Solution to HW 6

2.2 9(g).

Theorem: \forall sets $A, B, C: (A \cup B) \cap C \subset A \cup (B \cap C)$

Proof. Let A, B, C be sets.

Let $x \in (A \cup B) \cap C$.

Then $x \in A \cup B$ and $x \in C$.

In particular, we have $x \in A$ or $x \in B$.

If $x \in A$, then $x \in A \cup (B \cap C)$.

If $x \in B$, then $x \in B \cap C$, hence $x \in A \cup (B \cap C)$.

We conclude that $x \in A \cup (B \cap C)$, as required.

2.2 10(d).

Theorem: \forall sets A, B, C, D : $(C \subset A \text{ and } D \subset B) \Rightarrow (D - A \subset B - C)$.

Proof. Let A, B, C, D be sets.

Assume that $C \subset A$ and $D \subset B$.

Let $x \in D - A$.

Then $x \in D$ and $x \notin A$.

Since $x \in D$ and $D \subset B$, we have $x \in B$.

Since $x \notin A$ and $C \subset A$, we have $x \notin C$.

Therefore $x \in B - C$.

2.2 11(d).

Theorem: Let $A = \{1, 2\}$ and $B = \{2\}$. Then $\mathcal{P}(A) - \mathcal{P}(B) \not\subset \mathcal{P}(A - B)$.

Proof. We have $\mathcal{P}(A) - \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} - \{\emptyset, \{2\}\} = \{\{1\}, \{1, 2\}\}\}$ and $\mathcal{P}(A - B) = \mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$ It follows that $\mathcal{P}(A) - \mathcal{P}(B) \not\subset \mathcal{P}(A - B).$

2.2 11(f).

Theorem: Let $A = \{1, 2, 3\}, B = \{2, 3\}, C = \{3\}$. Then $A - (B - C) \neq (A - B) - C$.

Proof. We have $A - (B - C) = \{1, 2, 3\} - \{2\} = \{1, 3\}$ and $(A - B) - C = \{1\} - \{3\} = \{1\}$, hence $A - (B - C) \neq (A - B) - C$.

2.3 1(h). Set $\Delta = (0, \infty)$. For $r \in \Delta$, set $A_r = [-\pi, r)$. Set $\mathcal{A} = \{A_r : r \in \Delta\}$. **Theorem:** $\bigcup_{r \in \Delta} A_r = [-\pi, \infty)$ and $\bigcap_{r \in \Delta} A_r = [-\pi, 0]$.

Proof. The theorem is a consequence of the following four claims.

Claim 1: $\bigcup_{r \in \Delta} A_r \subset [-\pi, \infty)$.

Let $x \in \bigcup_{r \in \Delta} A_r$.

By definition of the union over A, we may choose $r \in \Delta$ s.t. $x \in A_r = [-\pi, r)$.

Since $[-\pi, r) \subset [-\pi, \infty)$, it follows that $x \in [-\pi, \infty)$.

Claim 2: $[-\pi, \infty) \subset \bigcup_{r \in \Delta} A_r$.

Let $x \in [-\pi, \infty)$.

Set r = x + 4.

Then $r \in \Delta$ and $x \in A_r$.

It follows that $x \in \bigcup_{r \in \Delta} A_r$.

Claim 3: $\bigcap_{r \in \Delta} A_r \subset [-\pi, 0]$.

Let $x \in \bigcap_{r \in \Delta} A_r$.

Then $x \in A_1 = [-\pi, 1)$, so we must have $x \ge -\pi$.

```
We prove by contradiction that x \leq 0.
Suppose that x > 0.
```

Set r = x/2.

Since $x \in A_r$, we obtain x < x/2, a contradiction.

We conclude that $-\pi \le x \le 0$, so $x \in [-\pi, 0]$.

Claim 4: $[-\pi, 0] \subset \bigcap_{r \in \Delta} A_r$.

Let $x \in [-\pi, 0]$.

We will show that: $\forall r \in \Delta : x \in A_r$.

Let $r \in \Delta$.

Then $-\pi \le x \le 0 < r$, so we have $x \in [-\pi, r) = A_r$.

It follows that $x \in \bigcap_{r \in \Lambda} A_r$.

2.3 5(b). Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be an indexed family of sets. **Theorem:** $\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$

Proof. Let x be any element of the universe. [Notice that a universe must be given, since otherwise the complement of a set has no meaning.]

The following list of statements are equivalent:

$$\begin{array}{ll} x \in \left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} & \Leftrightarrow \\ x \notin \bigcup_{\alpha \in \Delta} A_{\alpha} & \Leftrightarrow \\ \sim \left(\exists \alpha \in \Delta : x \in A_{\alpha}\right) \end{array}$$

$$x \notin \bigcup_{\alpha \in \Lambda} A_{\alpha} \Leftrightarrow$$

$$\sim (\exists \alpha \in \Delta : x \in A_{\alpha}) \Leftrightarrow$$

$$\forall \alpha \in \Delta : x \notin A_{\alpha} \quad \Leftrightarrow \quad$$

$$\forall \alpha \in \Delta : x \in A_{\alpha}^{c} \Leftrightarrow$$

$$x \in \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$$
.

Since x was arbitrary, we conclude that $\left(\bigcup_{\alpha\in\Delta}A_{\alpha}\right)^{c}=\bigcap_{\alpha\in\Delta}A_{\alpha}^{c}$.

2.3 12.

Theorem: For each $n \in \mathbb{N}$ set $A_n = (0, 1/n)$. Then we have:

- (1) $\forall n \in \mathbb{N} : A_n \subset (0,1).$
- $(2) \ \forall n, m \in \mathbb{N} : A_n \cap A_m \neq \emptyset.$
- (3) $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$.

Proof of (1). Let $n \in \mathbb{N}$. Since $1/n \le 1$, it follows that $A_n = (0, 1/n) \subset (0, 1)$.

Proof of (2). Let $n, m \in \mathbb{N}$.

Case 1: If
$$n \leq m$$
, then $A_m \subset A_n$, hence $A_n \cap A_m = A_m \neq \emptyset$.

Case 2: If
$$n > m$$
, then $A_n \subset A_m$, hence $A_n \cap A_m = A_n \neq \emptyset$.

Proof of (3). Assume that $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$.

Then we may choose $x \in \bigcap_{n \in \mathbb{N}} A_n$.

This implies: $\forall n \in \mathbb{N} : x \in A_n = (0, 1/n)$.

Since $x \in A_1$, we must have 0 < x < 1.

Choose $n \in \mathbb{N}$ so that n > 1/x.

Since x > 1/n, it follows that $x \notin (0, 1/n) = A_n$.

This contradiction shows that our initial assumption was false.

We conclude that
$$\bigcap_{n\in\mathbb{N}} A_n = \emptyset$$
.

2.3 14. Let \mathcal{A} and \mathcal{B} be two families of pairwise disjoint sets. [Make sure to review exactly what a pairwise disjoint family is!]

Set
$$C = A \cap B$$
 and $D = A \cup B$.

Theorem (a): \mathcal{C} is a pairwise disjoint family of sets.

Proof. Let $X, Y \in \mathcal{C}$. We must show that X = Y or $X \cap Y = \emptyset$.

Since $\mathcal{C} \subset \mathcal{A}$, we have $X, Y \in \mathcal{A}$.

Since \mathcal{A} is pairwise disjoint, we deduce that X = Y or $X \cap Y = \emptyset$, as required. \square

Theorem (c): $(\bigcup_{A \in \mathcal{A}} A) \cap (\bigcup_{B \in \mathcal{B}} B) = \emptyset \Rightarrow \mathcal{D}$ is pairwise disjoint.

Proof. Assume that $(\bigcup_{A\in\mathcal{A}}A)\cap(\bigcup_{B\in\mathcal{B}}B)=\emptyset$. Let $X,Y\in\mathcal{D}$. We must show that X=Y or $X\cap Y=\emptyset$.

Since $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$, we have $(X \in \mathcal{A} \text{ or } X \in \mathcal{B})$ and $(Y \in \mathcal{A} \text{ or } Y \in \mathcal{B})$.

Case 1: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{A}$.

Since \mathcal{A} is pairwise disjoint, we must have X = Y or $X \cap Y = \emptyset$.

Case 2: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{B}$.

Since \mathcal{B} is pairwise disjoint, we must have X = Y or $X \cap Y = \emptyset$.

Case 3: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{B}$.

Then $X \subset \bigcup_{A \in \mathcal{A}} A$ and $Y \subset \bigcup_{B \in \mathcal{B}} B$.

Since $(\bigcup_{A\in\mathcal{A}} A) \cap (\bigcup_{B\in\mathcal{B}} B) = \emptyset$, we deduce that $X \cap Y = \emptyset$.

Case 4: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{A}$.

By interchanging X and Y, it follows from Case 3 that $X \cap Y = \emptyset$.

Since we have exhausted all possibilities, we conclude X = Y or $X \cap Y = \emptyset$. \square

Theorem: Let $\mathcal{A} = \{\{1\}\}$ and $\mathcal{B} = \{\{1,2\}\}$, and set $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$. Then \mathcal{A} and \mathcal{B} are both pairwise disjoint families of sets, but \mathcal{D} is not pairwise disjoint.

Proof. It follows directly from the definition that both \mathcal{A} and \mathcal{B} are pairwise disjoint families of sets.

We have $\mathcal{D} = \{\{1\}, \{1, 2\}\}.$

This family is not pairwise disjoint, since the members $X = \{1\}$ and $Y = \{1, 2\}$ of \mathcal{D} do not satisfy that X = Y or $X \cap Y = \emptyset$.