Solution to HW 6 ## 2.2 9(g). **Theorem:** \forall sets $A, B, C: (A \cup B) \cap C \subset A \cup (B \cap C)$ *Proof.* Let A, B, C be sets. Let $x \in (A \cup B) \cap C$. Then $x \in A \cup B$ and $x \in C$. In particular, we have $x \in A$ or $x \in B$. If $x \in A$, then $x \in A \cup (B \cap C)$. If $x \in B$, then $x \in B \cap C$, hence $x \in A \cup (B \cap C)$. We conclude that $x \in A \cup (B \cap C)$, as required. # 2.2 10(d). **Theorem:** \forall sets A, B, C, D : $(C \subset A \text{ and } D \subset B) \Rightarrow (D - A \subset B - C)$. *Proof.* Let A, B, C, D be sets. Assume that $C \subset A$ and $D \subset B$. Let $x \in D - A$. Then $x \in D$ and $x \notin A$. Since $x \in D$ and $D \subset B$, we have $x \in B$. Since $x \notin A$ and $C \subset A$, we have $x \notin C$. Therefore $x \in B - C$. ### 2.2 11(d). **Theorem:** Let $A = \{1, 2\}$ and $B = \{2\}$. Then $\mathcal{P}(A) - \mathcal{P}(B) \not\subset \mathcal{P}(A - B)$. *Proof.* We have $\mathcal{P}(A) - \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} - \{\emptyset, \{2\}\} = \{\{1\}, \{1, 2\}\}\}$ and $\mathcal{P}(A - B) = \mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$ It follows that $\mathcal{P}(A) - \mathcal{P}(B) \not\subset \mathcal{P}(A - B).$ #### 2.2 11(f). **Theorem:** Let $A = \{1, 2, 3\}, B = \{2, 3\}, C = \{3\}$. Then $A - (B - C) \neq (A - B) - C$. *Proof.* We have $A - (B - C) = \{1, 2, 3\} - \{2\} = \{1, 3\}$ and $(A - B) - C = \{1\} - \{3\} = \{1\}$, hence $A - (B - C) \neq (A - B) - C$. **2.3 1(h).** Set $\Delta = (0, \infty)$. For $r \in \Delta$, set $A_r = [-\pi, r)$. Set $\mathcal{A} = \{A_r : r \in \Delta\}$. **Theorem:** $\bigcup_{r \in \Delta} A_r = [-\pi, \infty)$ and $\bigcap_{r \in \Delta} A_r = [-\pi, 0]$. *Proof.* The theorem is a consequence of the following four claims. Claim 1: $\bigcup_{r \in \Delta} A_r \subset [-\pi, \infty)$. Let $x \in \bigcup_{r \in \Delta} A_r$. By definition of the union over A, we may choose $r \in \Delta$ s.t. $x \in A_r = [-\pi, r)$. Since $[-\pi, r) \subset [-\pi, \infty)$, it follows that $x \in [-\pi, \infty)$. Claim 2: $[-\pi, \infty) \subset \bigcup_{r \in \Delta} A_r$. Let $x \in [-\pi, \infty)$. Set r = x + 4. Then $r \in \Delta$ and $x \in A_r$. It follows that $x \in \bigcup_{r \in \Delta} A_r$. Claim 3: $\bigcap_{r \in \Delta} A_r \subset [-\pi, 0]$. Let $x \in \bigcap_{r \in \Delta} A_r$. Then $x \in A_1 = [-\pi, 1)$, so we must have $x \ge -\pi$. ``` We prove by contradiction that x \leq 0. Suppose that x > 0. ``` Set r = x/2. Since $x \in A_r$, we obtain x < x/2, a contradiction. We conclude that $-\pi \le x \le 0$, so $x \in [-\pi, 0]$. Claim 4: $[-\pi, 0] \subset \bigcap_{r \in \Delta} A_r$. Let $x \in [-\pi, 0]$. We will show that: $\forall r \in \Delta : x \in A_r$. Let $r \in \Delta$. Then $-\pi \le x \le 0 < r$, so we have $x \in [-\pi, r) = A_r$. It follows that $x \in \bigcap_{r \in \Lambda} A_r$. **2.3 5(b).** Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be an indexed family of sets. **Theorem:** $\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$ *Proof.* Let x be any element of the universe. [Notice that a universe must be given, since otherwise the complement of a set has no meaning.] The following list of statements are equivalent: $$\begin{array}{ll} x \in \left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} & \Leftrightarrow \\ x \notin \bigcup_{\alpha \in \Delta} A_{\alpha} & \Leftrightarrow \\ \sim \left(\exists \alpha \in \Delta : x \in A_{\alpha}\right) \end{array}$$ $$x \notin \bigcup_{\alpha \in \Lambda} A_{\alpha} \Leftrightarrow$$ $$\sim (\exists \alpha \in \Delta : x \in A_{\alpha}) \Leftrightarrow$$ $$\forall \alpha \in \Delta : x \notin A_{\alpha} \quad \Leftrightarrow \quad$$ $$\forall \alpha \in \Delta : x \in A_{\alpha}^{c} \Leftrightarrow$$ $$x \in \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$$. Since x was arbitrary, we conclude that $\left(\bigcup_{\alpha\in\Delta}A_{\alpha}\right)^{c}=\bigcap_{\alpha\in\Delta}A_{\alpha}^{c}$. # 2.3 12. **Theorem:** For each $n \in \mathbb{N}$ set $A_n = (0, 1/n)$. Then we have: - (1) $\forall n \in \mathbb{N} : A_n \subset (0,1).$ - $(2) \ \forall n, m \in \mathbb{N} : A_n \cap A_m \neq \emptyset.$ - (3) $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$. Proof of (1). Let $n \in \mathbb{N}$. Since $1/n \le 1$, it follows that $A_n = (0, 1/n) \subset (0, 1)$. Proof of (2). Let $n, m \in \mathbb{N}$. Case 1: If $$n \leq m$$, then $A_m \subset A_n$, hence $A_n \cap A_m = A_m \neq \emptyset$. Case 2: If $$n > m$$, then $A_n \subset A_m$, hence $A_n \cap A_m = A_n \neq \emptyset$. Proof of (3). Assume that $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$. Then we may choose $x \in \bigcap_{n \in \mathbb{N}} A_n$. This implies: $\forall n \in \mathbb{N} : x \in A_n = (0, 1/n)$. Since $x \in A_1$, we must have 0 < x < 1. Choose $n \in \mathbb{N}$ so that n > 1/x. Since x > 1/n, it follows that $x \notin (0, 1/n) = A_n$. This contradiction shows that our initial assumption was false. We conclude that $$\bigcap_{n\in\mathbb{N}} A_n = \emptyset$$. **2.3 14.** Let \mathcal{A} and \mathcal{B} be two families of pairwise disjoint sets. [Make sure to review exactly what a pairwise disjoint family is!] Set $$C = A \cap B$$ and $D = A \cup B$. **Theorem** (a): \mathcal{C} is a pairwise disjoint family of sets. *Proof.* Let $X, Y \in \mathcal{C}$. We must show that X = Y or $X \cap Y = \emptyset$. Since $\mathcal{C} \subset \mathcal{A}$, we have $X, Y \in \mathcal{A}$. Since \mathcal{A} is pairwise disjoint, we deduce that X = Y or $X \cap Y = \emptyset$, as required. \square **Theorem** (c): $(\bigcup_{A \in \mathcal{A}} A) \cap (\bigcup_{B \in \mathcal{B}} B) = \emptyset \Rightarrow \mathcal{D}$ is pairwise disjoint. *Proof.* Assume that $(\bigcup_{A\in\mathcal{A}}A)\cap(\bigcup_{B\in\mathcal{B}}B)=\emptyset$. Let $X,Y\in\mathcal{D}$. We must show that X=Y or $X\cap Y=\emptyset$. Since $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$, we have $(X \in \mathcal{A} \text{ or } X \in \mathcal{B})$ and $(Y \in \mathcal{A} \text{ or } Y \in \mathcal{B})$. Case 1: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{A}$. Since \mathcal{A} is pairwise disjoint, we must have X = Y or $X \cap Y = \emptyset$. Case 2: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{B}$. Since \mathcal{B} is pairwise disjoint, we must have X = Y or $X \cap Y = \emptyset$. Case 3: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{B}$. Then $X \subset \bigcup_{A \in \mathcal{A}} A$ and $Y \subset \bigcup_{B \in \mathcal{B}} B$. Since $(\bigcup_{A\in\mathcal{A}} A) \cap (\bigcup_{B\in\mathcal{B}} B) = \emptyset$, we deduce that $X \cap Y = \emptyset$. Case 4: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{A}$. By interchanging X and Y, it follows from Case 3 that $X \cap Y = \emptyset$. Since we have exhausted all possibilities, we conclude X = Y or $X \cap Y = \emptyset$. \square **Theorem:** Let $\mathcal{A} = \{\{1\}\}$ and $\mathcal{B} = \{\{1,2\}\}$, and set $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$. Then \mathcal{A} and \mathcal{B} are both pairwise disjoint families of sets, but \mathcal{D} is not pairwise disjoint. *Proof.* It follows directly from the definition that both \mathcal{A} and \mathcal{B} are pairwise disjoint families of sets. We have $\mathcal{D} = \{\{1\}, \{1, 2\}\}.$ This family is not pairwise disjoint, since the members $X = \{1\}$ and $Y = \{1, 2\}$ of \mathcal{D} do not satisfy that X = Y or $X \cap Y = \emptyset$.