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Schubert varieties in 3-step flag manifold

X = Fl(al, ar, as, n) = {(Al C A CA3C (Cn) | dim(Ak) = ak}

Def: A for X is a permutation of (9119273133323 4a3



Schubert varieties in 3-step flag manifold
X = Fl(al, ar, as, n) = {(Al C A CA3C (Cn) | dim(Ak) = ak}
Def: A for X is a permutation of (91132791233 —4231—a3

C" has basis {e1,e,...,e,}. u=(u1,un,...,u,) Schubert string for X.
Def: AY = (A} C A5 C AY) € X by A} =Spanc{ei : uj < k}.

Example: X = FI(1,3,4;6)
A130123 — ((Ce3 C CeidpCe3pCey C Cei dCes ®Ceq P CE5)



Schubert varieties in 3-step flag manifold
X = Fl(al, ar, as, n) = {(Al C A CA3C (Cn) | dim(Ak) = ak}
Def: A for X is a permutation of (3119273133423 —4as

C" has basis {e1,e,...,e,}. u=(u1,un,...,u,) Schubert string for X.
Def: AY = (A} C A5 C AY) € X by A} =Spanc{ei : uj < k}.

Example: X = FI(1,3,4;6)
A130123 — ((Ce3 C CeidpCe3pCey C Cei dCes ®Ceq P Ce5)

Bt C GL(C™) upper triangular ; B~ C GL(C") lower triangular.
X, =Bt Av . XY=B-.Av Cc X

dim(X,) = codim(X¥, X) = £(u) = #{i < j | u; > u;}



Projection to Grassmannian

m: X =Fl(a1,a2,a3;n) — Y =Gr(az,n) ; 7w(A1 CAC A3)=A
forX: 0, 1, 2, 3
for Y: 01 , 23



Projection to Grassmannian

m: X =Fl(a1,a2,a3;n) — Y =Gr(az,n) ; 7(A1 CAC A3)=A;
Simple labels for X: 0, 1, 2, 3
Simple labels for Y: 01 , 23 Merged !!

Schubert string for Y: w = (w1,...,w,), w; € {01,23}, a, =#01
Def: VY =Span{e; | w; =01} €Y
Note: w(A") =AY = V" where w; =01« uy; €{0,1}



Projection to Grassmannian

m: X =Fl(a1,a2,a3;n) — Y =Gr(az,n) ; 7(A1 CAC A3)=A;
Simple labels for X: 0, 1, 2, 3
Simple labels for Y: 01 , 23 Merged !!

Schubert string for Y: w = (w1,...,w,), w; € {01,23}, a, =#01
Def: VY =Span{e; | w; =01} €Y
Note: w(A") =AY = V" where w; =01« uy; €{0,1}

Schubert varieties: Y, =BT*.Vw : YW =B-.Vw CY

Translation to Young diagrams for Y = Gr(3, 8):
l

w = 23-01-23-23-01-23-01-23 +—




Projection to Grassmannian

m: X =Fl(a1,a2,a3;n) — Y =Gr(az,n) ; 7(A1 CAC A3)=A;
forX: 0,1, 2, 3
for Y: 01 , 23

for Y w=(wi,...,wp), w; €{01,23}, ap =#01
Def: VY =Span{e |w; =01} €Y
Note: w(A") =AY = V" where w; =01« uy; €{0,1}

Yo =Bt.Vv , YW =B-.VW CY

Goal: /X[X“]'[X"]-w*[YW] = # u v



Product with pullback:
) = ([l ) i1 )

Pushforward of product:

(X X)) = Z(/X [X“]-[XV]-W*[YWQ V"] i H(Y:Z)



Simple puzzle pieces:

IAVAYAYA

Composed puzzle pieces:

IAVAVAVLA VAT
ATANAVAVAY Y

Definition of composed pieces:

Q = /and\\are edges  AND  max(a) < min(b)

AND a and b are not merged.




Theorem: /X XY XYY" = # u

Example: 7: X =FI(1,2,3;5) — Gr(2,5)=Y
T ([X10323] . [x10332)) = 7




Theorem: /X X [X]- Y] = # ﬂ

w

Example: 7: X =FI(1,2,3;5) — Gr(2,5)=Y
o ([X10523 ] - [x10332 ) = [YT + [yH]

A s,
AVAVAVAVA AVAVAVAV’A




Theorem: /X X [X]- Y] = # ﬂ

Example: 7: X =FI(1,2,3;5) — Gr(2,5)=Y
m([X10523] . [X10332)) = [yO] + [YB]




Quantum cohomology

Gromow-Witten invariants of Y = Gr(m, n):

(YY,YY,Yw), = # rational curves C C Y of degree d
meeting YY , g.YY ,and Y,

where g € GL, is a fixed general element.

(YY", YY,Yw)y, = 0 if infinitely many curves exist.

Small quantum cohomology ring
QH(Y) = H*(Y;Z) 2 Zlg)

Ve[ = S0V Y V) [Y*]

w



Quantum = classical
X =Fl(m—d,m,m+d;n) —"=Y = Gr(m,n)
|+
Z=Fl(m—d,m+d;n)
Theorem (B-Kresch-Tamvakis)
(YUY Yy = #om X (YY) Ner(g.YY)Nor(Yw)

C +— (Ker(C),Span(C <ﬂV ZV)EZ

veC veC



Quantum = classical
X =Fl(m—d,m,m+d;n) —"=Y = Gr(m,n)
|+
Z=Fl(m—d,m+d;n)

Theorem (B-Kresch-Tamvakis)
(YO Y Yu)g = #om Y (Y)Non g Y ) o (V)

C +— (Ker(C),Span(C <ﬂV ZV)EZ

veC veC

Theorem (B-Mihalcea) Equivariant generalization:

T
(ye, yv, YW>C7,— = /Z G [YY] - [Y] - dum[ Y]

T



Example
Z=FI(1,35) <%~ X=FI(1,2,35 —— Y =Gr(2,5)
Compute coefficient of g in quantum product [YF ]« [YET] € QH(Y)
Quantum = classical implies:
(YEIx YE D1 = m (67 0um [YF] - g gum [ YET])

= ([X10323] . [X10332]) — [Ym]—i—[YH]




Example
Z=FI(1,35) <%~ X=FI(1,2,35 —— Y =Gr(2,5)
Compute coefficient of gt in quantum product [YEP]x [YBP] € QH(Y)
Quantum = classical implies:
((YF1+YE D = m (67 un [YE] - g7 un*[YET])
= m ([X10323] . [X10332]) = [YED]—i—[YE]
Now use 2-step puzzle formula:
(Y1 [YE I = mo” (¢ur*[YE] - g [YET])
= m¢*([Z10%12] . [Z10221]) = [y™] 4 [YH]




Projection to 2-step flag manifold

7 : Fl(a1, a2, a3; n) — Fl(a1, a3; n)

Simple puzzle pieces: Simple Iabels:.

AW ANA A om0 2
Composed puzzle pieces:
ARANWARWARWARWAWA A WAWAR L
AWAWAWAWAWAWAWANAWAWAL

SANYAA WANFA WA AP AA

Composed labels:

A=01 B=02 C=03 D=0(12) E=13 F=23 G=(12)3 H=0(13)
J=0(23) K=0((12)3) L=1(23) M=(01)2 N=(01)3 P=(02)3 R=(0(12))3
S=0(1(23)) T=(01)(23) U=((01)2)3 V=0(((01)2)3) W=(0(1(23)))3

Rule: (a,b) can be a label only if max(a) < min(b) OR
max(a) = min(b) AND repetition separated by 3 parentheses.



Puzzle formula for projections

Let m: X — Y be a projection of partial flag manifolds.
Assume X has at most 3 steps, Y has at most 2 steps.

Theorem: /X[X“]-[X"]-w*[YW] - 4 u



Puzzle formula for projections

Let m: X — Y be a projection of partial flag manifolds.

Assume X has at most 3 steps, Y has at most 2 steps.

Theorem: /X[X“]-[X"]-w*[YW] - # u v

Known cases:

Puzzle rule for H*(Gr(m, n)) (Knutson, Tao, Woodward)
Puzzle rule for H3(Gr(m, n)) (Knutson, Tao)

Puzzle rule for H*(Fl(a, b; n)) (conjectured by Knutson,

proof in [ B-Kresch-Purbhoo-Tamvakis],
different positive formula by Coskun.)

Conjecture (Knutson, Buch) / Theorem (Knutson - Zinn-Justin)
Formula holds for X = Y = Fl(a1, az, as; n).



The mutation algorithm

AVAVAYA
A‘VAVAV’AVA



The mutation algorithm

AVAVAYA
A‘VAVAVAVA



The mutation algorithm

AVAVAYA
A‘VAVAVAVA
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The mutation algorithm
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The mutation algorithm
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The mutation algorithm

AVAVAYA
A‘VAVAV’AVA



The mutation algorithm

AVAVAYA
A‘VAVAVAVA



The mutation algorithm

AVAVAYTA
A‘VAVA‘?AVA



The mutation algorithm

AVAVATA
AVVAVAVA



The mutation algorithm

AVAVATA
ARIRIRIRAN



The mutation algorithm

AVAVAYA
ARISERIRAN



The mutation algorithm

AVAATA
ARISERIRAN



The mutation algorithm

AVATATA
A‘VAV’A‘VAVA



The mutation algorithm

AVATAYTA
A‘VAV’A‘VAVA



Resolutions of temporary puzzle piece

Def: Two gashes are equivalent if one can be propagated to the other.

Def: A gash is opposite to 7{ <= it is equivalent to %.



Resolutions of temporary puzzle piece

Def: Two gashes are equivalent if one can be propagated to the other.

Def: A gash is opposite to % <= it is equivalent to %

Def: A resolution of a temporary piece is a puzzle piece that creates two
opposite gashes on replacement.

Example:

O A A AV AP




Resolutions of temporary puzzle piece

Def: Two gashes are equivalent if one can be propagated to the other.

Def: A gash is opposite to % <= it is equivalent to %

Def: A resolution of a temporary piece is a puzzle piece that creates two
opposite gashes on replacement.

Example:

O A A AV AP

Fact: Each temporary piece has exactly 3 resolutions.

Note: Every gash is either a left gash or a right gash.



The mutation algorithm

AVATATA
A‘VAV’A‘VAVA



The mutation algorithm

AVATAYTA
A‘VAV’A‘VAVA



The mutation algorithm
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The mutation algorithm
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The mutation algorithm
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The mutation algorithm
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The mutation algorithm

AVAVAVA
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The mutation algorithm

AVAVAVA
A‘VAV’A‘VAVA



The mutation algorithm

AVATATA
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The mutation algorithm

AVAVAVA
A‘VAV’A‘VAVA



The mutation algorithm

AVAVATA
A‘VAV’A‘VAVA



The mutation algorithm

AVAVATA
A‘VAV’A‘VAVA



The mutation algorithm

AVAVATA
A‘VAV’A‘VAVA



The mutation algorithm

AVAVAAN
A‘VAV’AV’AVA



The mutation algorithm

AVAVAVAN
A‘VAV’AV’AVA



Component of the mutation graph

A5 A A
SAA VAT PRVAT
VAN LT AT

PATAYA A LTI, AT

ggﬁ
Ay
PTATATA

SEATATN
PATAATANA



Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

AR TV



Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

&
<
&

Def: A resolution of a scab is a symmetric rhombus that creates two
opposite gashes on replacement, with left gash in left side, right gash in
right side.

RN
S
7 e



Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

&
<
&

Def: A resolution of a scab is a symmetric rhombus that creates two
opposite gashes on replacement, with left gash in left side, right gash in
right side.

RN
S
7 e

Fact: Any scab has at most one resolution.

Def: A resolution of a scab is also called an equivariant puzzle piece.



All puzzle pieces for = :Fl(ay,as,a3; n) = Gr(az, n)

DDA DD A
A5 A3 05 AN A A A A O

00000099

AR R TR R
23 23 12 13 23 23




Equivariant cohomology
T C GL(C") max torus of diagonal matrices.
A= H3(pt;Z) = Zly1,y2,- >yl : yi = —c1(Ce;)
HT(X;Z) = @/\ [X“] is a A-algebra.
u



Equivariant cohomology
T C GL(C") max torus of diagonal matrices.
A= H7(pt Z) = Zlyr,y2, ... yn] i yi=—ci(Ce)
HT(X;Z) = @/\ [X“] is a A-algebra.

u

-

X = e cl = [ )X e
where fXT : H5(X;Z) — N is pushforward along X — {pt}.

Theorem (Graham): CJ¥, € Z>o[y2 = y1,- -+, ¥Yn — Yn-1]



Equivariant cohomology
T C GL(C") max torus of diagonal matrices.
A= H7(pt Z) = Zlyr,y2, ... yn] i yi=—ci(Ce)
HT(X;Z) = @/\ [X“] is a A-algebra.

u

-

X = e cl = [ )X e
where fXT : H5(X;Z) — N is pushforward along X — {pt}.
Theorem (Graham): CJ¥, € Z>o[y2 = y1,- -+, ¥Yn — Yn-1]

Def: weight(<>) = y; —y; where i < are defined by




Equivariant puzzle formula
Let m: X — Y be a projection of partial flag manifolds.
Assume X has at most 3 steps, Y has at most 2 steps.

Let o, B € H3(X) and v € H3(Y) be Schubert classes,
such that one of , 3, v is BT-stable, the other two are B™-stable.

Consider puzzles with all equivariant pieces pointing to B*-stable side:
p= B

v

Theorem: If all scabs pointing to BT-stable side have resolutions, then

/Ta 8- " Z H weight(<>
X

P <>eP



Example 7: X=FI(1,2,3;4) — Y =FI(1,3;4)

[X2013] '7T*[Y12_0_3_12] — ?

[¢¥]
D



Example 7: X=FI(1,2,3;4) — Y =FI(1,3;4)

[X2013] '7T*[Y12_0_3_12] — ?

VAVAN AVAVA TAVAVA
AVAVAVA SV AVAVS S AVAVAVA)

FAVAVAY
PAEAVATAY

AVAVAS
AVAVAVA



Example 7: X=FI(1,2,3;4) — Y =FI(1,3;4)

[X2013] . 7T*[Y12_0_3_12] —

VAVAN AVAVA TAVAVA
AVAVAVA SV AVAVS S AVAVAVA)

[X2130] 4 [X2301] + [X3102]

AVAVAS JAVAVAS
AVAVACK A VAVAVA

+ (e —y) X2+ (2 — ) X302



Existence of equivariant puzzle pieces
Formula for [XY]-7*[Y"Y] in H%(X;Z) for T X—=>Y
Formula for m ([X"] - [X"]) in H¥(Y;Z) for every m: X = Y

except 7 : Fl(a1, ap, as; n) — Fl(a1, a3; n)



Existence of equivariant puzzle pieces
Results:  Formula for [XY] - 7*[Y"] in HH(X;Z) for every m: X = Y
Formula for m ([X"] - [X"]) in H¥(Y;Z) for every m: X = Y

except 7 : Fl(a1, ap, as; n) — Fl(a1, a3; n)

Reason: The scab @ has no resolution!



Existence of equivariant puzzle pieces
Results:  Formula for [XY] - 7*[Y"] in HH(X;Z) for every m: X = Y

Formula for m ([X"] - [X"]) in H¥(Y;Z) for every m: X = Y
except 7 : Fl(a1, ap, as; n) — Fl(a1, a3; n)

Reason: The scab @ has no resolution!

Example: = : Fl(a1, a2, a3; n) — Fl(a1, az; n)

The scab ﬁ has no resolution

= No formula for 7*(v) - &
B~ « B Bt

()
B



Existence of equivariant puzzle pieces
Results:  Formula for [XY] - 7*[Y"] in HH(X;Z) for every m: X = Y

Formula for m ([X"] - [X"]) in H¥(Y;Z) for every m: X = Y
except 7 : Fl(a1, ap, as; n) — Fl(a1, a3; n)

Reason: The scab @ has no resolution!

Example: = : Fl(a1, a2, a3; n) — Fl(a1, az; n)

The scab & has no resolution All scabs m have resolutions

= No formula for 7*(v) - a : = Obtain formula for g - 7*(7y) :
B« B Bt Bt o g B~

() ™(7)
B~ B~



Projection to a point 7 Fli(n) — {pt}

T Tt X e v o) = £(u) — (v o)
/X bl = {0 otherwise.

Puzzle pieces: ﬁ forl1<a<n

a
Equivariant pieces: <> forl<a<b<n @ <> <>
b




Projection to a point 7 Fli(n) — {pt}

/T[XU]'[XV]~7T*[|O’E] N {[XUV_IWO]WO if £(uv™two) = £(u) — £(v™ wo)
X

0 otherwise.

Puzzle pieces: ﬁ forl1<a<n

a
Equivariant pieces: <> forl<a<b<n % <> <>
b

%

Puzzle formula specializes ‘Q
to pipe dream formula for ﬂ‘ :

double Schubert polynomials "A.‘ Fomin-Kirillov
"’AWQ’A.
‘.AV‘.“E
o‘V' ‘AV‘. :
beAA A

Billey-Jockusch-Stanley
Billey-Bergeron

| 5




Highlights from proof X=G/P;, FixTCBCPCG

Weyl groups
W =Ng(T)/T ; Wp=Np(T)/T

WP C W subset of minimal representatives for cosets in W /Wp

Schubert varieties
Xy =BuP, XY=B7uP for ue W.
dim(X,) = codim(X¥, X) = ¢(u) whenever ue WF.

Schubert structure constants
T
Coy = / [X“]-[X"]- [Xw] € A=H7(pt;Z)
X

XX = )G XY in HE(X:Z)



Chevalley formula

Let D € H2(X;R), R commutative ring.
Write u — u’ for covering relation in WP ' = us, and £(u') = £(u) + 1

.
Define (D, %) = “(D,a")’ :/ D € Hi(pt;R)
Ca

where C, C X is the T-stable curve through 1.P and s,.P

Chevalley: D-[X"] = D,[X"] + > (D,%)[X"] in H}(X;R)

u—u’



Molev-Sagan equations
Lemma: If n € R satisfies n”? + 1+ 1 =0, then
(—n?D, — 0D, — DW)CW =

ZZ L|JA/V+772 W/+ Z(Di

u—u’ v—v/ w'—w

Proof: Expand and integrate

7 (DX [XV][Xw] + 0 (XD [XV]) [Xu] + [XTIX(D-[Xu]) =



Molev-Sagan equations

Lemma: If n € R satisfies n”? + 1+ 1 =0, then
(_772Du —nDy — DW)CW =

ZZ L|JA/V+772 W/+ Z(Di

u—u’ v—v/ w'—w

Proof: Expand and integrate
7 (D [X*]) [XV][Xw] + 0 [X1(D-[X]) [Xa] + [X“][XV](D-[Xu]) =

Application:

Take R=C[0g|BeD—Dp] , D= > 6[X*] . 1= exp(%)
BEA—Ap

Note: (—n?D, —nD, — D,,) =0 u=v=w



Molev-Sagan recursion for =: X=G6/P — Y=G/Q
Want to compute C/Y, for which u € W® or ve WQ or we Wmax

Use D'= Y dp[X*] Y
ﬁEA—AQ

(—=n*D}, —nD, — D,,)Cy, =

7> (D2)Cw, + 0 ) (D, 2)C, + Y (D, %)cw,

u—u’ v—v/ w/—w

Recursion involves only CZ‘{/V, with o € WQ or v/ € WQ or w/ € WQmax,



Molev-Sagan recursion for =: X=G6/P — Y=G/Q
Want to compute C/Y, for which u € W® or ve WQ or we Wmax

Use D'= Y dp[X*] divisor pulled back from Y Il
BeA-Ag

(—=n*D}, —nD, — D,,)Cy, =

7Y (DG, + 0 Y (DLY)C, + Y (D &)y,

u—u’ v—v/ w/—w

Recursion involves only CZ‘{/V, with ' € W@ or v/ € WQ or w' € W®@max

But: (—n?D/,—nD, -D!)=0 «— u?=v@=wc W®
Here u = u®ug is parabolic factorization: u® € W® and ug € Wy



Molev-Sagan recursion for =: X=G6/P — Y=G/Q
Want to compute C/Y, for which u € W® or ve WQ or we Wmax

Use D'= Y dp[X*] divisor pulled back from Y Il
BeA-Ag

(—=n*D}, —nD, — D,,)Cy, =
7Y (DG, + 0 Y (DLY)C, + Y (D &)y,

u—u’ v—v/ w/—w
. . ! .
Recursion involves only C% , with o/ € WQ or v/ € WQ or w' € W®@max
Y Ly

But: (—n?D/,—nD, -D!)=0 «— u?=v@=wc W®
Here u = u®ug is parabolic factorization: u® € W® and ug € Wy

Theorem: Let u,v,w € WP satisfy uQ =vQ = w? = x € WQ.
Then C¥,(X) = CF(Y)K(Cugvo(F)) where F=a"Y(1.Q)=Q/P.



Example m: X =FI(2,4,6;7) — Y =Gr(4,7)

F = 77 1(pt) = Gr(2,4) x Gr(2,3)

u=1301220, v =1201320, w = 01-23-01-01-23-23-01

ug = 1010322 , vo = 1010232, wg = 01-01-01-01-23-23-23

w
Cu,v

(X) = CIw(Y)(Cagluo(F)) = G (V) (CRoi0116010°) (C355555°)

Q>

where k = 1347256 € S



mmi{ém

VANEAY VANAVA
AAV’AV'A AVAVAVAL AV’AVAA



AVAA
VAT
A vv.mv

AVE VAV’
A A AVAAAVA

AVATAY
VLT N
AYAVAYAVA
AVATAYAVAYA

“"3"
L08
AN
A,

.o."v,g.t.vm.

£ Ay



