
Solution to HW 8

2.5 1(b).
Theorem: ∀n ∈ N: n > 33 ⇒ (∃s, t ∈ Z : s ≥ 3 ∧ t ≥ 2 ∧ n = 4s+ 5t).

Proof. Define the predicate
P (n): n > 33 ⇒ (∃s, t ∈ Z : s ≥ 3 ∧ t ≥ 2 ∧ n = 4s+ 5t)
We must prove: ∀n ∈ N: P (n).
By the PCI, it is enough to show:
(*) ∀n ∈ N: (P (1) ∧ P (2) ∧ · · · ∧ P (n− 1) ) ⇒ P (n).
Let n ∈ N.
Assume P (1) ∧ P (2) ∧ · · · ∧ P (n− 1).
We must show that P (n) is true.
Assume that n > 33.
We consider two cases.
Case 1: Assume that 34 ≤ n ≤ 37.
Set s = 40− n and t = n− 32.
Then s ≥ 40− 37 = 3 and t ≥ 34− 32 = 2.
Furthermore, we have 4s+5t = 4(40−n)+5(n−32) = 5n−4n+4·40−5·32 = n.
It follows that P (n) is true.
Case 2: Assume that n ≥ 38.
By assumption we know that P (n− 4) is true.
Since P (n− 4) holds and n− 4 > 33, we may choose s, t ∈ Z such that:
s ≥ 3 and t ≥ 2 and n− 4 = 4s+ 5t.
Set s′ = s+ 1 and t′ = t.
Then we have s′, t′ ∈ Z, s′ ≥ 3, t′ ≥ 2, and 4s′ + 5t′ = (4s+ 5t) + 4 = n.
It follows that P (n) is true.
We deduce that (*) is true, hence the theorem is true by the PCI. �

2.5 2. Let a1 = 2, a2 = 4, and an+2 = 5an+1 − 6an for all n ≥ 1.
Theorem: ∀n ∈ N: an = 2n.

Proof. Define the predicate
P (n) : an = 2n.
We must prove: ∀n ∈ N : P (n).
By the PCI, it is enouth to show:
(*) ∀n ∈ N: (P (1) ∧ P (2) ∧ · · · ∧ P (n− 1) ) ⇒ P (n).
Let n ∈ N.
Assume P (1) ∧ P (2) ∧ · · · ∧ P (n− 1).
We must show that P (n) is true.
We consider 3 cases.
Case 1: If n = 1, then an = 2 = 2n.
Case 2: If n = 2, then an = 4 = 2n.
Case 3: Assume that n ≥ 3.
Then P (n− 2) holds by assumption, so we have an−2 = 2n−2.
And P (n− 1) holds by assumption, so we have an−1 = 2n−1.
We therefore obtain:
an = 5an−1 − 6an−2 = 5 · 2n−1 − 6 · 2n−2 = 5 · 2n−1 − 3 · 2n−1 = 2 · 2n−1 = 2n.
This shows that P (n) is true.
We deduce that (*) is true, hence the theorem is true by the PCI. �

1



2

2.5 4(b).
f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5,
f6 = 8, f7 = 13, f8 = 21, f9 = 34, f10 = 55.

2.5 5(b).
Theorem: ∀n ∈ N: gcd(fn, fn+1) = 1.

Proof. (i) Basis step:
For n = 1 we have gcd(fn, fn+1) = gcd(f1, f2) = gcd(1, 1) = 1.
(ii) Inductive step: Let n ∈ N.
Assume that gcd(fn, fn+1) = 1.
Then we obtain
gcd(fn+1, fn+2) = gcd(fn+1, fn + fn+1) = gcd(fn+1, fn) = 1.
(iii) Conclude by PMI: ∀n ∈ N: gcd(fn, fn+1) = 1. �

2.5 8.
Theorem:

∀a, b ∈ Z: (a, b) 6= (0, 0) ⇒ (there is a smallest positive linear comb. of a and b).

Proof. Let a, b ∈ Z.
Assume that (a, b) 6= (0, 0).
Consider the set of positive linear combinations of a and b:
S = {n ∈ N | ∃s, t ∈ Z : n = sa+ tb}.
Since (a, b) 6= (0, 0), we must have a 6= 0 or b 6= 0.
It follows that |a|+ |b| > 0, hence |a|+ |b| ∈ N.
Notice that |a|+ |b| is a linear combination of a and b.
In fact, we may choose s ∈ {1,−1} such that |a| = sa.
And we may choose t ∈ {1,−1} such that |b| = tb.
Then we have |a|+ |b| = sa+ tb.
We deduce that |a|+ |b| ∈ S.
This shows that S is not empty.
Since S is a non-empty subset of N,
it follows from the WOP that S has a smallest element m.
This integer m is the smallest linear combination of a and b. �

3.1 5(g,h).
Define the relations
R = {(1, 5), (2, 2), (3, 4), (5, 2)},
S = {(2, 4), (3, 4), (3, 1), (5, 5)}, and
T = {1, 4), (3, 5), (4, 1)}.
Then S ◦ T = {(3, 5)} and R ◦ (S ◦ T ) = {(3, 2)}.
And we have R ◦ S = {(3, 5), (5, 2)} and (R ◦ S) ◦ T = {(3, 2)}.

3.1 9.
Let R ⊂ A×B and S ⊂ B × C be relations.
Then S ◦R ⊂ A× C is a relation from A to C.

(a) Claim: Dom(S ◦R) ⊂ Dom(R).
Let x ∈ Dom(S ◦R).
By definition of the domain of a relation,
we may choose z ∈ C such that (x, z) ∈ S ◦R.
By definition of the composition of two relations,
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we may choose y ∈ B such that (x, y) ∈ R and (y, z) ∈ S.
Since (x, y) ∈ R, it follows that x ∈ Dom(R).

(b) Take A = B = C = {1, 2}.
Set R = I{1,2} = {(1, 1), (2, 2)} and S = {(1, 1)}.
Then S ◦R = {(1, 1)}.
We have Dom(S ◦R) = {1} ( {1, 2} = Dom(R).

(c) We always have Rng(S ◦R) ⊂ Rng(S).
The opposite inclusion is not true in the following example.
Take A = B = C = {1, 2}.
Set R = {(1, 1)} and S = I{1,2} = {(1, 1), (2, 2)}.
Then S ◦R = {(1, 1)}.
We have Rng(S ◦R) = {1} ( {1, 2} = Rng(S).


