
Solution to HW 9

3.2 5(c).
Define a relation V on R by V = {(x, y) ∈ R× R | x = y or xy = 1}.

Claim: V is an equivalence relation on R.

Proof. We must show that V is reflexive on R, symmetric, and transitive.
Reflexive on R: Let x ∈ R. Since x = x, we have (x, x) ∈ V .
Symmetric: Let x, y ∈ R. Assume that (x, y) ∈ V . Then x = y or xy = 1.
This implies that y = x or yx = 1, hence (y, x) ∈ V .
Transitive: Let x, y, z ∈ R. Assume that (x, y) ∈ V and (y, z) ∈ V .
Then we have x = y or xy = 1. And we have y = z or yz = 1.
Case 1: Assume that x = y and y = z. Then x = z, hence (x, z) ∈ V .
Case 2: Assume that x = y and yz = 1. Then xz = 1, hence (x, z) ∈ V .
Case 3: Assume that xy = 1 and y = z. Then xz = 1, hence (x, z) ∈ V .
Case 4: Assume that xy = 1 and yz = 1. Then x = y−1 = z, hence (x, z) ∈ V .
This finishes the proof that V is an equivalence relation on R. �

The equivalence class of 3 is
3/V = {x ∈ R | (x, 3) ∈ V } = {x ∈ R | x = 3 or 3x = 1} = {3, 1

3
}.

The equivalence class of −2

3
is

(−2

3
)/V = {x ∈ R | (x, −2

3
) ∈ V } = {x ∈ R | x = −2

3
or −2

3
x = 1} = {−2

3
, −3

2
}.

The equivalence class of 0 is
0/V = {x ∈ R | (x, 0) ∈ V } = {x ∈ R | x = 0 or 0x = 1} = {0}.

3.2 7.
Reflexive relations: (b), (c), (d).
Symmetric relations: (b), (c).
Transitive relations: (a), (b), (c).

3.2 12.
Let A be a set and let R and S be equivalence relations on A.

Claim: R ∩ S is an equivalence relation on A.

Proof. Since R ⊂ A×A and S ⊂ A×A, it follows that R ∩ S ⊂ A×A. Therefore
R ∩ S is a relation on A.

We must show that R ∩ S is reflexive on A, symmetric, and transitive.
Reflexive: Let x ∈ A. Since R is reflexive, we have (x, x) ∈ R. Since S is

reflexive, we have (x, x) ∈ S. It follows that (x, x) ∈ R ∩ S.
Symmetric: Let x, y ∈ A. Assume that (x, y) ∈ R ∩ S. Since R is symmetric

and (x, y) ∈ R, we have (y, x) ∈ R. Since S is symmetric and (x, y) ∈ S, we have
(y, x) ∈ S. It follows that (x, y) ∈ R ∩ S.

Transitive: Let x, y, z ∈ A. Assume that (x, y) ∈ R ∩ S and (y, z) ∈ R ∩ S.
Since R is transitive and (x, y) ∈ R and (y, z) ∈ R, we have (x, z) ∈ R. Since
S is transitive and (x, y) ∈ S and (y, z) ∈ S, we have (x, z) ∈ S. It follows that
(x, z) ∈ R ∩ S.

This completes the proof that R ∩ S is an equivalence relation on A. �

3.3 3(a). To be very descriptive, we need the following Lemma.

Lemma ∀ x ∈ R : (x− 1, x] ∩ Z 6= ∅.
1
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Proof. Let x ∈ R.
Choose N ∈ Z so large that N > x.
Set S = {m ∈ Z | m ≥ N − x}.
Then S ⊂ N and S 6= ∅.
By WOP, S contains a smallest element m0.
Since m0 ∈ S we have N −m0 ≤ x.
Since m0 − 1 /∈ S we have N −m0 > x− 1.
It follows that N −m0 ∈ (x− 1, x] ∩ Z. �

Define Q = {(x, y) ∈ R× R | x− y ∈ Z}.
The exercise tells us that Q is an equivalence relation on R; I will not prove this.
The corresponding partition of R is the family of subsets R/Q = {x/Q | x ∈ R}.
Set I = [0, 1) ⊂ R.
For z ∈ I, set Az = {z +m | m ∈ Z} = {y ∈ R | z − y ∈ Z}.
Define the family P = {Az | z ∈ I}.

Theorem: R/Q = P.

Proof. Let S ∈ R/Q.
Then we can choose x ∈ R such that S = x/Q.
By the Lemma, we may choose n ∈ (x− 1, x] ∩ Z.
Set z = x− n. Then z ∈ I.
Since x− z ∈ Z we obtain
S = x/Q = {y ∈ R | (x, y) ∈ Q}
= {y ∈ R | x− y ∈ Z} = {y ∈ R | z − y ∈ Z} = Az.

It follows that S ∈ P.
Now let S ∈ P.
Then we can choose z ∈ I such that S = Az.
Since S = Az = z/Q, we obtain S ∈ R/Q. �

3.3 3(c).
Define R = {(x, y) ∈ R× R | sin(x) = sin(y)}.
I will not show that this is an equivalence relation on R.
Set I = [−1, 1].
For z ∈ I, set Bz = {y ∈ R | sin(y) = z}.
From calculus we know that the restriction of sin(x) to the interval [−π/2, π/2]

has an inverse function sin−1 : [−1, 1] → [−π/2, π/2].
For each z ∈ I we then have
Bz = {2πm+ sin−1(z) | m ∈ Z} ∪ {π/2 + 2πm− sin−1(z) | m ∈ Z}.
I will not prove this.
Set P = {Bz | z ∈ I}.

Theorem: R/R = P.

Proof. Let S ∈ R/R.
Choose x ∈ R such that S = x/R.
Set z = sin(x).
Then z ∈ I and S = x/R = {y ∈ R | sin(x) = sin(y)} = Bz.
Therefore S ∈ P.
Let S ∈ P.
Choose z ∈ I such that S = Bz.
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Then S = Bz = z/R.
Therefore S ∈ R/R. �

3.3 6(e).
Let P = {A,B} where A = {x ∈ Z | x < 3} and B = Z−A.
Then P is a partition of Z (this will not be proved).
The corresponding equivalence relation is defined by:
R = {(x, y) ∈ Z× Z | ∃S ∈ P : x ∈ S and y ∈ S}.
Set Q = {(x, y) ∈ Z× Z | (x < 3 and y < 3) or (x ≥ 3 and y ≥ 3)}.

Theorem: R = Q.

Proof. Let (x, y) ∈ R.
Choose S ∈ P such that x ∈ S and y ∈ S.
By definition of P we must have S = A or S = B.
Case 1: Assume that S = A.
Then x < 3 and y < 3, so (x, y) ∈ Q.
Case 2: Assume that S = B.
Then x ≥ 3 and y ≥ 3, so (x, y) ∈ Q.
This proves that R ⊂ Q.
The proof that Q ⊂ R is similar, by considering the same two cases. �

3.3 7(b).
For a ∈ R, set Aa = {(x, y) ∈ R× R | y = a− x2}.
Set P = {Aa | a ∈ R}.

Theorem: P is a partition of R× R.

Proof. According to the definition of a partition, we must prove claims 1-3 below.
Claim 1: ∀S ∈ P : S 6= ∅.
Let S ∈ P.
Choose a ∈ R such that S = Aa.
Since (0, a) ∈ Aa, it follows that S 6= ∅.
Claim 2:

⋃
S∈P

S = R× R

Let (x, y) ∈
⋃

S∈P
S.

Choose S ∈ P such that (x, y) ∈ S.
Choose a ∈ R such that S = Aa.
Since (x, y) ∈ Aa and Aa ⊂ R× R, we obtain (x, y) ∈ R× R.
Let (x, y) ∈ R× R.
Set a = x2 + y.
Then (x, y) ∈ Aa.
Since Aa ∈ P, this implies that (x, y) ∈

⋃
S∈P

S.
Claim 3: ∀S, T ∈ P : S = T or S ∩ T = ∅.
Let S, T ∈ P.
Choose a, b ∈ R such that S = Aa and T = Ab.
Case 1: If a = b then S = T holds.
Case 2: Assume that a 6= b.
In this case I will show that S ∩ T = ∅.
If this is false, then choose (x, y) ∈ S ∩ T .
Since (x, y) ∈ Aa we have a = x2 + y.
Since (x, y) ∈ Ab we have b = x2 + y.
It follows that a = b, a contradiction.
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We conclude that Claim 3 is true. �

3.3 7(c).
Let Q be the equivalence relation corresponding to the partition P.
Then Q is a relation on the set R2 = R× R, i.e. Q ⊂ R

2 × R
2.

It is given by:
Q = {((x1, y1), (x2, y2)) ∈ R

2 × R
2 | ∃a ∈ R : (x1, y1) ∈ Aa and (x2, y2) ∈ Aa}

= {((x1, y1), (x2, y2)) ∈ R
2 × R

2 | ∃a ∈ R : y1 + x2

1
= a and y2 + x2

2
= a}

= {((x1, y1), (x2, y2)) ∈ R
2 × R

2 | y1 + x2

1
= y2 + x2

2
}.


