SOLUTIONS TO HOMEWORK SET 10-12 (SELECTED PROBLEMS)

3.4 1(b,d).

The relation R of (b) is antisymmetric. This follows directly form the definition
of antisymmetric.

The relation R of (d) is not antisymmetric because (1/2,1) € R and (1,1/2) € R.

3.4 3(b).
Theorem: Let R be a relation on the set A that satisfies
(i) R is antisymmetric, (ii) R is symmetric, and (iii) Dom(R) = A.
Then R=14.
Proof. Let (z,y) € R.
Then z € A and y € A.
Since R is symmetric we have (y,z) € R.
Since R is antisymmetric, we must have z = y.
Therefore (x,y) = (v,z) € L.
This proves that R C I 4.
Now let (x,y) € Ia.
By definition of T4 we have x € A and y = .
Since z € A = Dom(R), we can choose z € A such that (z, z) € R.
Since R is symmetric, we also have (z,z) € R.
Since R is antisymmetric we must have z = .
It follows that (z,y) = (z,z) = (z,2) € R.

This proves I, C R. O
3.4 6.
Set P=R x R.

Define R = {((a,b), (z,y)) € Px P|a <z and b <y}

Theorem: R is a partial order on P.

Proof. We must show that R is reflexive, antisymmetric, and transitive.
This is the following three claims.
Claim 1: Vp € P: (p,p) € R.
Let p € P. Choose z,y € R such that p = (z,y).
Since z < z and y <y, we have (p,p) = ((z,v), (z,y)) € R.
Claim 2: Vp,q € P: ( (p,q) € Rand (¢g,p) ER)=p=q
Let p,q € P.
Assume that (p,q) € R and (¢,p) € R.
Choose a,b € R such that p = (a, b).
Choose z,y € R such that ¢ = (z,y).
Since (p,q) € R we have a < x and b < y.
Since (¢,p) € R we have z < a and y < b.
This implies that a = z and b = y.
Therefore p = q.
Claim 3: Vp,q,7 € P: ( (p,q) € Rand (¢,7) € R) = (p,7) € R
Let p,q,7 € P.
Assume that (p,q) € R and (q,7) € R.
Choose a,b € R such that p = (a, b).
Choose ¢,d € R such that ¢ = (¢, d).
Choose ¢, f € R such that r = (e, f).



Since (p,q) € R we have a < ¢ and b < d.

Since (g,7) € R we have c < e and d < f.

This implies that a < e and b < f.

Therefore (p,r) € R. O

3.4 12(b).
Let A be a non-empty set.
The inclusion relation on the power set P(A) is defined by
R={(S,T)e P(A) xP(A) | SCT}
I will not prove that R is a partial order on P(A).

Theorem:
VB eP(A)Vx e A: x ¢ B = (B is an immediate predecessor of BU {z} )

Proof. Let B € P(A) and let z € A.
Assume that = ¢ B.
Set D = BU {z}.
We must show that B is an immediate predecessor of D.
This is equivalent to the following three claims.
Claim 1: B # D.
This is true because z ¢ B and x € D.
Claim 2: (B, D) € R.
This is true because B C D.
Claim 3: VC € P(A) : ((B,C)€ Rand (C,D)eR)=(C=BorC=D)
Let C € P(A).
Assume that (B,C) € R and (C, D) € R.
Then B C C and C C D.
Case 1: Assume that x € C.
Since C C D and D = BU {z} C CU{z} = C, it follows that C' = D.
Case 2: Assume that « ¢ C. T will show that C = B.
Let y € C.
Since C € D = BU {z}, we must have y € BU {z}.
This implies that y € B or y € {z}.
Since y € C and = ¢ C, we have y # x, hence y ¢ {z}.
Therefore y € B.
This proves that C C B
Since we also have B C C by assumption, we obtain C' = B.
We conclude that ( C'= B or C = D ) is true. O

3.4 13(a,d). Let R be a rectangle with horizontal and vertical sides of positive
lengths.

Let H be the set of all rectangles with horizontal and vertical sides of positive
lengths that are contained in R.

Consider the partial order C on H given by inclusion of rectangles.
Theorem 1: VS € P(H) : R is an upper bound of S.

This is true because for each rectangle @ € H we have Q C R.
Theorem 2: 35 € P(H) : S does not have a smallest upper bound.

Take S = 0.

Then every rectangle @ € H is an upper bound for S.

Assume that Qg is a smallest upper bound for S.



Then Qg is a smallest element of H.

Therefore Qg C ﬂ Q=0.
QeH

It follows that Qo = () ¢ H, a contradiction.

Theorem 2a: VS € P(H) : S # 0 = S has a smallest upper bound.

This is a consequence of the fact that any non-empty bounded subset A of the
real numbers R has a smallest upper bound sup A and a greatest lower bound inf A.

Assume that R is placed in a coordinate system (with horizontal z-axis and
vertical y-axis).

For any rectangle @ € H we denote the lower-left corner of @ by (z1(Q),vy1(Q))
and we denote the upper-right corner of @ by (22(Q),y2(Q)).

Given two rectangles @, Q" € H we then have Q C @’ if and only if

(22(Q) > #1(Q) and y1(Q) > 11 (Q") and 25(Q) < 72(Q") and 12(Q) < y2(Q")).

Let S € H and assume S # 0.

Then the smallest upper bound for S is the unique rectangle Q’ satisfying:

21(Q') = inf{z,(Q) | Q € 5}

0(Q) = nf{1(Q) | Q € S}
2(Q') = sup{2>(Q) | Q € S}
¥2(Q') = sup{y2(Q) | Q € S}

Since Theorem 2a is strictly speaking not necessary in order to answer problem
3.3(a), I will not prove this. However this is not hard, one simply have to work
systematically with the definitions.

Theorem 3: 35 € P(H) : S does not have a smallest element.
Let Q1,Q2 € H be rectangles contained in R such that @1 ¢ Q2 and Q2 Z Q1.
Take S = {Q17Q2}.

Since no element of S is a lower bound for S, S has no smallest element.

4.1 1(b,c,d,e).
(b) The set is not a function because 1 is paired with more than one integer.
(c) The relation is a function with domain {1,2} and range {1,2}. Another

possible codomain is Z.

(d) The relation is not a function because it contains (0,0) and
1

(0,7).
(e) The relation is not a function because it contains (1,1) and (1

,2).

4.1 3(b). Let f = {(z,y) e Rx R |y = 2% +5}.
Dom(f)={reR|FyeR: (z,y) € ft={zeR|yeR:y=22+5}=R.
Rng(f)={yeR|IzeR:y=22+5}={yeR|y>5}.

The set R is an alternative codomain.

4.1 13.
Theorem: () is a function with domain 0.

Proof. 1T will show that ) is a function from @ to .
This means that:
Vee®Iyeh: (z,y) €0.
This is true because every statement of the form Vx € ) : P(z) is true. O

Theorem: Let A and B be sets and let f : A — B be a function. Then the
following are equivalent:

1H)A=0

(2) f=0.



(3) Rng(f) =0

Proof. (1) = (2): Assume A = ().
Since f C A x B =0, it follows that f = 0.
(2) = (3): Assume f = 0.
Then Rng(f) ={ye B |3z € A: (z,y) € f} =0.
(3) = (1): Assume A # ().
Choose = € A.
Since f is a function we can choose y € B such that (z,y) € f.
But then y € Rng(f), so Rng(f) # 0.

4.2 5(b).
Consider the function f = {(z,y) e R xR | y = 22% + 1}.
The inverse relation is f~! = {(z,y) e R x R | z = 2y* + 1}.
This is not a function because (3, —1) € f~! and (3,1) € f~!, but —1 # 1.

4.2 5(g).
Set A=R— {1} and B=R — {0}.
Consider the relation f = {(z,y) € Ax B |y =11}
Then f is a function f: A — B.
(I will not prove this and we do not need to know that f is a function.)
The inverse relation is given by:
fl={zy)eBxAlz= 1} ={(z,y) e Bx A|z(1-y) =1}
={(z,y) eBxA|l-y=a"'}={(z,y) eBxA|ly=1—a"1}.
Claim: f~!': B — A is a function.
Must show: Vz € B Jly € A: (z,y) € f.
Let z € B.
Since € R and x # 0, it follows that 27! € R.
It follows that 1 —x~! € R.
Notice also that 1 — 27! # 1, hence 1 — 27! € A.
Since (z,1 — 2~ 1) € f, we have shown: Jy € A: (z,y) € f.
Let y1,y2 € A. Assume (z,y1) € f and (z,y2) € f.
Then we have y; =1 — 2! and y» = 1 — 2!, hence y; = y».
This finishes the proof that f~! is a function.
Finally, for x € B we have f~1(z) =1 —271.

4.2 15.
Let f: A— B and g: C — D be functions.
Define f x g = {((aac)a (b7 d)) | (aab) € f and (Ca d) € g}'
(a) Claim: fx g: AxC — B x D is a function.
We must show: Ve € Ax C 3ly € Bx D: (z,y) € f X g.
Let z € A C.
Choose a € A and ¢ € C such that z = (a,c).
Set b = f(a), d = g(c), and y = (b, d).
Since (a,b) € f and (¢,d) € g, we have (z,y) € f X g.
Let y1,y2 € B x D.
Assume (z,y1) € f X g and (x,y2) € f X g.
Choose by, by € B and dy,ds € D such that y; = (b1, dy) and yo = (ba, da).
Since (z,y1) € f X g, we have (a,b1) € f and (c,d1) € g.
Since (z,y2) € f X g, we have (a,by) € f and (¢,ds) € g.



Since (a,by) € f and (a,bs) € f and f is a function, it follows that by = bs.
Since (¢,dy1) € g and (¢,d3) € g and g is a function, it follows that dy = da.
Therefore y1 = (b1,d1) = (ba,d2) = ya.

(b) Let (a,c) € Ax C.

Claim: (f x g)(a, ) = (f(a), 9(c)).

Set b= f(a) and d = g(c).

Since (a,b) € f and (¢,d) € g, we have ((a,¢), (b,d)) € f x g.

It follows that (f x g)(a,c) = (b,d) = (f(a), g(c)).

4.3 1(d).
Let f:R — R be given by f(z) = z3.
Claim: f is onto R.
Must show: Vy € R Jz e R: f(z) =y.
Let y e R.
Set ¢ = |y| + 1.
Then ¢ = |y|* + 3|y|* + 3ly| + 1 > |y|.
It follows that f(—c) <y < f(c).
Notice that f is continuous on the closed interval [—c¢, ¢].
The intermediate value theorem therefore implies that:
JreR: f(z)=y.
This is what we had to prove.

4.3 1(g).
Let f: R — R be defined by f(x) = sin(x).
Since we have —1 < sin(z) < 1 for all z € R, it follows that 2 ¢ Rng(f).
Therefore f is not onto R.

4.3 1(h).
Let f: R x R — R be defined by f(z,y) =z —y.
Claim: f is onto R.
Must show: Vz € RJa e R xR : f(a) = 2.
Let z € R.
Set a = (2,0) € R x R,
Then f(a) = f(z,0) = z.

4.3 10.
Let f: R — R be an increasing function.
This means: Vry,20 € R: z1 < 29 = f(x1) < f(z2).
Claim: f is one-to-one.
We must show: Vi, ze € R: f(x1) = f(a2) = x1 = x9.
I will prove the equivalent statement: Va1,29 € R: x1 # x9 = f(x1) # f(z2).
Let 1,29 € R.
Assume 1 # xo.
Case 1: Assume x1 < xo.
Then f(x1) < f(x2), hence f(x1) # f(x2).

Case 2: Assume z9 < 7.

Then f(z2) < f(z1), hence f(21) # f(x2).
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4.4 3(d).
5T — 5
Define G : (3,00) — (5,00) by G(z) =
x

-3

Define F' : (5,00) — (3,00) by F(z) = 5z 55.
Claim: F'oG = [(3) and Go F = I5 ).
Let z € (3,0).
Set y = G(x). Then we have:

=525
zy —3y =5 —5
Ty —o5r =3y —5
T = ‘Syyjss.
It follows that (F o G)(z) = F(G(x)) = F(y) = =.
Let z € (5,0).
Set y = F(x). Then we have:

3x—=5
Ty —£5y5: 3x —5
zy —3r =5y —>
=y
It follows that (G o F)(z) = G(F(x)) = G(y) = .
4.4 6.

Let F: A — B and G : B — A be functions.
Claim:

(GoF =1I4and FoG = Ig) = (Fis1-1 and onto B, and G is 1-1 and onto A)
Proof: Assume that GoF =14 and FFoG = Ip.

Then Theorem 4.4.4(a) implies that G = F~1,

Since F~! is a function, it follows from Theorem 4.4.2(a) that F is one-to-one.
Since Rng(F) = Dom(F~1) = Dom(G) = B, it follows that F is onto B.

A similar argument shows that G is 1-1 and onto A.

Note: To get the most out of the solutions to section 4.6, you need to figure out
what was on my scratch paper when I did the problems.

4.6 5(b).
Let (z,,) be the sequence defined by z,, = 2L
Claim: z,, — 1 as n — oo.
Must show: Ve >03IN e NVneN:n>N = |z, — 1| <e.
Let € > 0.
Choose N € N so large that N > %
Will show: vn e N: n> N = |z, — 1| < e
Let n € N.
Assume n > N.
Then |z, — 1| = |2 — 1| =

4.6 5(c).
Define (z,,) by x,, = n%.
Claim: The sequence (z,) diverges.
Must show: ~ (ILERVe>0INeNVneN:n>N = |z, — L| <¢€)
Equivalently: VL e R3e >0VN eNIneN:n>N A |z, —L| > ¢
Let L € R.

1
< Nf< €.

1
n



Set € = 1.

I will show: VN e NIneN:n>N Az, —L| > ¢
Let N € N.

Choose n € N so large that n > max(N, L + 1).
Then n®> >n > L+ 1.

It follows that |z, — L|=n? - L>n—-L>1=c¢.

4.6 5(f).
Define (z,,) by z, = vn+1—4/n.
Claim: z,, — 0 as n — oo.
Must show: Ve >03IN e NVneN:n>N = |z, — 0| <e
Let € > 0.
Choose N € N so large that N > Eiz
Will show: vn e N:n> N = |z, — 0| <e
Let n € N.
Assume n > N.
Then 1 < €2N < 4é2n.
It follows that 1 < 2ey/n.
Therefore n + 1 < n + 2ey/n < n + 2ey/n + €2 = (v/n + €)%
We deduce that vn +1 < /n+e.
Finally, we obtain |z, — 0| =vn+1—/n <e.

4.6 5(h).
Define (z,,) by @, = 2.
Claim: z,, — 0 as n — oo.
Must show: Ve >03IN e NVneN:n>N = |z, — 0| <e
let € > 0.
Choose N € N so large that N > g.
Will show: ¥Vn e N:n >N = |z, — 0] <e
Let n € N.
Assume n > N.
Then |z, — 0= & <8 < & <

n

4.6 6.
Let (zy) and (y,) be sequences of real numbers, and let L, M,r € R.
Assume that x,, — L for n — oo, and that y,, = M for n — oo.

(b) Define (z,) by 2z, = ©n — Yn-

Claim: z, - L — M as n — oo.

Must show: Ve >03dN e NVneN:n>N = |z, — (L - M)| <e¢
Let € > 0.

Since ,, — L, I can choose Ny € N such that: Vn e N: n > Ny = |2, — L| <
Since y,, — M, I can choose Ny € N such that: Vn € N: n > Ny = |y, — M| <
Set N:maX(Nl,Ng).

Will show: Vn e N: n> N = |z, — (L — M)| <e.

Let n € N.

Assume n > N.

Then n > N7 and n > Ns.

It follows that:

2w — (L= M)| = (20 — L) + (M = )| < |on — LI+ M —ya| < 5+ 5 =<

1Y TN



(e) Define (z,) by 2z, = Tnyn.

Claim: z, — LM as n — co.

Must show: Ve >03IN e NVneN:n>N = |z, — LM| <e¢
Let € > 0.

Since x,, — L, I can choose N; € N such that:

VneN:n>N; = [z, — L| <min(l, 5rzy)-

Since y,, — M, I can choose Ny € N such that:

Vn € N : n>N2:>|yn—M|<m

Set N = max(Ny, Na).

Will show: vn e N: n > N = |z, — LM| <e.

Let n € N.

Assume n > N.

Then we have [z, — L[ < min(1, 5r3f7y) and [yn — M| < 5072757
It follows that |z,| = |L + =, — L| <|L| + |z, — L| < |L| + 1.

We obtain:

|z — LM| = |xpnyn — LM| = |xpyn — 2, M + 2, M — LM
<l — 2nM| + [2aM — LM = |2, - [g — M|+ |2 — L] - |M]
<L+ Dgqzn + sqan Ml <5+ 5=«

4.6 8(c).
Let (x,,) be a sequences of real numbers, and let L € R.
Assume that z,, — L as n — oo.
Let f: N — N be an increasing function.
This means that we have: Vm,n e N: m <n = f(m) < f(n).
Define a new sequence (y,) by setting y, = x () for each n € N.
Then (y,,) is a subsequence of (x,).
Example: If f(n) = 2n, then (y,) = (x2, 24, Ts, . . . ).

Claim 1: Yn e N: n < f(n).

We prove this by induction on n.

Basis step: Since f(1) € N, we have 1 < f(1).
Inductive step: Let n € N. Assume n < f(n).
Since f is increasing, we have f(n) < f(n +1).
It follows that n +1 < f(n)+ 1< f(n+1).
We conclude by the PMI that Claim 1 is true.

Claim 2: y, — L as n — oo.

Must show: Ve >0IN e NVneN:n>N = |y, — L| <e

Let € > 0.

Since x,, — L, we may choose N € N such that: Vn e N: n > N = |z, — L| <e.
Will show: YVn e N:n >N = |y, — L| <e.

Let n € N.

Assume n > N.

Then f(n) >n > N.

It follows that |y, — L| = |z fn) — L] < e.



