SOLUTION TO SELECTED HOMEWORK PROBLEMS

Here are solutions to some selected problems from homework sets 2 and 3. Most
of the proofs consists of skeletons. You might benefit from identifying these skele-
tons, for example by drawing boxes around them. And from completing the skele-
tons in cases where I did not include the last line of them. Enjoy!

— Anders.

1.4 6(d).
Theorem: Va,b € R : |a+b| < |a| + |b]

Proof. Let a,b € R. We must show that |a + b| < |a| + |b|.

We consider 4 cases:

Case 1: Assume that a > 0 and b > 0.

Then a + b > 0, and we have |a| = a, |b| = b, and |a + b =a + .

It follows that |a + b| = |a| + |b].

Case 2: Assume that a < 0 and b < 0.

Then a + b < 0, and we have |a| = —a, and |b| = —b, and |a + b| = —a — b.

It follows that |a + b| = |a| + |b].

Case 3: Assume that a < 0 < b.

Then |a| = —a and |b] = b.

We consider two subcases.

Case 3a: Assume that a +b > 0.

Then |a 4+ b| = a + b.

It follows that |a +b| = a + b = —l|a| + |b| < |a|] + |b] (since |a| > 0.)

Case 3b: Assume that a +b < 0.

Then |a 4+ b| = —a — b.

It follows that |a +b| = —a — b = |a|] — |b] < |a| + |b] (since |b] > 0.)

Case 4: Assume that b < 0 < a:

By interchanging a and b, we can use Case 3 to deduce that |a + b| < |a| + |b].

Since we have exhausted all possibilities for a and b, we conclude that |a + b| <
la] + [b].

Since a,b € R were arbitrary, we have proved: Va,b € R : |[a+b| <|a|+ 0] O

1.4 9(c).
Theorem: Va,b,c € R: (ab> 0 and bc < 0) =
(Fr1, 79 € R : 21 # x5 and ax? + bry + ¢ = ax3 + bwy + ¢ = 0)

Proof. Let a,b,c € R.
Assume that ab > 0 and bc < 0.
It follows that ab®c = (ab)(bc) < 0, hence ac < 0.

Set D = b? — 4ac. Since ac < 0 we deduce that D > 0.

Setlj:%andl?:%

Since D > 0 and a # 0, it follows that 1, z2 € R and 1 # x».
Finally, a calculation shows that az? + bz; + ¢ = az + bry + ¢ = 0. g
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1.5 7(b).
Theorem: Va,b,c € N: (a+ 1 divides b and b divides b+ 3) < (a =2 and b = 3)

Proof. Let a,b,c € N.
Assume that a = 2 and b = 3.
Thena+1=3 and b+ 3 =6, so a+ 1 divides b and b divides b + 3.
On the other hand, assume that a + 1 divides b and b divides b + 3.
Then b divides 3, s0 b =1 or b= 3.
Since a + 1 divides b and a + 1 > 2, we also have b > 2.
It follows that b = 3.
Since a + 1 divides 3 and a + 1 > 2, we must have a + 1 = 3, hence a = 2. O

1.6 3.

Conjecture 1: Vn € N: (n is even and n > 2) = (3p1,p2 € N : p; is prime and
po is prime and n = p; + pa)

Conjecture 2: Ym € N: (m is odd and m > 5) = (3Ip1, p2,p3 € N : p1,pa, ps are
primes and m = p; + pa + p3)

Theorem: Conjecture 1 implies Conjecture 2.

Proof. Assume that Conjecture 1 is true.

Let m € N.
Assume that m is odd and m > 5.
Set n =m — 3.

Then n is even and n > 2.
According to Conjecture 1 we may choose p1,p2 € N such that p; and py are
primes and n = p1 + po.

Take p3 = 3.
Then pq, po, p3 are primes, and m = n + p3 = p1 + p2 + p3. |
1.6 6(j).

Theorem: 3L,G€Z: (L<GandVz €eR: (L <z <G = 40> 10— 2z > 12))

Proof. Take L = —2 and G = —1.
Then L < G.
I will show that: Vx e R: (L < <G = 40> 10 — 2z > 12)
Let x € R.
Assume that L < z < G.
This means that —2 < z < —1.
We deduce that 2 < —2x < 4, and therefore 12 < 10 — 2z < 14 < 40. O



