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The sources

The subject of this talk is a paper of the same title published in

Fundamenta Mathematicae 65 (1969).

A misstatement of a theorem of the paper was submitted as Prob-

lem 5589 in the American Mathematical Monthly, and a counterex-

ample to that statement by Dan Marcus, as well as a proof of the

intended statement, was published in the February 1976 issue.

Milton Parnes used our methods in “On the measure of measurable

sets of integers”, Acta Arithmetica 25 (1973).



Genesis

In those days, Rutgers gave large common final exams in all be-

ginning course and used large spaces like the main gymnasium for

this activity. All instructors were called together to proctor, but

no individual was kept very busy. This led to Erik asking me if

I could provide a number theoretical viewpoint on Benford’s law.

We met frequently after that and exchanged ideas. This paper was

the result.

It also led to our meeting Roger Pinkham who had written on the

subject earlier from a statistical viewpoint.



Equally likely integers

We want to describe the notion of “pick an integer at random”, but

traditional methods don’t apply.

If a probability measure on the natural numbers assigns the same

measure to each integer, that measure must be zero. Then the

measure can’t be countable additive, so traditional measure theory

is not available.

The sets that we work with will be sets of natural numbers, but

we will often be sloppy and say “integer”.



An interesting alternative

Tarski showed that a finitely additive measure on an algebra of

sets of integers containing all singletons can be extended to one

defined on the whole power set. All measures that appear here

will be finitely additive probability measures defined on all subsets.



Ultrafilters

A collection of nonempty sets that also contains the intersection of

two sets in the collection and any superset of a set in the collection

is called a filter. A maximal filter in the ordering by inclusion is

called an ultrafilter. Since a set that meets all elements of a filter

without containing any does not belong to the filter, but can added

to it to create a larger filter, ultrafilters must contain any given set or

its complement. The set of all sets containing a particular point (an

integer in our case) is an ultrafilter, called a principal ultrafilter.

There are many more, and it is these non-principal ultrafilters that

are more interesting.



Integrals

If f is a bounded function on N and µ is a measure,
∫

f dµ can be

defined. It is easily approximated, as in classical measure theory, by

dividing the range at points ck considering the sets where f (n) lies

in [ck, ck+1]. The sum of ck times the µ-measure of the set of n with

f (n) in this interval is a lower bound on the integral, and replacing

ck by ck+1 gives an upper bound. These bounds are arbitrarily

close, so every bounded function is integrable, and the integral is a

linear functional. For the measure that tests membership in a non-

principal ultrafilter U, the integral of a function f gives something

that is called a U-limit of f .



A topology on the set of measures

The usual connection between measures and integrals holds and

the weak∗ topology on the linear functionals gives a convenient

topology on the space of all measures. Many interesting classes of

measures will be closed in this topology.



Measurable sets for classes of measures

Instead of looking at individual measures, we will usually consider

classes of all measures with some nice property. For a set A ⊆ N
a class of measures C, we can form the set of all µ(A) for µ ∈ C.

This will be denoted C(A). Similarly, one can define C( f ) as the

set of values of integrals of the function f .

The sets on which all measures in C agree will be called measurable

with respect to C.



Convex classes

Many interesting classes of measures are convex. That is, if µ0 ∈ C

and µ1 ∈ C, and 0 ≤ α ≤ 1, then αµ0 + (1 − α)µ1 ∈ C.

For a convex class of measures, C, the set C(A), or C( f ) will

always be an interval. This makes it easy to study measurability

with respect to convex classes of measures.



The class of all measures

Let M denote the class of all measures. It is clearly a convex class.

We have

M(∅) = 0 and M(N) = 1.

For all other sets A, M(A) = [0, 1] since we can use a measures

that test whether a set belongs to an ultrafilter to obtain the extreme

values.



The class of all non-atomic measures

Let N denote the class of all measures that give single points mea-

sure zero. Again, this is clearly a convex class. Finite sets have

measure 0 and cofinite sets have measure 1. For all other sets A,

M(A) = [0, 1] since we can use a measures that test whether a set

belongs to a non-principal ultrafilter to obtain the extreme values.



Invariant measures

For µ ∈ N, µ(N) = µ(N+1). A measure is said to be translation

invariant if this is true for all sets. The class of all translation

invariant measures is denoted T. (We will show that it is nonempty.)

More generally, we can take any function g : N −→ N and say

that a measure µ is g-invariant if µ
(

g−1(A)
)

= µ(A) for all A,

where g−1(A) denotes the complete inverse image of A. The class

of g invariant measures will be denoted Ig .



Constructing invariant measures

If f is any bounded function, Ig( f ) can be estimated using

f (m)(n) =
1
m

m−1∑
k=0

f
(

gk(n)
)

(This is only really suitable for g that are one to one. The general

case will be more similar to our later discussion of scale invariant

measures.)



A theorem

Theorem 1. Ig is non-empty and

Ig( f ) = [lim inf
m

glb
n

f (m)(n), lim sup
m

lub
n

f (m)(n)]

Also,

lim sup
m

lub
n

f (m)(n) = glb
m

lub
n

f (m)(n)

and similarly for the lower bound. Furthermore, if Ig ⊆ N, the

upper bound is equal to glbm lim supn f (m)(n).



Proof of the theorem

The later versions of the upper bound are smaller than the earlier

ones. To prove the theorem, measures attaining the larger upper

bound will be constructed while the smaller one will be shown to

be an upper bound.



The construction step

Here is a construction of a measure with

µ( f ) = lim sup
m

lub
n

f (m)(n).

Let µ
(m)
n = k/m where k is the number of members of A in〈

n, g(n), . . . , gm−1(n)
〉
. Then f (m)(n) is the integral of f with

respect to this measure.



Construction continued

Choose a sequence of m with m → ∞ realizing this limit. Choose

your favorite sequence of εm → 0. For each m choose n depending

on m with f (m)(n) > lubn f (m)(n) − εm . Form the U-limit of

these f (m)(n) over some ultrafilter. This limit is in Ig because∣∣ f (m)
(

n
)
− f (m)

(
g(n)

)∣∣ < 1/m.



Bounds on measures

If µ ∈ Ig ,
∫

f dµ =
∫

f (g) dµ, which shows that the inte-

gral is also the same as
∫

f (m) dµ. This shows that
∫

f dµ ≤

lubn f (m)(n) for every m. This leads to the alternate expression as

upper bound.



The proof by Marcus

When the equality of limits for g(n) = n + 1 was presented as

a problem in the Monthly a simple direct proof was given. It

demonstrated that lubn f (m)(n) is essentially a decreasing function

of m so it has a limit. This also shows why it was necessary to add

the word bounded to the statement.



Examples

For the class T:

Any set that contains exactly one of each pair {2n, 2n + 1} has

measure 1/2.

If α > 1 and β > 0 are real numbers, the generalized arithmetic

progression bnα + βc has measure 1/α.

The set of SF squarefree numbers has T(SF) = [0, 6/π2].



Sparse sets of real numbers

Some terminology used in the paper:

A set A ⊆ R+ is called discrete if

9A(n) = #
{

A ∩ [n, n + 1)
}

is finite for all n, and A is sparse if 9A(n) is bounded.



Distortions

For each µ ∈ M, φ(A) =
∫

9A dµ is a set function on sparse

sets extending µ. If µ ∈ T, φ will be invariant under maps f with

| f (x) − x | bounded. Such maps are called distortions. Restrict-

ing any distortion invariant φ to subsets of N (and normalizing)

gives a measure in T with φ(A) =
∫

9A dµ.



Measure inducing sets

Measures in T are identified with normalized distortion invariant

set function on the family of sparse subsets of R+.

Other subsets of R+ of interest are the measure inducing sets S

which are unions of intervals Si such that sets of integers, one from

each Si have measure zero for all measures in T. Equivalently, there

is a function f with limt→∞ f (t)/t = 0 such that each interval of

length t meets at most f (t) of the Si .



Another theorem

Theorem 2. If S is measure inducing, α > 0, and µ ∈ T, then

µ(S ∩ N) = αµ(S ∩ αN).



Scale invariance

It follows from Theorem 2 that µ(N) = αµ(αN). Then, the set

function defined by µ′(A) = αµ(αA) also belongs to T. If µ′
=

µ, then µ is said to be α-scale invariant. The class of all such

measures will be denoted Sα .

One can also consider the class S =
⋂

α Sα .



Construction of scale invariant measures

Take any µ ∈ T and let

µ(n)(A) =
1
n

n−1∑
k=0

αkµ(αk A).

Then, let ν(A) = U−lim µ(n)(A). One sees that ν ∈ Sα and if µ ∈

Sβ , then ν ∈ Sα ∩Sβ . Furthermore, if α and β are multiplicatively

independent, and if

µ(δA) ≤ µ(A) for all δ ≥ 1 (∗)

then ν ∈ S.



Connection with asymptotic density

Consideration of asymptotic density leads to a class of measures

A for which ∫
f dµ ≤ lub

n

1
n

n∑
k=1

f (k)

All measures in A satisfy (∗), but we were unable to decide the

converse.



Connections with Benford’s law

The connection is expressed in

Theorem 3. Let U be an arc on the unit circle in C and

S =
{

x ∈ R+ : e(logβ x) ∈ U
}
.

If θ ∈ R+ and logβ θ is irrational, and µ ∈ Sθ , then µ(S ∩ N) =

λ(U ) where λ is the Lebesgue measure on the circle normalized to

give the whole circle measure 1.



Logarithmic density

(This was not in the original paper.)

In theorem 1, translation invariant measures were constructed as

limits of the atomic measures µ
(m)
n . If we started with measures for

which the measure of individual integers k in the support was pro-

portional to 1/k, we would obtain measures extending the familiar

notion of logarithmic density. I haven’t checked all details, but

such measures appear to belong to S, i.e., they are α-scale invariant

for all α



The measure of measurable sets

This deals with the work of Milton Parnes. A set A ⊆ N may be

encode by the real number
∑

χA(n)2−n , so a set of such sets may

be viewed as a subset of R. In particular, the sets measurable with

respect to Ig may be considered from this point of view forming a

set Jg ⊆ R.

Theorem. Jg has Lebesgue measure zero.



A special collection of a measurable sets

If k and L are integers with L > 2 and

0 ≤
k − 1

L
< Jg(A) <

k
L

≤ 1

then measurability gives that all µ
(n)
L M (A) for sufficiently large M

lie between (k − 1)/L and k/L (this use of the multiples of a base

number of iterations was also part of the work of Marcus).



A bound on the measure

Using this for n = 1 already shows that the Lebesgue measure

of the set of real numbers corresponding the set of all such A is

bounded by

p = 2−L M
k M∑

(k−1)M

(
L M

i

)
< 1.



Conclusion of proof

Now, take n = gL M (1). The value of the measure gives a condition

that is independently satisfied with probability p.

Continuing in this fashion, the sets with these measures give a set

of real numbers with measure bounded by pk for all k, so that the

measure is zero.

A similar argument is possible to deal with sets of measure 0 or 1.

All together, there are countably many choices of pairs (k, L) that

cover all measures, so the theorem follows.



The answer of a question of Buck

Parnes applies this to a question raised by Buck in Amer. J. Math.

68 (1946). A class of outer measures giving the correct densi-

ties of arithmetic progressions was studied, and the measurability

question was raised for its collection of measurable sets.

We have seen that the T-measurable sets include all arithmetic pro-

gressions, with the correct density. Studies based on outer measure

are subsumed under our theory, so Buck’s measurable sets are all T-

measurable. Since the latter class gives a set of Lebesgue measure

zero, so does Buck’s class.


