Mutations of Puzzles and Equivariant cohomology of two-step flag varieties

Anders Skovsted Buch

Rutgers University

arXiv:1401.3065

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$X = \operatorname{Fl}(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n; \dim(A) = a; \dim(B) = b\}$$

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$X = \operatorname{Fl}(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n; \dim(A) = a; \dim(B) = b\}$$

Def: A 012-string for X is a permutation of $0^a 1^{b-a} 2^{n-b}$.

$$\mathbb{C}^n$$
 has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ 012-string.

Def. $(A_u, B_u) \in X$ by $A_u = \text{Span}\{e_i : u_i = 0\}$ and $B_u = \text{Span}\{e_i : u_i \le 1\}$.

Example:
$$X = FI(1,3;5)$$
. $u = 10212$. $(A_u, B_u) = (\mathbb{C}e_2, \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_4)$.

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$X = \operatorname{FI}(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n; \dim(A) = a; \dim(B) = b\}$$

Def: A **012-string** for X is a permutation of $0^a 1^{b-a} 2^{n-b}$.

$$\mathbb{C}^n$$
 has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ 012-string.

Def. $(A_u, B_u) \in X$ by $A_u = \text{Span}\{e_i : u_i = 0\}$ and $B_u = \text{Span}\{e_i : u_i \le 1\}$.

Example:
$$X = FI(1,3;5)$$
. $u = 10212$. $(A_u, B_u) = (\mathbb{C}e_2, \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_4)$.

Schubert variety: $X_u = \overline{\mathbf{B}.(A_u,B_u)}$; $\mathbf{B} \subset \mathrm{GL}(\mathbb{C}^n)$ lower triangular.

$$codim(X_u, X) = \ell(u) = \#\{i < j \mid u_i > u_j\}$$

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ maximal torus of diagonal matrices.

$$H_T^*(\mathsf{point}) = \mathbb{Z}[y_1, \dots, y_n]$$
 , where $y_i = -c_1(\mathbb{C}e_i)$.

$$H_T^*(X) = \bigoplus_{u} \mathbb{Z}[y_1, \dots, y_n] \cdot [X_u]$$
 is an algebra over $H_T^*(point)$.

Equivariant cohomology

$$T \subset GL(\mathbb{C}^n)$$
 maximal torus of diagonal matrices.

$$H_T^*(X) = \bigoplus_u \mathbb{Z}[y_1, \dots, y_n] \cdot [X_u]$$
 is an algebra over $H_T^*(point)$.

The equivariant Schubert structure constants of X are the polynomials $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ defined by

 $H^*_{\mathcal{T}}(\mathsf{point}) = \mathbb{Z}[y_1,\ldots,y_n]$, where $y_i = -c_1(\mathbb{C}e_i)$.

$$[X_u] \cdot [X_v] = \sum_w C_{u,v}^w [X_w]$$

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ maximal torus of diagonal matrices.

$$H_T^*(\mathsf{point}) = \mathbb{Z}[y_1, \dots, y_n]$$
 , where $y_i = -c_1(\mathbb{C}e_i)$.

$$H_T^*(X) = \bigoplus_{u} \mathbb{Z}[y_1, \dots, y_n] \cdot [X_u]$$
 is an algebra over $H_T^*(point)$.

The equivariant Schubert structure constants of X are the polynomials $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ defined by

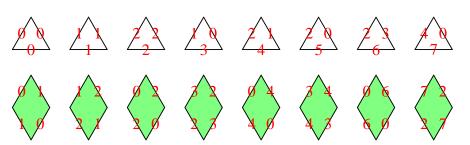
$$[X_u] \cdot [X_v] = \sum_w C_{u,v}^w [X_w]$$

$$H_T^*(X)$$
 graded ring \Rightarrow $C_{u,v}^w$ homogeneous of degree $\ell(u) + \ell(v) - \ell(w)$.

$$\ell(w) = \ell(u) + \ell(v) \implies C_{u,v}^w = \#(g_1.X_u \cap g_2.X_v \cap g_3.X_{w^\vee}) ; g_i \in \mathsf{GL}(\mathbb{C}^n).$$
The same $(C_1 \cap C_2) \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_4 \cap C_4 \cap C_5 \cap C_5 \cap C_6 \cap C_$

Theorem (Graham) $C_{u,v}^w \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$

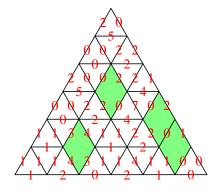
Puzzle pieces



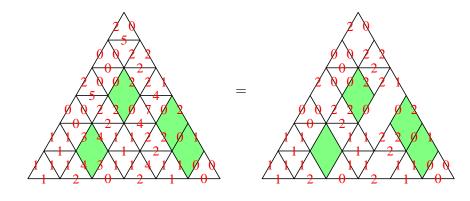
Simple labels: 0, 1, 2

Composed labels: 3=10, 4=21, 5=20, 6=2(10), 7=(21)0

Equivariant puzzles

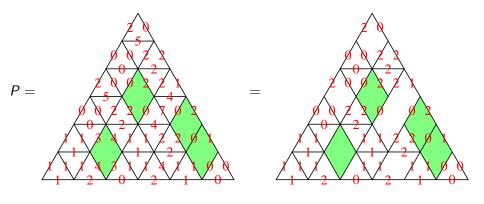


Equivariant puzzles



Note: The composed labels are uniquely determined by the simple labels.

Equivariant puzzles



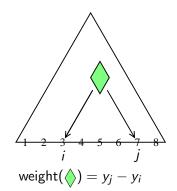
Note: The composed labels are uniquely determined by the simple labels.

Boundary: $\partial P = \triangle_w^{u,v}$ where u = 110202, v = 021210, w = 120210.

Equivariant puzzle formula

Theorem

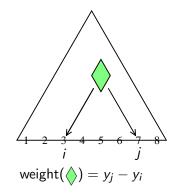
$$C_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\bigotimes \in P} \mathsf{weight}(\bigotimes)$$



Equivariant puzzle formula

Theorem

$$C_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\lozenge \in P} \mathsf{weight}(\lozenge)$$



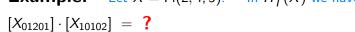
Known cases:

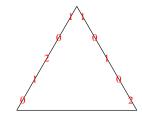
```
Puzzle rule for H^*(Gr(m, n)) (Knutson, Tao, Woodward)
```

Puzzle rule for
$$H_T^*(Gr(m, n))$$
 (Knutson, Tao)

Puzzle rule for
$$H^*(Fl(a, b; n))$$
 (conjectured by Knutson, proof in [B-Kresch-Purbhoo-Tamvakis], different positive formula by Coskun.)

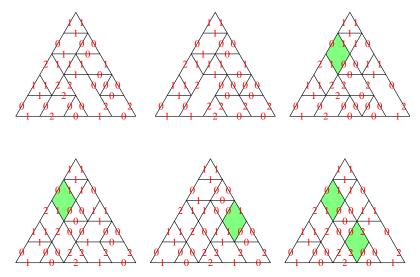
Example: Let X = FI(2,4;5). In $H_T^*(X)$ we have:





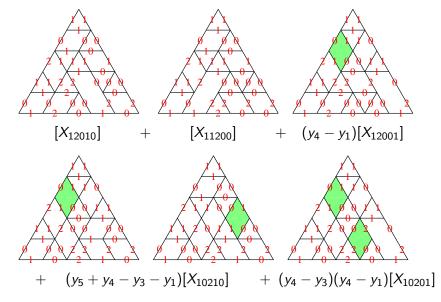
Example: Let X = FI(2, 4; 5). In $H_T^*(X)$ we have:

 $[X_{01201}] \cdot [X_{10102}] = ?$



Example: Let X = FI(2, 4; 5). In $H_T^*(X)$ we have:

 $[X_{01201}] \cdot [X_{10102}] =$



Quantum cohomology of Grassmannians

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

$$X_{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow$$

Quantum cohomology of Grassmannians

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

$$X_{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow \frac{1}{2}$$

Quantum cohomology of Grassmannians

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

Schubert varieties
$$\longleftrightarrow$$
 02-strings \longleftrightarrow Young diagrams

$$X_{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow$$

(Small) equivariant quantum ring:

$$QH_T(X) = H_T^*(X) \otimes_{\mathbb{Z}} \mathbb{Z}[q] = \bigoplus_{\lambda} \mathbb{Z}[y_1, \dots, y_n, q] \cdot [X_{\lambda}]$$

Ring structure is defined by equivariant Gromov-Witten invariants

$$N_{\lambda,\mu}^{\nu,d} \in \mathbb{Z}[y_1,\ldots,y_n]$$
:

$$[X_{\lambda}] \star [X_{\mu}] = \sum_{\nu, d \ge 0} N_{\lambda, \mu}^{\nu, d} q^{d} [X_{\nu}]$$

Gromov-Witten invariants of X = Gr(m, n)

$$[X_{\lambda}] \star [X_{\mu}] = \sum_{\nu, d \geq 0} N_{\lambda, \mu}^{\nu, d} q^{d} [X_{\nu}]$$

$$N_{\lambda,\mu}^{\nu,0} = C_{\lambda,\mu}^{\nu}$$
 (QH_T(X) is a deformation of H_T*(X).)

$$N_{\lambda,\mu}^{\nu,d} \in \mathbb{Z}[y_1,\ldots,y_n]$$
 is homogeneous of degree $|\lambda| + |\mu| - |\nu| - nd$.

$$|\lambda| + |\mu| = |\nu| + nd \Rightarrow$$

$$N_{\lambda,\mu}^{\nu,d}=\#$$
 rational curves $C\subset X$ of degree d meeting $g_1.X_{\lambda_1}$ $g_2.X_{\mu_1}$, $g_3.X_{
u^\vee}$.

Thm (Mihalcea)
$$N_{\lambda,\mu}^{\nu,d} \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$$

Def: (B) Given curve $C \subset X = Gr(m, n)$ set

$$\mathsf{Ker}(\mathcal{C}) = \bigcap_{V \in \mathcal{C}} V \subset \mathbb{C}^n \quad \mathsf{and} \quad \mathsf{Span}(\mathcal{C}) = \sum_{V \in \mathcal{C}} V \subset \mathbb{C}^n$$

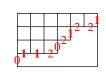
Def: (B) Given curve $C \subset X = Gr(m, n)$ set

$$\operatorname{\mathsf{Ker}}(C) = \bigcap_{V \in C} V \subset \mathbb{C}^n \quad \text{ and } \quad \operatorname{\mathsf{Span}}(C) = \sum_{V \in C} V \subset \mathbb{C}^n$$

Fix degree d. Set Y = FI(m - d, m + d; n).

Given a 02-string λ for X, let $\lambda(d)$ be the 012-string for Y obtained from λ by replacing the first d occurrences of 2 and the last d occurrences of 0 with 1.

$$\lambda = 0222020220$$
 and $d = 2$ gives $\lambda(d) = 0112021221$.

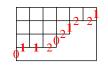


Def: (B) Given curve
$$C \subset X = Gr(m, n)$$
 set $Ker(C) = \bigcap_{V \in C} V \subset \mathbb{C}^n$ and $Span(C) = \sum_{V \in C} V \subset \mathbb{C}^n$

Fix degree d. Set Y = FI(m - d, m + d; n).

Given a 02-string λ for X, let $\lambda(d)$ be the 012-string for Y obtained from λ by replacing the first d occurrences of 2 and the last d occurrences of 0 with 1.

$$\lambda = 0222020220$$
 and $d = 2$ gives $\lambda(d) = 0112021221$.



$$Y_{\lambda(d)} = \{(A, B) \in Y \mid \exists V \in X_{\lambda} : A \subset V \subset B\}$$

= Set of Kernel-Span pairs of general curves of degree d meeting X_{λ} .

Theorem (B–Kresch–Tamvakis) For $|\lambda| + |\mu| = |\nu| + nd$ we have bijection

$$\begin{cases} \text{rational curves in } X \\ \text{of degree } d \text{ meeting} \\ g_1.X_{\lambda_1} \ g_2.X_{\mu_1} \ g_3.X_{\nu} \end{cases} \longleftrightarrow g_1.Y_{\lambda(d)} \cap g_2.Y_{\mu(d)} \cap g_3.Y_{\nu(d)}$$

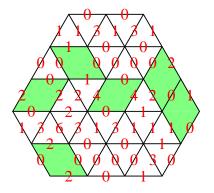
$$C \longmapsto \left(\text{Ker}(C) \, , \, \text{Span}(C) \right)$$

Theorem (B–Kresch–Tamvakis) For $|\lambda| + |\mu| = |\nu| + nd$ we have bijection

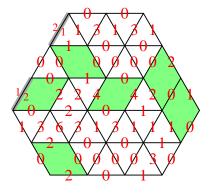
$$\begin{cases} \text{rational curves in } X \\ \text{of degree } d \text{ meeting} \\ g_1.X_{\lambda_1}, \ g_2.X_{\mu_1}, \ g_3.X_{\nu} \end{cases} \longleftrightarrow g_1.Y_{\lambda(d)} \cap g_2.Y_{\mu(d)} \cap g_3.Y_{\nu(d)}$$

$$C \longmapsto \left(\text{Ker}(C), \text{Span}(C) \right)$$

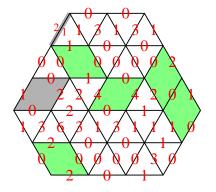
$$\textbf{Theorem (B-Mihalcea)} \quad \textit{N}_{\lambda,\mu}^{\nu^\vee,d} \ = \ \textit{C}_{\lambda(d),\mu(d)}^{\nu(d)^\vee} \quad \in \ \mathbb{Z}[y_1,\ldots,y_n]$$



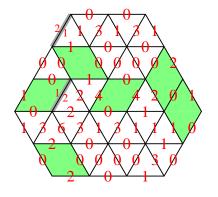
- Puzzle: Shape is a hexagon.
 - All pieces may be rotated.
 - Boundary labels are simple.



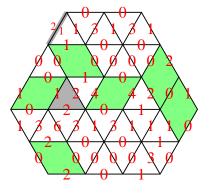
Flawed puzzle containing the gash pair:

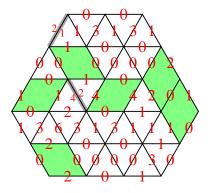


Remove problematic piece.

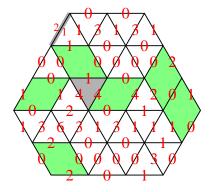


Replace with:

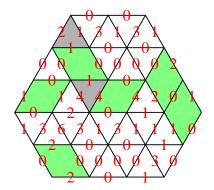


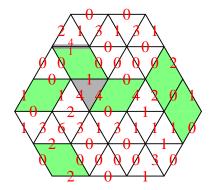


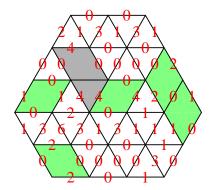
The piece fits. Always at most one choice !!!

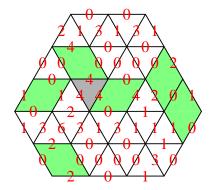


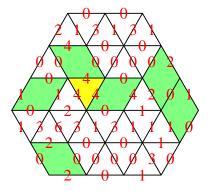
But no puzzle piece fits this time.



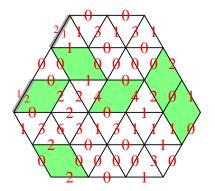


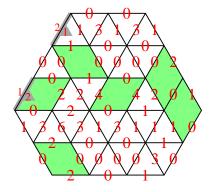




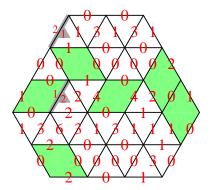


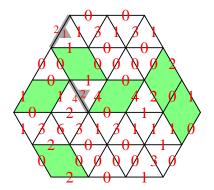
Flawed puzzle containing the illegal puzzle piece:

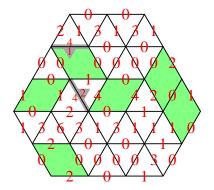


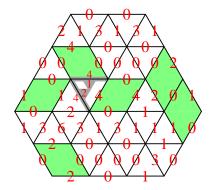


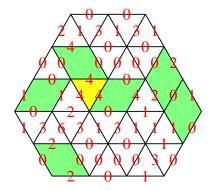
Use directed gashes.

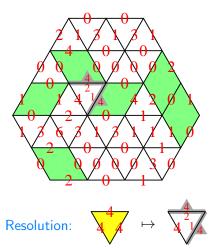


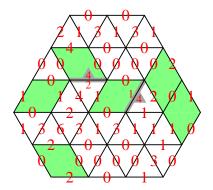


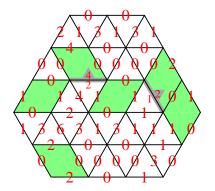


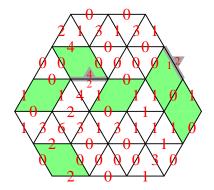


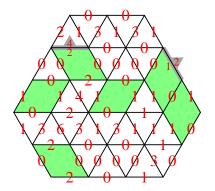


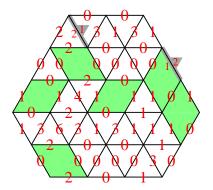


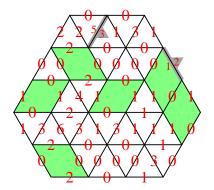


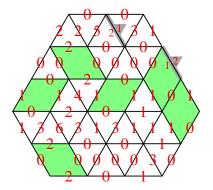


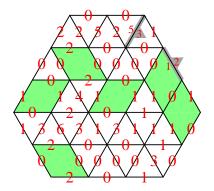


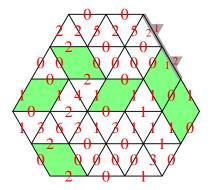


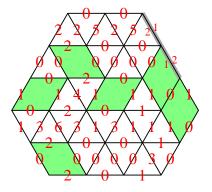




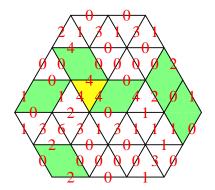


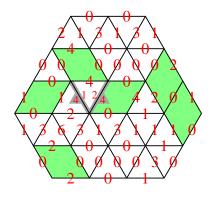


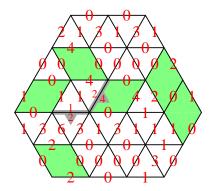


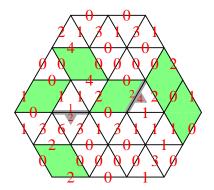


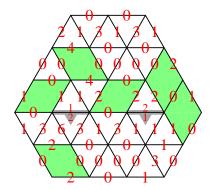
Flawed puzzle containing a gash pair.

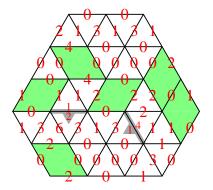


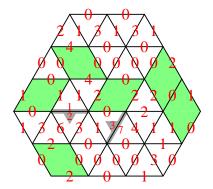


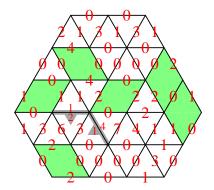




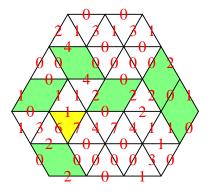




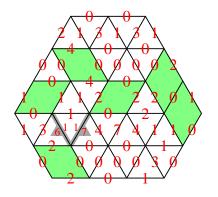


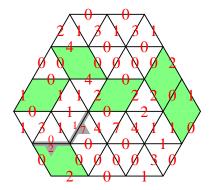


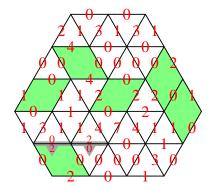


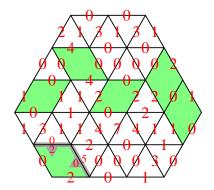


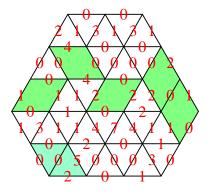
Flawed puzzle containing the **illegal puzzle piece**:



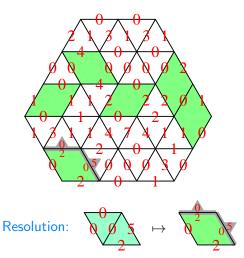


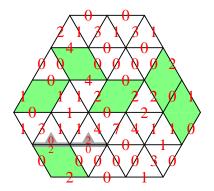


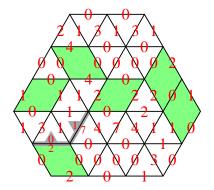


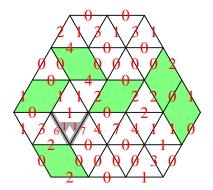


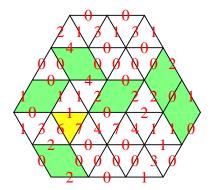
Flawed puzzle containing the marked scab:

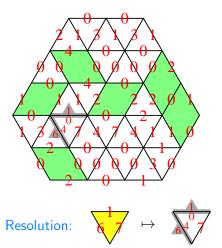


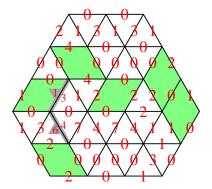


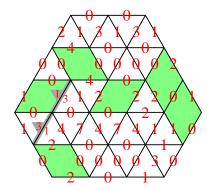


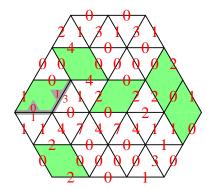


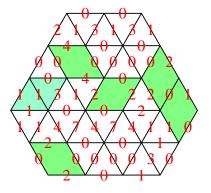






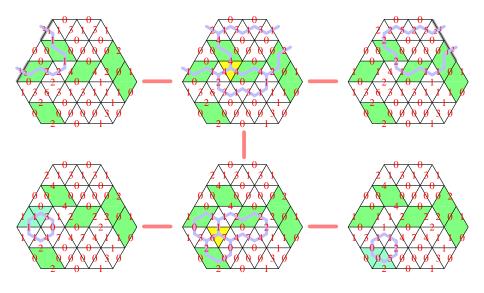




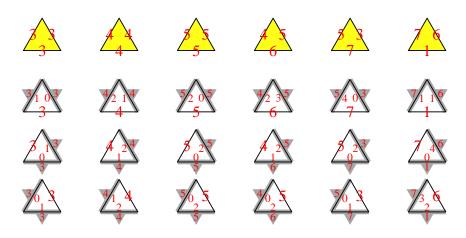


Flawed puzzle containing a marked scab.

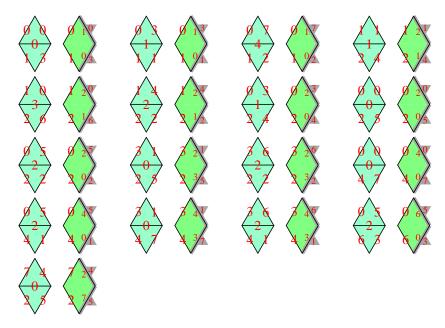
Component of the mutation graph:



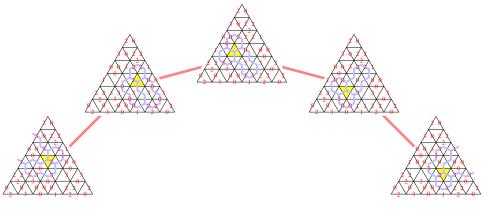
Resolutions of illegal puzzle pieces:

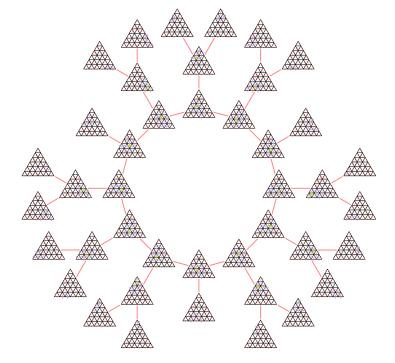


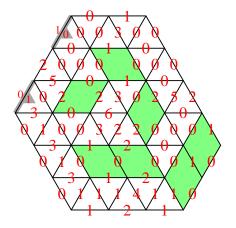
Resolutions of marked scabs:

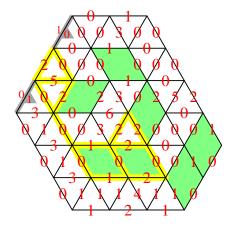


Example:

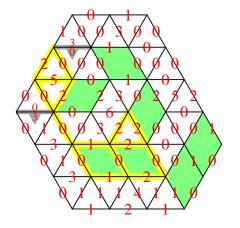




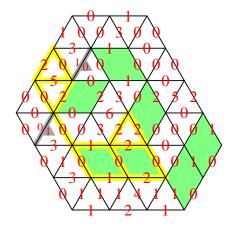




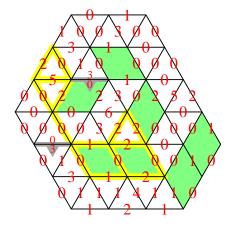
Consider connected component of the edges:



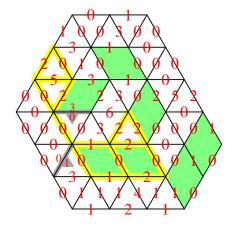
Consider connected component of the edges:



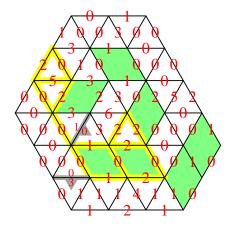
Consider connected component of the edges:



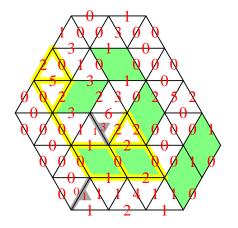
Consider connected component of the edges:



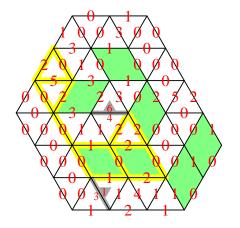
Consider connected component of the edges:



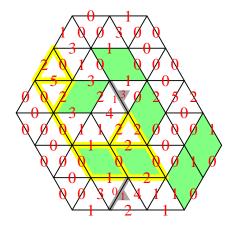
Consider connected component of the edges:



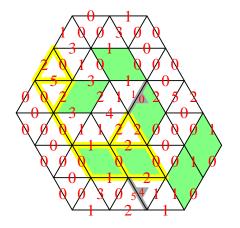
Consider connected component of the edges:



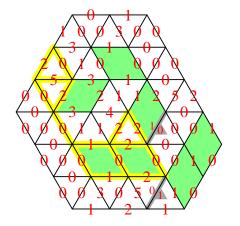
Consider connected component of the edges:



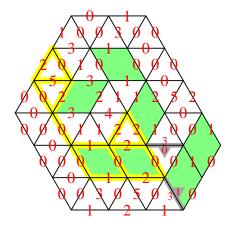
Consider connected component of the edges:



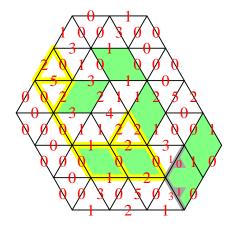
Consider connected component of the edges:



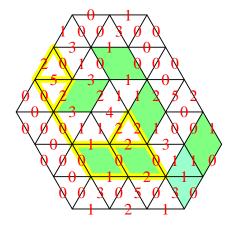
Consider connected component of the edges:



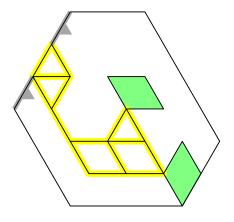
Consider connected component of the edges:



Consider connected component of the edges:



Consider connected component of the edges:



Technical result: The two gashes will propagate to the same location.

In particular, the above situation is impossible !!

Aura of semi-labeled edges

An aura is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Aura of semi-labeled edges

An aura is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Def:
$$\mathcal{A}(\frac{0}{}) = \bigwedge^{\delta_0} \qquad \mathcal{A}(\frac{1}{}) = \bigwedge^{\delta_1} \qquad \mathcal{A}(\frac{2}{}) = \bigwedge^{\delta_2}$$

If $\underset{\sim}{\overset{\sim}{\bigvee}}$ is a puzzle piece, then $\mathcal{A}(\underset{\sim}{\bigvee}) + \mathcal{A}(\underset{\sim}{\bigvee}) + \mathcal{A}(\frac{2}{}) = 0$.

Aura of semi-labeled edges

An **aura** is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Def:
$$\mathcal{A}(\frac{0}{-}) = \bigwedge^{\delta_0} \qquad \mathcal{A}(\frac{1}{-}) = \bigwedge^{\delta_1} \qquad \mathcal{A}(\frac{2}{-}) = \bigwedge^{\delta_2}$$

If $\underset{\sim}{\overset{\times}{\searrow}}$ is a puzzle piece, then $\mathcal{A}(\underset{\times}{/}\times) + \mathcal{A}(\underset{\times}{\nearrow}\times) + \mathcal{A}(\underset{\times}{\overset{\times}{\searrow}}) = 0$.

$$\mathcal{A}(\frac{3}{}) = \delta_1 \qquad \delta_0 \qquad \mathcal{A}(\frac{4}{}) = \delta_2 \qquad \delta_1 \qquad \mathcal{A}(\frac{5}{}) = \delta_2 \qquad \delta_0$$

$$\mathcal{A}(\frac{6}{}) = \delta_2 \qquad \delta_0 \qquad \mathcal{A}(\frac{7}{}) = \delta_0 \qquad \delta_0$$

Definition:
$$A(\frac{x}{y}) = A(\frac{x}{y}) + A(\frac{y}{y})$$

Definition:
$$\mathcal{A}(\frac{x}{y}) = \mathcal{A}(\frac{x}{y}) + \mathcal{A}(\frac{y}{y})$$

Example: $\mathcal{A}(\frac{0}{4}) = \mathcal{A}(\frac{0}{4}) + \mathcal{A}(\frac{1}{4}) = \delta_1$

$$\delta_0$$
 δ_2

Definition:
$$\mathcal{A}(\frac{x}{y}) = \mathcal{A}(\frac{x}{y}) + \mathcal{A}(\frac{y}{y})$$

Example: $\mathcal{A}(\frac{0}{4}) = \mathcal{A}(\frac{0}{4}) + \mathcal{A}(\frac{1}{4}) = \delta_1$

Properties:

The aura of a gash is invariant under propagations.

Definition:
$$A(\frac{x}{y}) = A(\frac{x}{y}) + A(\frac{y}{y})$$

Example:
$$A(\frac{0}{4}) = A(\frac{0}{4}) + A(\frac{1}{4}) = \delta_1$$

Properties:

- The aura of a gash is invariant under propagations.
- Sum of auras of gashes of any resolution is zero.

$$\mathcal{A}(\frac{4}{2}) + \mathcal{A}(\frac{2}{2}) = 0$$

Definition:
$$\mathcal{A}(\frac{x}{y}) = \mathcal{A}(\frac{x}{y}) + \mathcal{A}(\frac{y}{y})$$
Example: $\mathcal{A}(\frac{0}{4}) = \mathcal{A}(\frac{0}{4}) + \mathcal{A}(\frac{1}{4}) = \delta_0$

Properties:

- The aura of a gash is invariant under propagations.
- Sum of auras of gashes of any resolution is zero.

$$\mathcal{A}(\frac{4}{2}) + \mathcal{A}(\frac{2}{1}) = 0$$

Sum of auras of right gashes of resolutions of illegal puzzle piece is zero.

$$\mathcal{A}(\frac{4}{0}) + \mathcal{A}(\frac{1}{6}) = 0$$

Aura of puzzles

Let \widetilde{P} be a resolution of a flawed puzzle P.

Def:
$$\mathcal{A}(\widetilde{P}) = \mathcal{A}(\text{ right gash in } \widetilde{P})$$

$$\mathcal{A}(\frac{\sqrt[3]{0}}{\sqrt[3]{0}}) = \mathcal{A}(\sqrt[9]{1}) \qquad \mathcal{A}(\frac{\sqrt[3]{0}}{\sqrt[3]{0}}) = \mathcal{A}(-\frac{5}{0}) \qquad \mathcal{A}(\sqrt[3]{\frac{3}{0}}) = \mathcal{A}(\sqrt[3]{2})$$

Aura of puzzles

Let \widetilde{P} be a resolution of a flawed puzzle P.

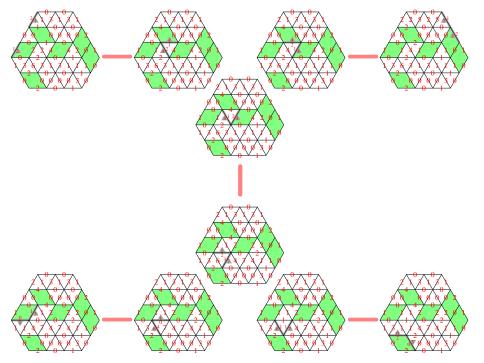
Def: $\mathcal{A}(\widetilde{P}) = \mathcal{A}(\text{ right gash in } \widetilde{P})$

$$\mathcal{A}(\frac{1}{2}) = \mathcal{A}(\frac{9}{1}) \qquad \mathcal{A}(\frac{5}{2}) = \mathcal{A}(\frac{5}{0}) \qquad \mathcal{A}(\frac{5}{2}) = \mathcal{A}(\frac{5}{0})$$

If \widetilde{P} is the only resolution of P, then set $\mathcal{A}(P) = \mathcal{A}(\widetilde{P})$.

Key identity: Let *S* be any finite set of flawed puzzles that is closed under mutations. Then

$$\sum_{P \in \mathcal{S}_{\mathrm{scab}}} \mathcal{A}(P) \ + \sum_{P \in \mathcal{S}_{\mathrm{gash}}} \mathcal{A}(P) \ = \ 0$$



From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string $u = (u_1, u_2, \dots, u_n)$ we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise: $\partial P = \triangle^{u,v}_{w} \Rightarrow$

Exercise:
$$\partial P = \triangle_w^{u,v} \Rightarrow$$

s scab in P

Exercise:
$$\partial P = \triangle_w \Rightarrow$$

$$\sum - \text{weight}(s) A(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string
$$u = (u_1, u_2, ..., u_n)$$
 we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise:
$$\partial P = \triangle_{uv}^{u,v} \Rightarrow$$

$$\sum_{\substack{s \text{ scab in } P}} - \text{weight}(s) \mathcal{A}(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

Write
$$u \to u'$$
 if $u \le u'$ in Bruhat order and $\ell(u) + 1 = \ell(u')$.

Set
$$\delta(\frac{u}{u'}) = \delta_{u_i} - \delta_{u'_i}$$
 where *i* is minimal with $u_i \neq u'_i$.

From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string $u = (u_1, u_2, ..., u_n)$ we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise:
$$\partial P = \triangle^{u,v}_{w} \Rightarrow$$

$$\sum_{\substack{s \text{ scab in } P}} -\text{weight}(s) \mathcal{A}(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

Write $u \rightarrow u'$ if $u \le u'$ in Bruhat order and $\ell(u) + 1 = \ell(u')$. Examples: $022221 \rightarrow 122220$; $02 \rightarrow 20$; $100002 \rightarrow 200001$

Set $\delta(\frac{u}{u'}) = \delta_{u_i} - \delta_{u'_i}$ where i is minimal with $u_i \neq u'_i$.

Def:
$$\widehat{C}_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\lozenge \in P} \mathsf{weight}(\lozenge)$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$P \text{ has marked scab } s$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\diamond} \text{ weight}(\diamond)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\diamond} \text{ weight}(\diamond)$$

$$P \text{ has marked scab } s$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} A(P) \prod_{\diamond} \text{ weight}(\diamond)$$

$$P \text{ has gash pair}$$

P has gash pair

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\diamond \in P} \text{ weight}(\diamond)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\diamond \in P} \text{ weight}(\diamond)$$

$$P \text{ has marked scab } s$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} A(P) \prod_{\diamond \in P} \text{ weight}(\diamond)$$

Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ of X = Fl(a,b;n) are uniquely determined by

(1)
$$C_{w,w}^w = \prod_{i < j : w_i > w_j} (y_j - y_i)$$
 (Kostant-Kumar)

$$(2) (C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot C_{u,v}^{w}$$

$$= \bigvee \sum_{u \to u'} \delta(\frac{u}{u'}) C_{u',v}^{w} + \bigvee \sum_{v \to v'} \delta(\frac{v}{v'}) C_{u,v'}^{w} + \bigvee \sum_{w' \to w} \delta(\frac{w'}{w}) C_{u,v}^{w'}$$

Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ of X = FI(a,b;n) are uniquely determined by

(1)
$$C_{w,w}^w = \prod_{i < j : w_i > w_j} (y_j - y_i)$$
 (Kostant-Kumar)

$$(2) (C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot C_{u,v}^{w}$$

$$= \bigvee \sum_{u \to u'} \delta(\frac{u}{u'}) C_{u',v}^{w} + \bigvee \sum_{v \to v'} \delta(\frac{v}{v'}) C_{u,v'}^{w} + \bigvee \sum_{w' \to w} \delta(\frac{w'}{w}) C_{u,v}^{w'}$$

Consequence:

$$C_{u,v}^w = \widehat{C}_{u,v}^w = \sum_{\partial P = \triangle_w^{u,v}} \prod_{\bigotimes \in P} \mathsf{weight}(\bigotimes)$$