3.4 1(b,d).

The relation R of (b) is antisymmetric. This follows directly form the definition of antisymmetric.

The relation R of (d) is not antisymmetric because $(1/2, 1) \in R$ and $(1, 1/2) \in \mathbb{R}$.

3.4 3(b).

Theorem: Let R be a relation on the set A that satisfies

(i) R is antisymmetric, (ii) R is symmetric, and (iii) Dom(R) = A.

Then $R = I_A$.

Proof. Let $(x, y) \in R$.

Then $x \in A$ and $y \in A$.

Since R is symmetric we have $(y, x) \in R$.

Since R is antisymmetric, we must have x = y.

Therefore $(x, y) = (x, x) \in I_A$.

This proves that $R \subset I_A$.

Now let $(x,y) \in I_A$.

By definition of I_A we have $x \in A$ and y = x.

Since $x \in A = \text{Dom}(R)$, we can choose $z \in A$ such that $(x, z) \in R$.

Since R is symmetric, we also have $(z, x) \in R$.

Since R is antisymmetric we must have z = x.

It follows that $(x, y) = (x, x) = (x, z) \in R$.

This proves $I_A \subset R$.

3.4 6.

Set $P = \mathbb{R} \times \mathbb{R}$.

Define $R = \{((a, b), (x, y)) \in P \times P \mid a \leq x \text{ and } b \leq y\}$

Theorem: R is a partial order on P.

Proof. We must show that R is reflexive, antisymmetric, and transitive.

This is the following three claims.

Claim 1: $\forall p \in P : (p, p) \in R$.

Let $p \in P$. Choose $x, y \in \mathbb{R}$ such that p = (x, y).

Since $x \le x$ and $y \le y$, we have $(p, p) = ((x, y), (x, y)) \in R$.

Claim 2: $\forall p, q \in P : ((p,q) \in R \text{ and } (q,p) \in R) \Rightarrow p = q$

Let $p, q \in P$.

Assume that $(p,q) \in R$ and $(q,p) \in R$.

Choose $a, b \in \mathbb{R}$ such that p = (a, b).

Choose $x, y \in \mathbb{R}$ such that q = (x, y).

Since $(p,q) \in R$ we have $a \leq x$ and $b \leq y$.

Since $(q, p) \in R$ we have $x \le a$ and $y \le b$.

This implies that a = x and b = y.

Therefore p = q.

Claim 3: $\forall p, q, r \in P$: $((p,q) \in R \text{ and } (q,r) \in R) \Rightarrow (p,r) \in R$

Let $p, q, r \in P$.

Assume that $(p,q) \in R$ and $(q,r) \in R$.

Choose $a, b \in \mathbb{R}$ such that p = (a, b).

Choose $c, d \in \mathbb{R}$ such that q = (c, d).

Choose $e, f \in \mathbb{R}$ such that r = (e, f).

```
Since (p,q) \in R we have a \leq c and b \leq d.
   Since (q, r) \in R we have c \leq e and d \leq f.
   This implies that a \leq e and b \leq f.
   Therefore (p,r) \in R.
                                                                                                3.4 12(b).
   Let A be a non-empty set.
   The inclusion relation on the power set \mathcal{P}(A) is defined by
   R = \{(S, T) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid S \subset T\}
   I will not prove that R is a partial order on \mathcal{P}(A).
Theorem:
   \forall B \in \mathcal{P}(A) \ \forall x \in A : x \notin B \Rightarrow (B \text{ is an immediate predecessor of } B \cup \{x\})
Proof. Let B \in \mathcal{P}(A) and let x \in A.
   Assume that x \notin B.
   Set D = B \cup \{x\}.
   We must show that B is an immediate predecessor of D.
   This is equivalent to the following three claims.
   Claim 1: B \neq D.
   This is true because x \notin B and x \in D.
   Claim 2: (B, D) \in R.
   This is true because B \subset D.
   Claim 3: \forall C \in \mathcal{P}(A): ((B,C) \in R \text{ and } (C,D) \in R) \Rightarrow (C=B \text{ or } C=D)
   Let C \in \mathcal{P}(A).
   Assume that (B, C) \in R and (C, D) \in R.
   Then B \subset C and C \subset D.
   Case 1: Assume that x \in C.
   Since C \subset D and D = B \cup \{x\} \subset C \cup \{x\} = C, it follows that C = D.
   Case 2: Assume that x \notin C. I will show that C = B.
   Let y \in C.
   Since C \subset D = B \cup \{x\}, we must have y \in B \cup \{x\}.
   This implies that y \in B or y \in \{x\}.
   Since y \in C and x \notin C, we have y \neq x, hence y \notin \{x\}.
   Therefore y \in B.
   This proves that C \subset B
   Since we also have B \subset C by assumption, we obtain C = B.
   We conclude that (C = B or C = D) is true.
                                                                                                3.4 13(a,d). Let R be a rectangle with horizontal and vertical sides of positive
```

3.4 13(a,d). Let R be a rectangle with horizontal and vertical sides of positive lengths.

Let H be the set of all rectangles with horizontal and vertical sides of positive lengths that are contained in R.

Consider the partial order \subset on H given by inclusion of rectangles.

Theorem 1: $\forall S \in \mathcal{P}(H) : R \text{ is an upper bound of } S.$

This is true because for each rectangle $Q \in H$ we have $Q \subset R$.

Theorem 2: $\exists S \in \mathcal{P}(H) : S \text{ does not have a smallest upper bound.}$

Take $S = \emptyset$.

Then every rectangle $Q \in H$ is an upper bound for S.

Assume that Q_0 is a smallest upper bound for S.

Then Q_0 is a smallest element of H.

Therefore
$$Q_0 \subset \bigcap_{Q \in H} Q = \emptyset$$
.

It follows that $Q_0 = \emptyset \notin H$, a contradiction.

Theorem 2a: $\forall S \in \mathcal{P}(H) : S \neq \emptyset \Rightarrow S$ has a smallest upper bound.

This is a consequence of the fact that any non-empty bounded subset A of the real numbers \mathbb{R} has a smallest upper bound $\operatorname{sup} A$ and a greatest lower bound $\operatorname{inf} A$.

Assume that R is placed in a coordinate system (with horizontal x-axis and vertical y-axis).

For any rectangle $Q \in H$ we denote the lower-left corner of Q by $(x_1(Q), y_1(Q))$ and we denote the upper-right corner of Q by $(x_2(Q), y_2(Q))$.

Given two rectangles $Q, Q' \in H$ we then have $Q \subset Q'$ if and only if

$$(x_1(Q) \ge x_1(Q') \text{ and } y_1(Q) \ge y_1(Q') \text{ and } x_2(Q) \le x_2(Q') \text{ and } y_2(Q) \le y_2(Q')).$$

Let $S \in H$ and assume $S \ne \emptyset$.

Then the smallest upper bound for S is the unique rectangle Q' satisfying:

```
x_1(Q') = \inf\{x_1(Q) \mid Q \in S\}
```

$$y_1(Q') = \inf\{y_1(Q) \mid Q \in S\}$$

$$x_2(Q') = \sup\{x_2(Q) \mid Q \in S\}$$

$$y_2(Q') = \sup\{y_2(Q) \mid Q \in S\}$$

Since Theorem 2a is strictly speaking not necessary in order to answer problem 3.3(a), I will not prove this. However this is not hard, one simply have to work systematically with the definitions.

Theorem 3: $\exists S \in \mathcal{P}(H) : S \text{ does not have a smallest element.}$

Let $Q_1, Q_2 \in H$ be rectangles contained in R such that $Q_1 \not\subset Q_2$ and $Q_2 \not\subset Q_1$. Take $S = \{Q_1, Q_2\}$.

Since no element of S is a lower bound for S, S has no smallest element.

4.1 1(b,c,d,e).

- (b) The set is not a function because 1 is paired with more than one integer.
- (c) The relation is a function with domain $\{1,2\}$ and range $\{1,2\}$. Another possible codomain is \mathbb{Z} .
 - (d) The relation is not a function because it contains (0,0) and $(0,\pi)$.
 - (e) The relation is not a function because it contains (1,1) and (1,2).

4.1 3(b). Let $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2 + 5\}.$

```
Dom(f) = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} : (x, y) \in f\} = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} : y = x^2 + 5\} = \mathbb{R}.
Rng(f) = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R} : y = x^2 + 5\} = \{y \in \mathbb{R} \mid y \ge 5\}.
```

The set \mathbb{R} is an alternative codomain.

4.1 13.

Theorem: \emptyset is a function with domain \emptyset .

Proof. I will show that \emptyset is a function from \emptyset to \emptyset .

This means that:

$$\forall x \in \emptyset \ \exists y \in \emptyset : (x, y) \in \emptyset.$$

This is true because every statement of the form $\forall x \in \emptyset : P(x)$ is true. \Box

Theorem: Let A and B be sets and let $f:A\to B$ be a function. Then the following are equivalent:

(1)
$$A = \emptyset$$

(2)
$$f = \emptyset$$
.

```
4
    (3) \operatorname{Rng}(f) = \emptyset
Proof. (1) \Rightarrow (2): Assume A = \emptyset.
   Since f \subset A \times B = \emptyset, it follows that f = \emptyset.
    (2) \Rightarrow (3): Assume f = \emptyset.
   Then \operatorname{Rng}(f) = \{ y \in B \mid \exists x \in A : (x, y) \in f \} = \emptyset.
    (3) \Rightarrow (1): Assume A \neq \emptyset.
    Choose x \in A.
   Since f is a function we can choose y \in B such that (x, y) \in f.
   But then y \in \text{Rng}(f), so \text{Rng}(f) \neq \emptyset.
4.2 5(b).
    Consider the function f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = 2x^2 + 1\}.
   The inverse relation is f^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = 2y^2 + 1\}.
   This is not a function because (3,-1) \in f^{-1} and (3,1) \in f^{-1}, but -1 \neq 1.
4.2 5(g).
   Set A = \mathbb{R} - \{1\} and B = \mathbb{R} - \{0\}.
   Consider the relation f = \{(x, y) \in A \times B \mid y = \frac{1}{1-x}\}.
   Then f is a function f: A \to B.
    (I will not prove this and we do not need to know that f is a function.)
   The inverse relation is given by:
   f^{-1} = \{(x,y) \in B \times A \mid x = \frac{1}{1-y}\} = \{(x,y) \in B \times A \mid x(1-y) = 1\}= \{(x,y) \in B \times A \mid 1-y = x^{-1}\} = \{(x,y) \in B \times A \mid y = 1-x^{-1}\}.
    Claim: f^{-1}: B \to A is a function.
    Must show: \forall x \in B \ \exists ! y \in A : (x, y) \in f.
   Let x \in B.
   Since x \in \mathbb{R} and x \neq 0, it follows that x^{-1} \in \mathbb{R}.
   It follows that 1 - x^{-1} \in \mathbb{R}.
   Notice also that 1 - x^{-1} \neq 1, hence 1 - x^{-1} \in A.
   Since (x, 1 - x^{-1}) \in f, we have shown: \exists y \in A : (x, y) \in f.
   Let y_1, y_2 \in A. Assume (x, y_1) \in f and (x, y_2) \in f.
   Then we have y_1 = 1 - x^{-1} and y_2 = 1 - x^{-1}, hence y_1 = y_2.
   This finishes the proof that f^{-1} is a function.
   Finally, for x \in B we have f^{-1}(x) = 1 - x^{-1}.
4.2 15.
   Let f: A \to B and g: C \to D be functions.
   Define f \times g = \{((a, c), (b, d)) \mid (a, b) \in f \text{ and } (c, d) \in g\}.
    (a) Claim: f \times g : A \times C \to B \times D is a function.
    We must show: \forall x \in A \times C \ \exists ! y \in B \times D : (x, y) \in f \times g.
   Let x \in A \times C.
   Choose a \in A and c \in C such that x = (a, c).
   Set b = f(a), d = q(c), and y = (b, d).
   Since (a, b) \in f and (c, d) \in g, we have (x, y) \in f \times g.
```

Let $y_1, y_2 \in B \times D$. Assume $(x, y_1) \in f \times g$ and $(x, y_2) \in f \times g$. Choose $b_1, b_2 \in B$ and $d_1, d_2 \in D$ such that $y_1 = (b_1, d_1)$ and $y_2 = (b_2, d_2)$. Since $(x, y_1) \in f \times g$, we have $(a, b_1) \in f$ and $(c, d_1) \in g$. Since $(x, y_2) \in f \times g$, we have $(a, b_2) \in f$ and $(c, d_2) \in g$.

```
Since (a, b_1) \in f and (a, b_2) \in f and f is a function, it follows that b_1 = b_2.
   Since (c, d_1) \in g and (c, d_2) \in g and g is a function, it follows that d_1 = d_2.
   Therefore y_1 = (b_1, d_1) = (b_2, d_2) = y_2.
   (b) Let (a, c) \in A \times C.
   Claim: (f \times g)(a,c) = (f(a),g(c)).
   Set b = f(a) and d = g(c).
   Since (a,b) \in f and (c,d) \in g, we have ((a,c),(b,d)) \in f \times g.
   It follows that (f \times g)(a, c) = (b, d) = (f(a), g(c)).
4.3 1(d).
   Let f: \mathbb{R} \to \mathbb{R} be given by f(x) = x^3.
   Claim: f is onto \mathbb{R}.
   Must show: \forall y \in \mathbb{R} \ \exists x \in \mathbb{R} : f(x) = y.
   Let y \in \mathbb{R}.
   Set c = |y| + 1.
   Then c^3 = |y|^3 + 3|y|^2 + 3|y| + 1 > |y|.
   It follows that f(-c) < y < f(c).
   Notice that f is continuous on the closed interval [-c, c].
   The intermediate value theorem therefore implies that:
   \exists x \in \mathbb{R}: \ f(x) = y.
   This is what we had to prove.
4.3 1(g).
   Let f: \mathbb{R} \to \mathbb{R} be defined by f(x) = \sin(x).
   Since we have -1 \le \sin(x) \le 1 for all x \in \mathbb{R}, it follows that 2 \notin \operatorname{Rng}(f).
   Therefore f is not onto \mathbb{R}.
4.3 1(h).
   Let f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} be defined by f(x,y) = x - y.
   Claim: f is onto \mathbb{R}.
   Must show: \forall z \in \mathbb{R} \ \exists a \in \mathbb{R} \times \mathbb{R} : f(a) = z.
   Let z \in \mathbb{R}.
   Set a = (z, 0) \in \mathbb{R} \times \mathbb{R}.
   Then f(a) = f(z, 0) = z.
4.3 10.
   Let f: \mathbb{R} \to \mathbb{R} be an increasing function.
   This means: \forall x_1, x_2 \in \mathbb{R} : x_1 < x_2 \Rightarrow f(x_1) < f(x_2).
   Claim: f is one-to-one.
   We must show: \forall x_1, x_2 \in \mathbb{R}: f(x_1) = f(x_2) \Rightarrow x_1 = x_2.
   I will prove the equivalent statement: \forall x_1, x_2 \in \mathbb{R}: x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).
   Let x_1, x_2 \in \mathbb{R}.
   Assume x_1 \neq x_2.
   Case 1: Assume x_1 < x_2.
   Then f(x_1) < f(x_2), hence f(x_1) \neq f(x_2).
   Case 2: Assume x_2 < x_1.
   Then f(x_2) < f(x_1), hence f(x_1) \neq f(x_2).
```

4.4 3(d).

Define
$$G: (3, \infty) \to (5, \infty)$$
 by $G(x) = \frac{5x - 5}{x - 3}$.
Define $F: (5, \infty) \to (3, \infty)$ by $F(x) = \frac{3x - 5}{x - 5}$.
Claim: $F \circ G = I_{(3,\infty)}$ and $G \circ F = I_{(5,\infty)}$.
Let $x \in (3,\infty)$.
Set $y = G(x)$. Then we have: $y = \frac{5x - 5}{x - 3}$.
 $xy - 3y = 5x - 5$
 $xy - 5x = 3y - 5$
 $x = \frac{3y - 5}{y - 5}$.
It follows that $(F \circ G)(x) = F(G(x)) = F(y) = x$.
Let $x \in (5,\infty)$.
Set $y = F(x)$. Then we have: $y = \frac{3x - 5}{x - 5}$
 $xy - 5y = 3x - 5$
 $xy - 3x = 5y - 5$
 $xy - 3x = 5y - 5$
 $x = \frac{5y - 5}{y - 3}$.
It follows that $(G \circ F)(x) = G(F(x)) = G(y) = x$.

4.4 6.

Let $F: A \to B$ and $G: B \to A$ be functions.

Claim:

 $(G \circ F = I_A \text{ and } F \circ G = I_B) \Rightarrow (F \text{ is 1-1 and onto } B, \text{ and } G \text{ is 1-1 and onto } A)$

Proof: Assume that $G \circ F = I_A$ and $F \circ G = I_B$.

Then Theorem 4.4.4(a) implies that $G = F^{-1}$.

Since F^{-1} is a function, it follows from Theorem 4.4.2(a) that F is one-to-one.

Since $\operatorname{Rng}(F) = \operatorname{Dom}(F^{-1}) = \operatorname{Dom}(G) = B$, it follows that F is onto B.

A similar argument shows that G is 1-1 and onto A.

Note: To get the most out of the solutions to section 4.6, you need to figure out what was on my scratch paper when I did the problems.

4.6 5(b).

Let (x_n) be the sequence defined by $x_n = \frac{n+1}{n}$.

Claim: $x_n \to 1$ as $n \to \infty$.

Must show: $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 1| < \epsilon$.

Let $\epsilon > 0$.

Choose $N \in \mathbb{N}$ so large that $N > \frac{1}{\epsilon}$. Will show: $\forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 1| < \epsilon$.

Let $n \in \mathbb{N}$.

Assume n > N.

Then $|x_n - 1| = \left| \frac{n+1}{n} - 1 \right| = \frac{1}{n} < \frac{1}{N} < \epsilon$.

$4.6 \ 5(c)$.

Define (x_n) by $x_n = n^2$.

Claim: The sequence (x_n) diverges.

Must show: $\sim (\exists L \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |x_n - L| < \epsilon)$

Equivalently: $\forall L \in \mathbb{R} \ \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N} : n > N \land |x_n - L| \ge \epsilon$

Let $L \in \mathbb{R}$.

Set $\epsilon = 1$.

I will show: $\forall N \in \mathbb{N} \ \exists n \in \mathbb{N} : n > N \land |x_n - L| \ge \epsilon$

Let $N \in \mathbb{N}$.

Choose $n \in \mathbb{N}$ so large that $n > \max(N, L+1)$.

Then $n^2 \ge n > L + 1$.

It follows that $|x_n - L| = n^2 - L \ge n - L > 1 = \epsilon$.

4.6 5(f).

Define (x_n) by $x_n = \sqrt{n+1} - \sqrt{n}$.

Claim: $x_n \to 0$ as $n \to \infty$.

Must show: $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 0| < \epsilon$

Choose $N \in \mathbb{N}$ so large that $N > \frac{1}{\epsilon^2}$.

Will show: $\forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 0| < \epsilon$

Let $n \in \mathbb{N}$.

Assume n > N.

Then $1 < \epsilon^2 N < 4\epsilon^2 n$.

It follows that $1 < 2\epsilon\sqrt{n}$.

Therefore $n+1 < n+2\epsilon\sqrt{n} < n+2\epsilon\sqrt{n}+\epsilon^2 = (\sqrt{n}+\epsilon)^2$.

We deduce that $\sqrt{n+1} < \sqrt{n} + \epsilon$.

Finally, we obtain $|x_n - 0| = \sqrt{n+1} - \sqrt{n} < \epsilon$.

4.6 5(h).

Define (x_n) by $x_n = \frac{6}{2^n}$.

Claim: $x_n \to 0$ as $n \to \infty$.

Must show: $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 0| < \epsilon$

let $\epsilon > 0$.

Choose $N \in \mathbb{N}$ so large that $N > \frac{6}{\epsilon}$.

Will show: $\forall n \in \mathbb{N} : n > N \Rightarrow |x_n - 0| < \epsilon$

Let $n \in \mathbb{N}$.

Assume n > N.

Then $|x_n - 0| = \frac{6}{2^n} < \frac{6}{n} < \frac{6}{N} < \epsilon$.

Let (x_n) and (y_n) be sequences of real numbers, and let $L, M, r \in \mathbb{R}$.

Assume that $x_n \to L$ for $n \to \infty$, and that $y_n \to M$ for $n \to \infty$.

(b) Define (z_n) by $z_n = x_n - y_n$.

Claim: $z_n \to L - M$ as $n \to \infty$.

Must show: $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |z_n - (L - M)| \le \epsilon$

Since $x_n \to L$, I can choose $N_1 \in \mathbb{N}$ such that: $\forall n \in \mathbb{N} : n > N_1 \Rightarrow |x_n - L| \leq \frac{\epsilon}{2}$. Since $y_n \to M$, I can choose $N_2 \in \mathbb{N}$ such that: $\forall n \in \mathbb{N} : n > N_2 \Rightarrow |y_n - M| \leq \frac{\epsilon}{2}$.

Set $N = \max(N_1, N_2)$.

Will show: $\forall n \in \mathbb{N} : n > N \Rightarrow |z_n - (L - M)| < \epsilon$.

Let $n \in \mathbb{N}$.

Assume n > N.

Then $n > N_1$ and $n > N_2$.

It follows that:

$$|z_n - (L - M)| = |(x_n - L) + (M - y_n)| \le |x_n - L| + |M - y_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

```
(e) Define (z_n) by z_n = x_n y_n.
    Claim: z_n \to LM as n \to \infty.
    Must show: \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |z_n - LM| \le \epsilon
   Let \epsilon > 0.
   Since x_n \to L, I can choose N_1 \in \mathbb{N} such that:
   \forall n \in \mathbb{N} : n > N_1 \Rightarrow |x_n - L| < \min(1, \frac{\epsilon}{2(|M| + 1)}).
   Since y_n \to M, I can choose N_2 \in \mathbb{N} such that:
   \forall n \in \mathbb{N} : n > N_2 \Rightarrow |y_n - M| < \frac{\epsilon}{2(|L|+1)}
   Set N = \max(N_1, N_2).
    Will show: \forall n \in \mathbb{N} : n > N \Rightarrow |z_n - LM| < \epsilon.
   Let n \in \mathbb{N}.
    Assume n > N.
   Then we have |x_n - L| < \min(1, \frac{\epsilon}{2(|M|+1)}) and |y_n - M| < \frac{\epsilon}{2(|L|+1)}.
   It follows that |x_n| = |L + x_n - L| \le |L| + |x_n - L| \le |L| + 1.
    We obtain:
   |z_n - LM| = |x_n y_n - LM| = |x_n y_n - x_n M + x_n M - LM|
    \leq |x_n y_n - x_n M| + |x_n M - LM| = |x_n| \cdot |y_n - M| + |x_n - L| \cdot |M|
   <(|L|+1)\tfrac{\epsilon}{2(|L|+1)}+\tfrac{\epsilon}{2(|M|+1)}|M|<\tfrac{\epsilon}{2}+\tfrac{\epsilon}{2}=\epsilon.
4.6 8(c).
   Let (x_n) be a sequences of real numbers, and let L \in \mathbb{R}.
    Assume that x_n \to L as n \to \infty.
   Let f: \mathbb{N} \to \mathbb{N} be an increasing function.
    This means that we have: \forall m, n \in \mathbb{N} : m < n \Rightarrow f(m) < f(n).
   Define a new sequence (y_n) by setting y_n = x_{f(n)} for each n \in \mathbb{N}.
   Then (y_n) is a subsequence of (x_n).
    Example: If f(n) = 2n, then (y_n) = (x_2, x_4, x_6,...).
    Claim 1: \forall n \in \mathbb{N} : n \leq f(n).
    We prove this by induction on n.
    Basis step: Since f(1) \in \mathbb{N}, we have 1 \leq f(1).
    Inductive step: Let n \in \mathbb{N}. Assume n \leq f(n).
   Since f is increasing, we have f(n) < f(n+1).
   It follows that n+1 \le f(n)+1 \le f(n+1).
    We conclude by the PMI that Claim 1 is true.
    Claim 2: y_n \to L \text{ as } n \to \infty.
    Must show: \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : n > N \Rightarrow |y_n - L| \le \epsilon
   Let \epsilon > 0.
   Since x_n \to L, we may choose N \in \mathbb{N} such that: \forall n \in \mathbb{N} : n > N \Rightarrow |x_n - L| < \epsilon.
    Will show: \forall n \in \mathbb{N} : n > N \Rightarrow |y_n - L| < \epsilon.
   Let n \in \mathbb{N}.
    Assume n > N.
    Then f(n) \ge n > N.
    It follows that |y_n - L| = |x_{f(n)} - L| < \epsilon.
```