SoLuTION TO HW 9

3.2 5(c).
Define a relation Von Rby V = {(z,y) e Rx R |z =y or zy = 1}.
Claim: V is an equivalence relation on R.

Proof. We must show that V is reflexive on R, symmetric, and transitive.
Reflexive on R: Let « € R. Since x = x, we have (z,z) € V.
Symmetric: Let ,y € R. Assume that (z,y) € V. Then z =y or 2y = 1.
This implies that y = x or yz = 1, hence (y,z) € V.
Transitive: Let z,y,z € R. Assume that (z,y) € V and (y,2) € V.
Then we have z =y or zy = 1. And we have y = z or yz = 1.
Case 1: Assume that © =y and y = z. Then x = z, hence (z,z2) € V.
Case 2: Assume that z = y and yz = 1. Then xzz = 1, hence (z,2) € V.
Case 3: Assume that 2y = 1 and y = 2. Then xz = 1, hence (z,2) € V.
Case 4: Assume that xy = 1 and yz = 1. Then x = y~! = z, hence (z,2) € V.
This finishes the proof that V is an equivalence relation on R. [

The equivalence class of 3 is
3/V={zeR|(z,3)eVi={zeR|z=3o0r 3z =1} ={3,3}.

The equivalence class of _72 is
(R))V=A{zeR|(z,R)eV}={zeR|ao=F or Zx=1}={F,F}
The equivalence class of 0 is
0/V={zeR|(z,00eV}={zeR|z=0o0r0z=1}={0}.

3.2 7.
Reflexive relations: (b
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3.2 12.
Let A be a set and let R and S be equivalence relations on A.
Claim: RN S is an equivalence relation on A.

Proof. Since RC Ax Aand S C A x A, it follows that RNS C A x A. Therefore
RN S is a relation on A.

We must show that RN S is reflexive on A, symmetric, and transitive.

Reflexive: Let # € A. Since R is reflexive, we have (z,z) € R. Since S is
reflexive, we have (z,z) € S. It follows that (x,2) € RN S.

Symmetric: Let z,y € A. Assume that (z,y) € RN S. Since R is symmetric
and (z,y) € R, we have (y,z) € R. Since S is symmetric and (z,y) € S, we have
(y,x) € S. Tt follows that (z,y) € RN S.

Transitive: Let z,y,z € A. Assume that (z,y) € RN S and (y,2) € RN S.
Since R is transitive and (z,y) € R and (y,z) € R, we have (z,z) € R. Since
S is transitive and (x,y) € S and (y,2) € S, we have (z,z) € S. It follows that
(x,z) e RNS.

This completes the proof that R NS is an equivalence relation on A. ([l

3.3 3(a). To be very descriptive, we need the following Lemma.

LemmaVzeR: (z—1,2]NZ # 0.



2

Proof. Let z € R.
Choose N € Z so large that N > x.
Set S={meZ|m>N —x}.
Then S C N and S # ().
By WOP, S contains a smallest element my.
Since mg € S we have N — mg < x.
Since mg — 1 ¢ S we have N —mg > x — 1.
It follows that N —mg € (z — 1,2] N Z. O

Define Q = {(z,y) e Rx R |z —y € Z}.

The exercise tells us that @ is an equivalence relation on R; I will not prove this.
The corresponding partition of R is the family of subsets R/Q = {z/Q | = € R}.
Set I =10,1) C R.

Forzel,set A, ={z+m|meZ}={yeR|z—-yecZ}

Define the family P ={A, | z € I}.

Theorem: R/Q = P.

Proof. Let S € R/Q.
Then we can choose = € R such that S = z/Q.
By the Lemma, we may choose n € (z — 1,2] N Z.
Set z=x —n. Then z € I.
Since z — z € Z we obtain
S=2/Q={yeR|(n,y) € Q}

={yeR|z—yeZl={yeR|z—yecZ}=A,.

It follows that S € P.

Now let S € P.

Then we can choose z € I such that S = A..

Since S = A, = z/Q, we obtain S € R/Q. O
3.3 3(c).

Define R = {(z,y) € R x R | sin(x) = sin(y)}.

I will not show that this is an equivalence relation on R.

Set I =[—1,1].

For z € I, set B, = {y € R|sin(y) = z}.

From calculus we know that the restriction of sin(z) to the interval [—7/2,7/2]
has an inverse function sin™* : [~1,1] — [-7/2,7/2].

For each z € I we then have

B, = {2rm +sin"(2) | m € Z} U {n/2 + 2rm —sin"(2) | m € Z}.

I will not prove this.

Set P={B,|z€lI}.

Theorem: R/R = P.

Proof. Let S € R/R.
Choose = € R such that S = z/R.
Set z = sin(z).
Then z € I and S = 2/R = {y € R | sin(z) = sin(y)} = B..
Therefore S € P.
Let S € P.
Choose z € I such that S = B,.



Then S = B, = z/R.
Therefore S € R/R. O

3.3 6(e).
Let P={A,B} where A={x €Z |2z <3} and B=Z— A.
Then P is a partition of Z (this will not be proved).
The corresponding equivalence relation is defined by:
R={(z,y) €ZxZ|3Sc€P:xec Sandyec S}
Set Q={(z,y) €ZXZ|(x<3and y <3)or (z>3andy>3)}.

Theorem: R = Q.

Proof. Let (z,y) € R.
Choose S € P such that x € S and y € S.
By definition of P we must have S = A or S = B.
Case 1: Assume that S = A.
Then z < 3 and y < 3, so (z,y) € Q.
Case 2: Assume that S = B.
Then z > 3 and y > 3, so (z,y) € Q.
This proves that R C Q.
The proof that @ C R is similar, by considering the same two cases. O

3.3 7(b).
Fora € R, set A, = {(z,y) ERxR |y =a —2?}.
Set P ={A, | a € R}

Theorem: P is a partition of R x R.

Proof. According to the definition of a partition, we must prove claims 1-3 below.
Claim 1: VS e P : S #0.
Let S € P.
Choose a € R such that S = A,.
Since (0,a) € A,, it follows that S # 0.
Claim 2: (Jgep S =R xR
Let (z,y) € Ugep S-
Choose S € P such that (z,y) € S.
Choose a € R such that S = A,.
Since (z,y) € A, and A, C R x R, we obtain (z,y) € R x R.
Let (z,y) € R x R.
Set a = x2 + y.
Then (z,y) € Aq-
Since A, € P, this implies that (z,y) € Jgep S-
Claim 3: VS, TeP: S=Tor SNT = 0.
Let S, T € P.
Choose a,b € R such that S = A, and T = A,.
Case 1: If a = b then S =T holds.
Case 2: Assume that a # b.
In this case I will show that SNT = §.
If this is false, then choose (z,y) € SNT.
Since (z,y) € A, we have a = 22 + y.
Since (z,y) € Ap we have b= 2% + 4.
It follows that a = b, a contradiction.



We conclude that Claim 3 is true.

3.3 7(c).
Let Q be the equivalence relation corresponding to the partition P.
Then @ is a relation on the set R? =R x R, i.e. Q C R? x R2.
It is given by:

Q= {((z1,11), (w2,92)) € R? x R? | Ja € R: (z1,y1) € A, and (72,92) € A}
= {((z1,91), (¥2,92)) €ER* xR? [ Ja € R:yy +af = a and y + 23 = a}
= {((z1,31), (¥2,92)) € R? x R? [ y1 + 2] =y + 23}



