SOLUTION TO HW &8

2.5 1(b).
Theorem: Vn e N: n >33 = (3s,t € Z:s >3 At >2An=4s+ bt).

Proof. Define the predicate
P(n):n>33=(Is,t€Z:s>3Nt>2An=4s+5t)
We must prove: Vn € N: P(n).
By the PCI, it is enough to show:
(*)YVneN: (PA)AP2)A---AP(n—1)) = P(n).
Let n € N.
Assume P(1) AP(2)A---AP(n—1).
We must show that P(n) is true.
Assume that n > 33.
We consider two cases.
Case 1: Assume that 34 <n < 37.
Set s =40 —n and t =n — 32.
Then s >40—-37=3 and t > 34 — 32 = 2.
Furthermore, we have 4s+5t = 4(40—n)+5(n—32) = 5n—4n+4-40—5-32 = n.
It follows that P(n) is true.
Case 2: Assume that n > 38.
By assumption we know that P(n — 4) is true.
Since P(n — 4) holds and n — 4 > 33, we may choose s,¢ € Z such that:
s>3andt>2andn—4=4s+ 5t.
Set ' =s+1and t' =t.
Then we have s',t' € Z, s’ > 3, ¢’ > 2, and 4s’ + 5t' = (4s 4+ 5t) + 4 = n.
It follows that P(n) is true.
We deduce that (*) is true, hence the theorem is true by the PCL O

2.5 2. Let a1 =2, ap =4, and a,42 = ba,41 — 6a, for all n > 1.
Theorem: Vn € N: a,, = 2".

Proof. Define the predicate
P(n):a, = 2™
We must prove: Vn € N: P(n).
By the PCI, it is enouth to show:
() VneN: (P(L)AP(2)A---ANP(n—1)) = P(n).
Let n € N.
Assume P(1) AP(2) A--- A P(n—1).
We must show that P(n) is true.
We consider 3 cases.
Case 1: If n =1, then a, =2 =2™.
Case 2: If n = 2, then a,, = 4 = 2™.
Case 3: Assume that n > 3.
Then P(n — 2) holds by assumption, so we have a, o = 2"72.
And P(n — 1) holds by assumption, so we have a,,_; = 2771,
We therefore obtain:
ap =5ap_1 —6a,_5=5-2""1 —6.2""2 =5.2n"1 _3.2n"1 —9.9on"1 —9n,
This shows that P(n) is true.
We deduce that (*) is true, hence the theorem is true by the PCL O
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2.5 4(b).
fi=1 fo=1, f3=2,f1=3, fs =5,
f6 = 87 f7 = 13) fS = 21; f9 :347 flO = 55.

2.5 5(b).
Theorem: Vn € N: ged(f,, fny1) = 1.

Proof. (i) Basis step:
For n =1 we have ged(fn, fnt1) = ged(f1, fo) = ged(1,1) = 1.
(ii) Inductive step: Let n € N.
Assume that ged(fn, frnt1) = 1.
Then we obtain

ged(frot1, fr+2) = ged(fns1, fr + fat1) = ged(frg1, fn) = 1.
(iii) Conclude by PMI: Vn € N: ged(fn, frt1) = 1. O

2.5 8.
Theorem:
Va,b € Z: (a,b) # (0,0) = (there is a smallest positive linear comb. of a and b).

Proof. Let a,b € Z.
Assume that (a,b) # (0,0).
Consider the set of positive linear combinations of a and b:
S={neN|3s,t €Z:n=sa+tb}.
Since (a,b) # (0,0), we must have a # 0 or b # 0.
It follows that |a| 4 |b| > 0, hence |a| + |b] € N.
Notice that |a| 4 |b| is a linear combination of a and b.
In fact, we may choose s € {1, —1} such that |a| = sa.
And we may choose ¢ € {1, —1} such that |b| = tb.
Then we have |a| + |b] = sa + tb.
We deduce that |a| + |b] € S.
This shows that S is not empty.
Since S is a non-empty subset of N,
it follows from the WOP that S has a smallest element m.
This integer m is the smallest linear combination of a and b. O

3.1 5(g,h).
Define the relations
R = {(17 5),(2,2),(3,4), (572)}7
S =1{(2,4),(3,4),(3,1),(5,5)}, and
T =1{1,4),(3,5),(4,1)}.
Then SoT ={(3,5)} and Ro (SoT) = {(3,2)}.
And we have Ro S = {(3,5),(5,2)} and (RoS)oT = {(3,2)}.

3.1 9.
Let RC Ax B and S C B x C be relations.
Then So R C A x C is a relation from A to C.
(a) Claim: Dom(S o R) C Dom(R).
Let € Dom(S o R).
By definition of the domain of a relation,
we may choose z € C such that (z,z) € So R.
By definition of the composition of two relations,



we may choose y € B such that (z,y) € R and (y,2) € S.
Since (z,y) € R, it follows that € Dom(R).
(b) Take A= B =C ={1,2}.
Set R=1I10y =1{(1,1),(2,2)} and S = {(1,1)}.
Then So R={(1,1)}.
We have Dom(S o R) = {1} C {1,2} = Dom(R).
(¢) We always have Rng(S o R) C Rng(.5).
The opposite inclusion is not true in the following example.
Take A= B =C ={1,2}.
Set R={(1,1)} and S = I1 9y = {(1,1),(2,2)}.
Then So R={(1,1)}.
We have Rng(S o R) = {1} C {1,2} = Rng(9).



