SOLUTION TO HW 8

```
2.5 1(b).
Theorem: \forall n \in \mathbb{N}: n > 33 \Rightarrow (\exists s, t \in \mathbb{Z}: s \geq 3 \land t \geq 2 \land n = 4s + 5t).
Proof. Define the predicate
   P(n): n > 33 \Rightarrow (\exists s, t \in \mathbb{Z} : s \ge 3 \land t \ge 2 \land n = 4s + 5t)
   We must prove: \forall n \in \mathbb{N}: P(n).
   By the PCI, it is enough to show:
   (*) \forall n \in \mathbb{N}: (P(1) \land P(2) \land \cdots \land P(n-1)) \Rightarrow P(n).
   Let n \in \mathbb{N}.
   Assume P(1) \wedge P(2) \wedge \cdots \wedge P(n-1).
   We must show that P(n) is true.
   Assume that n > 33.
   We consider two cases.
   Case 1: Assume that 34 \le n \le 37.
   Set s = 40 - n and t = n - 32.
   Then s \ge 40 - 37 = 3 and t \ge 34 - 32 = 2.
   Furthermore, we have 4s+5t=4(40-n)+5(n-32)=5n-4n+4\cdot 40-5\cdot 32=n.
   It follows that P(n) is true.
   Case 2: Assume that n \geq 38.
   By assumption we know that P(n-4) is true.
   Since P(n-4) holds and n-4>33, we may choose s,t\in\mathbb{Z} such that:
   s \ge 3 \text{ and } t \ge 2 \text{ and } n - 4 = 4s + 5t.
   Set s' = s + 1 and t' = t.
   Then we have s', t' \in \mathbb{Z}, s' \geq 3, t' \geq 2, \text{ and } 4s' + 5t' = (4s + 5t) + 4 = n.
   It follows that P(n) is true.
   We deduce that (*) is true, hence the theorem is true by the PCI.
                                                                                                  2.5 2. Let a_1 = 2, a_2 = 4, and a_{n+2} = 5a_{n+1} - 6a_n for all n \ge 1.
Theorem: \forall n \in \mathbb{N}: a_n = 2^n.
Proof. Define the predicate
   P(n): a_n = 2^n.
   We must prove: \forall n \in \mathbb{N} : P(n).
   By the PCI, it is enouth to show:
   (*) \forall n \in \mathbb{N}: (P(1) \land P(2) \land \cdots \land P(n-1)) \Rightarrow P(n).
   Let n \in \mathbb{N}.
   Assume P(1) \wedge P(2) \wedge \cdots \wedge P(n-1).
   We must show that P(n) is true.
   We consider 3 cases.
   Case 1: If n = 1, then a_n = 2 = 2^n.
   Case 2: If n = 2, then a_n = 4 = 2^n.
   Case 3: Assume that n \geq 3.
   Then P(n-2) holds by assumption, so we have a_{n-2} = 2^{n-2}.
   And P(n-1) holds by assumption, so we have a_{n-1}=2^{n-1}.
   We therefore obtain:
   a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot 2^{n-1} - 6 \cdot 2^{n-2} = 5 \cdot 2^{n-1} - 3 \cdot 2^{n-1} = 2 \cdot 2^{n-1} = 2^n.
   This shows that P(n) is true.
```

We deduce that (*) is true, hence the theorem is true by the PCI.

2.5 4(b).

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 3, f_5 = 5,$$

 $f_6 = 8, f_7 = 13, f_8 = 21, f_9 = 34, f_{10} = 55.$

2.5 5(b).

Theorem: $\forall n \in \mathbb{N}: \gcd(f_n, f_{n+1}) = 1.$

Proof. (i) Basis step:

For n = 1 we have $gcd(f_n, f_{n+1}) = gcd(f_1, f_2) = gcd(1, 1) = 1$.

(ii) Inductive step: Let $n \in \mathbb{N}$.

Assume that $gcd(f_n, f_{n+1}) = 1$.

Then we obtain

$$\gcd(f_{n+1}, f_{n+2}) = \gcd(f_{n+1}, f_n + f_{n+1}) = \gcd(f_{n+1}, f_n) = 1.$$

(iii) Conclude by PMI: $\forall n \in \mathbb{N}: \gcd(f_n, f_{n+1}) = 1$.

2.5 8.

Theorem:

 $\forall a, b \in \mathbb{Z}$: $(a, b) \neq (0, 0) \Rightarrow$ (there is a smallest positive linear comb. of a and b).

Proof. Let $a, b \in \mathbb{Z}$.

Assume that $(a, b) \neq (0, 0)$.

Consider the set of positive linear combinations of a and b:

$$S = \{ n \in \mathbb{N} \mid \exists s, t \in \mathbb{Z} : n = sa + tb \}.$$

Since $(a, b) \neq (0, 0)$, we must have $a \neq 0$ or $b \neq 0$.

It follows that |a| + |b| > 0, hence $|a| + |b| \in \mathbb{N}$.

Notice that |a| + |b| is a linear combination of a and b.

In fact, we may choose $s \in \{1, -1\}$ such that |a| = sa.

And we may choose $t \in \{1, -1\}$ such that |b| = tb.

Then we have |a| + |b| = sa + tb.

We deduce that $|a| + |b| \in S$.

This shows that S is not empty.

Since S is a non-empty subset of \mathbb{N} ,

it follows from the WOP that S has a smallest element m.

This integer m is the smallest linear combination of a and b.

$3.1\ 5(g,h)$.

Define the relations

$$R = \{(1,5), (2,2), (3,4), (5,2)\},\$$

$$S = \{(2,4), (3,4), (3,1), (5,5)\},$$
and

$$T = \{1, 4\}, (3, 5), (4, 1)\}.$$

Then
$$S \circ T = \{(3,5)\}$$
 and $R \circ (S \circ T) = \{(3,2)\}.$

And we have $R \circ S = \{(3,5), (5,2)\}$ and $(R \circ S) \circ T = \{(3,2)\}.$

3.1 9.

Let $R \subset A \times B$ and $S \subset B \times C$ be relations.

Then $S \circ R \subset A \times C$ is a relation from A to C.

(a) Claim: $Dom(S \circ R) \subset Dom(R)$.

Let $x \in \text{Dom}(S \circ R)$.

By definition of the domain of a relation,

we may choose $z \in C$ such that $(x, z) \in S \circ R$.

By definition of the composition of two relations,

we may choose $y \in B$ such that $(x, y) \in R$ and $(y, z) \in S$. Since $(x, y) \in R$, it follows that $x \in Dom(R)$.

(b) Take $A = B = C = \{1, 2\}$. Set $R = I_{\{1,2\}} = \{(1,1), (2,2)\}$ and $S = \{(1,1)\}$. Then $S \circ R = \{(1,1)\}$.

We have $Dom(S \circ R) = \{1\} \subsetneq \{1, 2\} = Dom(R)$.

(c) We always have $\operatorname{Rng}(S \circ R) \subset \operatorname{Rng}(S)$.

The opposite inclusion is not true in the following example.

Take $A = B = C = \{1, 2\}.$

Set $R = \{(1,1)\}$ and $S = I_{\{1,2\}} = \{(1,1),(2,2)\}.$

Then $S \circ R = \{(1,1)\}.$

We have $\operatorname{Rng}(S \circ R) = \{1\} \subsetneq \{1, 2\} = \operatorname{Rng}(S)$.