Curve Neighborhoods of Schubert varieties

Anders S. Buch

(joint work with Leonardo C. Mihalcea)

1. The main result

The title of this talk refers to a recent paper [4] with Mihalcea, but my talk is also closely related to joint work with Chaput, Mihalcea, and Perrin [2].

Let X be a non-singular complex variety, let $\Omega \subset X$ be a closed subvariety, and let $d \in H_2(X) = H_2(X; \mathbb{Z})$ be a degree. The *curve neighborhood* $\Gamma_d(\Omega)$ is defined as the closure of the union of all rational curves in X of degree d that meet Ω . For example, if $X = \mathbb{P}^1 \times \mathbb{P}^1$ and $\Omega = \mathbb{P}^1 \times \{0\}$, then $H_2(X) = \mathbb{Z} \oplus \mathbb{Z}$, and we have $\Gamma_{(1,0)}(\Omega) = \Omega$ and $\Gamma_{(0,1)}(\Omega) = X$.

I will focus on the case where X = G/P is a generalized flag variety, defined by a semisimple complex Lie group G and a parabolic subgroup P. I also fix a maximal torus T and a Borel subgroup B such that $T \subset B \subset P \subset G$. In this case it was proved in [2] that, if Ω is irreducible, then $\Gamma_d(\Omega)$ is irreducible. Notice also that $\Gamma_d(\Omega)$ is B-stable whenever Ω is B-stable. It follows that if Ω is a Schubert variety in X, then $\Gamma_d(\Omega)$ is also a Schubert variety.

It is natural to ask which Schubert variety this is. In other words, if we know the Weyl group element representing Ω , then what is the Weyl group element representing $\Gamma_d(\Omega)$? This question is related to several aspects of the quantum cohomology and quantum K-theory of homogeneous spaces, including two-point Gromov-Witten invariants, the (equivariant) quantum Chevalley formula [6, 7], the minimal powers of the deformation parameter q that appear in quantum products of Schubert classes [6], and a degree distance formula for cominuscule varieties [5] that played an important role in a generalization of the kernel-span technique from [1] and the quantum equals classical theorem from [3].

Let $W = N_G(T)/T$ be the Weyl group of G and let $W_P = N_P(T)/T \subset W$ be the Weyl group of P. We let $W^P \subset W$ denote the subset of minimal length representatives for the cosets in W/W_P . Each element $w \in W$ defines a Schubert variety $X(w) = \overline{Bw.P} \subset X$; if $w \in W^P$ then dim $X(w) = \ell(w)$. The set of T-fixed points in X is $X^T = \{w.P \mid w \in W^P\}$. We let R be the root system of G, with positive roots R^+ and simple roots $A \subset R^+$.

We describe the curve neighborhood of a Schubert variety in terms of the Hecke product of Weyl group elements, which can be defined as follows. For $w \in W$ and $\beta \in \Delta$ we set

$$w \cdot s_{\beta} = \begin{cases} w \, s_{\beta} & \text{if } \ell(ws_{\beta}) > \ell(w); \\ w & \text{if } \ell(ws_{\beta}) < \ell(w). \end{cases}$$

Given an additional element $w' \in W$ and a reduced expression $w' = s_{\beta_1} s_{\beta_2} \cdots s_{\beta_\ell}$, we then define $w \cdot w' = w \cdot s_{\beta_1} \cdot s_{\beta_2} \cdot \ldots \cdot s_{\beta_\ell} \in W$, where the simple reflections are Hecke-multiplied to w in left to right order. This defines an associative monoid

product on W. The Hecke product is compatible with the Bruhat order on W, for example we have $v \leq v' \Rightarrow u \cdot v \cdot w \leq u \cdot v' \cdot w$ for all $u, v, v', w \in W$.

Given a positive root $\alpha \in R^+$ with $s_{\alpha} \notin W_P$, let $C_{\alpha} \subset X$ be the unique Tstable curve that contains the points 1.P and $s_{\alpha}.P$. The main result of [4] is the
following theorem, which makes it straightforward to compute the Weyl group
element representing the curve neighborhood $\Gamma_d(X(w))$.

Theorem 1. Assume that $0 < d \in H_2(X)$, and let $\alpha \in R^+$ be any positive root that is maximal with the property that $[C_{\alpha}] \leq d \in H_2(X)$. Then we have $\Gamma_d(X(w)) = \Gamma_{d-\lceil C_{\alpha} \rceil}(X(w \cdot s_{\alpha}))$.

We remark that the homology group $H_2(X)$ can be identified with the coroot lattice of R modulo the coroots corresponding to P, in such a way that the class $[C_{\alpha}] \in H_2(X)$ is the image of the coroot α^{\vee} . Theorem 1 therefore makes simultaneous use of the orderings of roots and coroots, which gives rise to interesting combinatorics.

2. Degree distance formula

Theorem 1 can be used to give simple proofs of several well known results concerning the quantum cohomology of generalized flag varieties. Here we will sketch a proof of the degree distance formula for cominuscule varieties due to Chaput, Manivel, and Perrin [5].

Assume that X = G/P where P is a maximal parabolic subgroup of G, and let $\gamma \in \Delta$ be the unique simple root such that $s_{\gamma} \notin W_P$. Then $H_2(X) = \mathbb{Z}$ has rank one, and the generator $[X(s_{\gamma})] \in H_2(X)$ can be identified with $1 \in \mathbb{Z}$. The variety X is called *cominuscule* if, when the highest root $\rho \in R^+$ is expressed as a linear combination of simple roots, the coefficient of γ is one. This implies that $\rho = w_P \cdot \gamma$ where w_P denotes the longest element in W_P . In particular, since $\rho^{\vee} - \gamma^{\vee}$ is a linear combination of the coroots of P, we obtain $[C_{\rho}] = [C_{\gamma}] = 1 \in H_2(X)$. Given any effective degree $d \in H_2(X)$, it therefore follows from Theorem 1 that

$$\Gamma_d(X(w)) = \Gamma_{d-1}(X(w \cdot s_\gamma)) = \dots = X(w \cdot s_\gamma \cdot s_\gamma \cdot \dots \cdot s_\gamma)$$

where s_{γ} is repeated d times. Since $s_{\rho} = w_P s_{\gamma} w_P$, this identity is equivalent to the expression

(1)
$$\Gamma_d(X(w)) = X(w \cdot w_P s_\gamma \cdot w_P s_\gamma \cdot \dots \cdot w_P s_\gamma),$$

with $w_P s_{\gamma}$ repeated d times.

Given two points $x, y \in X$, let d(x, y) denote the smallest possible degree of a rational curve in X from x to y. This number is determined by the following result from [5].

Corollary (Chaput, Manivel, Perrin). Let $u \in W^P$. Then d(1.P, u.P) is the number of occurrences of s_{γ} in any reduced expression for u.

Proof. For $d \in H_2(X)$, it follows from (1) that $u.P \in \Gamma_d(X(1))$ if and only if u has a reduced expression with at most d occurrences of s_{γ} . Now set d = d(1.P, u.P) and observe that $u.P \in \Gamma_d(X(1)) \setminus \Gamma_{d-1}(X(1))$. We deduce that u has a reduced

expression with exactly d occurrences of of s_{γ} . The corollary now follows from Stembridge's result [8] that u is fully commutative, i.e. any reduced expression for u can be obtained from any other by interchanging commuting simple reflections. \square

References

- A. S. Buch, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), no. 2, 227–235. MR 1985005 (2004c:14105)
- [2] A. S. Buch, P.-E. Chaput, L. Mihalcea, and N. Perrin, Finiteness of cominuscule quantum K-theory, to appear in Ann. Sci. Ec. Norm. Super., arXiv:1011.6658.
- [3] A. S. Buch, A. Kresch, and H. Tamvakis, Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), no. 4, 901–915 (electronic). MR 1992829 (2004h:14060)
- [4] A. S. Buch and L. C. Mihalcea, Curve neighborhoods of Schubert varieties, preprint, 2013.
- [5] P.-E. Chaput, L. Manivel, and N. Perrin, Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), no. 1, 47–89. MR 2421317 (2009e:14095)
- [6] W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), no. 4, 641–661. MR 2072765 (2005d:14078)
- [7] L. C. Mihalcea, On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms, Duke Math. J. 140 (2007), no. 2, 321–350. MR 2359822 (2008j:14106)
- [8] J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), no. 4, 353–385. MR 1406459 (97g:20046)