
The identity follows from these observations. O

We finally prove that the Pieri structure constants A/ (0,p) of QK(X) are signed
counts of QKLG-tableaux.

Corollary 10.11. Let 6 C Px be a skew shape and 1 < p < n. Then ./\A/(H,p) =
N(®,p).

Proof. If 6 is disjoint from the NE diagonal of Py, then ﬁ(@,p) =C(0,p) = N(0,p)
by [BR12]. If # contains two or more boxes from the NE diagonal, then N (6, p) = 0
by definition (since 6 is not a rim), and since dpax(p) = 1, it follows from [BCMP22,
Thm. 8.3] that A/(d, p) = 0. Assume that @ contains exactly one box from the NE
diagonal of ﬁX. Then 0~ equals 9 if the north-east arm of 6 is a row, and 6~ =6
otherwise. Lemma 10.6 shows that N(0,p) = N,(0,p), and Proposition 10.10
and the definition (10) show that N, (0,p) = N(0,p), noting that the condition

0~ C ¢ C 6 implies that H(p,p) = C(v,p) by Remark 10.2. O
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