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Two-step flag varieties
Fix 0<a<b<n.

X = Fl(a,b;n) = {(A,B)|AC BCC";dim(A) = a; dim(B) = b}

Def: A 012-string for X is a permutation of 0216-227=b,
C" has basis {e1, ez,...,en}. u=(u1,un,...,u,) 012-string.

Def. (Ay,By) € X by A, = Span{e; : uj =0} and B, = Span{e; : u; < 1}.

Example: X = FI(1,3;5). u=10212. (A,,B,) = (Cey, Ce; ®Ce, @ Cey).



Two-step flag varieties

Fix 0<a<b<n.

X = Fl(a,b;n) = {(A,B)|AC BCC";dim(A) = a; dim(B) = b}

Def: A 012-string for X is a permutation of 0216=227=5,
C" has basis {e1, ez,...,en}. u=(u1,un,...,u,) 012-string.

Def. (Ay,By) € X by A, = Span{e; : uj =0} and B, = Span{e; : u; < 1}.

Example: X = FI(1,3;5). u=10212. (A,,B,) = (Cey, Ce; @ Cer @ Cey).
Schubert variety: X, =B.(Ay,By) ; B CGL(C") lower triangular.

codim(X,, X) = f(u) = #{i<j|u>u}
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T C GL(C") maximal torus of diagonal matrices.
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Equivariant cohomology

T C GL(C") maximal torus of diagonal matrices.
Hi(point) = Z[y1,...,ya] . where y; = —c1(Cej).

(X)) = @ Z[y1,---.yn) - [Xu] is an algebra over H¥(point).
u

The equivariant Schubert structure constants of X

are the polynomials C,, € Z[y1, ..., yn] defined by

[Xu] - [X] = Z C::A,/v [Xw]

H7(X) graded ring = CY, homogeneous of degree £(u) + £(v) — £(w).
Uw) =Lu)+L(v) = CF, =#(g-XuNgX,NgsXuv ) ; g € GL(C).

Theorem (Graham) CJ, € Zsoly2 = yi,-- - ¥n — Yn—1]



Puzzle pieces
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Simple labels: 0,1, 2

Composed labels: 3=10, 4=21, 5=20, 6=2(10), 7=(21)0



Equivariant puzzles




Equivariant puzzles

1 2 n 2 1
L Z U Z L

Note: The composed labels are uniquely determined by the simple labels.



Equivariant puzzles

1 2 n 2 1
L Z U Z L

Note: The composed labels are uniquely determined by the simple labels.

Boundary: 0P = ALY where v =110202, v = 021210 , w = 120210.



Equivariant puzzle formula

Theorem

Cr, = Z H weight(<>)

OP=A," OG p

i J
weight(()) = y; — yi



Equivariant puzzle formula

Theorem

Cr, = Z H weight({))

OP=A," Oe p

i J
weight(()) = yj — yi

Known cases:
Puzzle rule for H*(Gr(m, n)) (Knutson, Tao, Woodward)
Puzzle rule for H3(Gr(m, n)) (Knutson, Tao)

Puzzle rule for H*(FI(a, b; n)) (conjectured by Knutson,
proof in [ B-Kresch-Purbhoo-Tamvakis],

different positive formula by Coskun.)



Example: Let X =FI(2,4,5). In H%(X) we have:
[Xo1201] - [X10102] = ?




Example: Let X =FI(2,4;5). In H:(X) we have:
[Xo1201] - [X10102] = ?




Example: Let X =FI(2,4,5).  In HH(X) we have:
[Xo1201] - [X10102] =

[X11200] +  (va — y1)[X12001]

1 Fal a 1 Fal
T U ra T U




Quantum cohomology of Grassmannians
X = Gr(m,n) = {VCC"|dim(V)=m} = FI(m, m;n)

— —

X0222020220 +—— 0222020220
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Schubert varieties +— 02-strings <— Young diagrams
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Quantum cohomology of Grassmannians
X = Gr(m,n) = {VCC"|dim(V)=m} = FI(m, m;n)

Schubert varieties +— 02-strings <— Young diagrams
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(Small) equivariant quantum ring:

QHT(X) = H3(X)®zZlq] = PZn,...,ynql [X]
A

Ring structure is defined by equivariant Gromov-Witten invariants
7d .
NY® € Zlyr, ... yn]

sH
v,d
oI * X = D Nysa? [X]
v,d>0



Gromov-Witten invariants of X = Gr(m,n)

v,d
oI * X = D Nys g [X]
v, d>0

Ny =CY, (QH7(X) is a deformation of H#(X).)

NK:Z € Zy1,---,¥n] is homogeneous of degree |\ + |u| — |v| — nd.

A+ [l = [Vl +nd =
Nf\’:f: = # rational curves C C X of degree d meeting g1.X), g2.X,, 83.X,v.

Thm (Mihalcea) NK:Z € Zsoly2 = y1:---,¥Yn — ¥n-1]



Quantum equals classical theorem

Def: (B) Given curve C C X = Gr(m,n) set

Ker(C) = m VcC" and Span(C)= Z vcci”
vec vec



Quantum equals classical theorem

Def: (B) Given curve C C X = Gr(m,n) set

Ker(C) = ﬂ VcC" and Span(C)= Z vcci”

vecC vecC
Fix degree d.  Set Y =FI(m—d, m+ d;n).

Given a 02-string A for X, let A(d) be the 012-string
for Y obtained from A by replacing the first d

occurrences of 2 and the last d occurrences of 0 with 1.

A =0222020220 and d =2 gives A(d) = 0112021221.
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Quantum equals classical theorem

Def: (B) Given curve C C X = Gr(m,n) set

Ker(C) = ﬂ VcC" and Span(C)= Z vcci”
vecC vecC

Fix degree d.  Set Y =FI(m—d, m+ d;n).

Given a 02-string A for X, let A(d) be the 012-string
for Y obtained from A by replacing the first d

occurrences of 2 and the last d occurrences of 0 with 1. |

N
N

N
=4
N

e
[Ty

A =0222020220 and d =2 gives A(d) = 0112021221.

Yxeg)y = {(A,B)eY[3IVeX\:ACV CB}

= Set of Kernel-Span pairs of general curves of degree d meeting Xj.



Quantum equals classical theorem

Theorem (B-Kresch-Tamvakis) For |A| 4 |u| = |v| + nd we have bijection

rational curves in X
of degree d meeting > 81.Y\(d) N &2 Yu(a) N &3-Yo(a)
g1- Xy, 82. X, 83.Xy

C —  (Ker(C), Span(C))



Quantum equals classical theorem

Theorem (B-Kresch-Tamvakis) For |A| 4 |u| = |v| + nd we have bijection

rational curves in X
of degree d meeting > 81.Y\(d) N &2 Yu(a) N &3-Yo(a)
g1- Xy, 82. X, 83.Xy

C —  (Ker(C), Span(C))

\%

Theorem (B-Mihalcea) Ny ¢ = C;\j((j))u(d) € Zy,..., ]

Corollary: N;vu’d = Z H weight({))

A(d).(d)
oP=\ 50 Oer



The mutation algorithm

Puzzle: e Shapeis a hexagon.
e All pieces may be rotated.

e Boundary labels are simple.



The mutation algorithm

vvmv «
DAY

Flawed puzzle containing the gash pair:



The mutation algorithm

Remove problematic piece.



The mutation algorithm




The mutation algorithm




The mutation algorithm

vvmv «
DAY

The piece EA fits. Always at most one choice !!!




The mutation algorithm

But no puzzle piece fits this time.



The mutation algorithm
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The mutation algorithm

Flawed puzzle containing the illegal puzzle piece: W



The mutation algorithm
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The mutation algorithm

Use directed gashes.



The mutation algorithm
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The mutation algorithm

Flawed puzzle containing a gash pair.
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The mutation algorithm
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The mutation algorithm

vy
vv,mv

Flawed puzzle containing the illegal puzzle piece: v
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The mutation algorithm
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The mutation algorithm
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Flawed puzzle containing the marked scab: %
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The mutation algorithm
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AVA’A‘
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Flawed puzzle containing a marked scab.



Component of the mutation graph:
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Resolutions of illegal puzzle pieces:
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Example:
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Proof that mutation algorithm works:
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Proof that mutation algorithm works:
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Proof that mutation algorithm works:

Consider connected component of the edges:

/ / 1 [0} C i
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Proof that mutation algorithm works:
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Proof that mutation algorithm works:

Consider connected component of the edges:

/ / 1 [0} C i
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Proof that mutation algorithm works:
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Proof that mutation algorithm works:




Proof that mutation algorithm works:




Proof that mutation algorithm works:

Technical result: The two gashes will propagate to the same location.

In particular, the above situation is I



Aura of semi-labeled edges

An is a linear form in R = C[do, d1, 2] - /]\ € C is a unit vector.



Aura of semi-labeled edges

An aura is a linear form in R = C[do, 1, 02] - /]\ € C is a unit vector.
0 o ) 01 5 P
Def: A(—) = /]\ A(—=) = /]\ A(=) = /]\
AN

If LX )/A is a puzzle piece, then .A(A) —|—.A()>\) +A(%) = 0.

V4



Aura of semi-labeled edges

An aura is a linear form in R = C[do, 1, 02] - /]\ € C is a unit vector.
0 o ) 01 5 P
Def: A(—) = /]\ A(—=) = /]\ A(=) = /]\
AN

If LX yA is a puzzle piece, then .A(A) —|—.A()>\) +A(%) = 0.

do 02



Aura of gashes

Definition: A(Z-) =

y
. 0y =
Example: A7)



Aura of gashes

Definition: A(5-) = AZS) + A7) o

y
Example: A(%) = A(i)—i-A(T) _
01 02

Properties:

e The aura of a gash is invariant under propagations.



Aura of gashes
Definition: A(%) — A(L)—l-A(T) 5
0
Example: A(%) = A(i)—i-A(T) _
01 02

Properties:

e The aura of a gash is invariant under propagations.

e Sum of auras of gashes of any resolution is zero.

WZ\?\ Y%\% A(—4=) + A(N) = 0




Aura of gashes
Definition: A(%) — A(L)—l-A(T) 5
0
Example: A(%) — A(i)—l-A(T) _
o1 0

Properties:

e The aura of a gash is invariant under propagations.

e Sum of auras of gashes of any resolution is zero.

WZ\?\ ?N A(—4=) + A(N) = 0

e Sum of auras of right gashes of resolutions of illegal puzzle piece is zero.

Aﬁﬁ[ﬁ A(/+A\




Aura of puzzles
Let P be a resolution of a flawed puzzle P.

P) = = A( right gash in P

)= A(%) E@& A(Eﬁ@:m&)



Aura of puzzles
Let P be a resolution of a flawed puzzle P.

Def: A(P) = A( right gash in P)

A() = A(%) “‘“E@&) = A(-5) A(&) = A(%)

If P is the only resolution of P, then set A(P) = A(P).

Key identity: Let S be any finite set of flawed puzzles that is
closed under mutations. Then

AP+ D> AP) =0

PGSS(;ab PGSgash
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From now on: e All puzzles are triangles.

e All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string v = (u1,u2,...,up) we set
n
C, = Z duYi € Rlyi,...,ynl
i=1

Exercise: 0P =A;" =

S —weight(s)A(s) = G~ + Gz + Gu)

s scab in P



From now on: e All puzzles are triangles.

e All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string v = (u1,u2,...,up) we set
n
C, = Z duYi € Rlyi,...,ynl
i=1

Exercise: 0P =A;" =
ST —weight(s)A(s) = G-+ G-z + G-l
s scab in P
Write u— o' if u<d inBruhat order and £(u)+1=¢(J).
Examples: 022221 — 122220 ; 02 — 20 ; 100002 — 200001

Set 6(7) = Oy — 0y where i is minimal with u; # uj.



From now on: e All puzzles are triangles.

e All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string v = (u1,u2,...,up) we set
n

Cu = Zéu;}/i € R[}/l,---’yn]

i=1

Exercise: 0P =A;" =
ST —weight(s)A(s) = G-+ G-z + G-l
s scab in P
Write u — " if u < inBruhat order and £(u) +1 = £(u).
Examples: 022221 — 122220 ; 02 — 20 ; 100002 — 200001

Set 6(7) = Oy — 0y where i is minimal with u; # uj.

Def: Z‘l‘,"’v = Z H weight(())

=D (e



Molev—Sagan type recursion:
(G- + Gz + G-,
= Z Z —A(s) weight(s) H weight(())

u,v H
GPZAW s scab in P O cp
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u,v H
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_ ST —A(P) weight(s) [ weight(¢))



Molev—Sagan type recursion:
(G- + Gz + G-,
= Z Z —A(s) weight(s) H weight(())

u,v H
GP:AW s scab in P OGP

_ ST —A(P) weight(s) [ weight(¢))

o=\ Q cp
P has s
= Yo AP [T weight($)
o=\, Hep



Molev—Sagan type recursion:

(G + Gz + G- g,

— Z Z —A(s) weight(s) H weight(@)

u,v 1
8P=AW sscabin P Oep

_ ST —A(P) weight(s) [ weight(¢))

oP=A\" QEP
P has S
— Z A(P) H weight(())
oP=A\" er
P has
S S L+ 7 Z (= c



Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants CYY, € Z[y1, ..., ya|
of X =Fl(a, b; n) are uniquely determined by

(1) Cv'f//,w: H (yj—)/i) (Kostant-Kumar)

i<j:wi>w;
2) (G- + G + G P)cw,
= S A+ T D) G+ Y ) C

u—u’ v—v/ w/ —w



Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants CYY, € Z[y1, ..., ya|
of X =Fl(a, b;n) are uniquely determined by

(1) Cv'f//,w: H (vj — i) (Kostant-Kumar)

i<j:wi>w;
2) (G- + G + G P)cw,
= S A+ T D) G+ Y ) C

u—u’ v—v/ w/ —w

Consequence:

G, = Z‘L‘,":\, = Z H weight(@)

oP=N\" QGP



