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HAUSDORFF DIMENSION OF SETS ARISING IN NUMBER THEORY

Richard T. Bumby
Rutgers University

Introduction. Hausdorff gave his name to a process for constructing d-dimensional
measure for arbitrary real numbers d in 1919 [10]). Some of the developments since
that time can be found in the books of Billingsley [3], Mandelbrot [11], and
Rogers [12]. 1 do not want to get involved in the technicalicies of the measure
theory here; so 1 will simply encourage you to think of d-dimensionality as meaning
that if a set is scaled by a factor of k, then the measure is multiplied by kd.
The d-th power of the diameter has this property, so it 1s natural to compare
d=dimenslonal measures wicth the set function X + (diam X)d- Similarly, you should
think of sets as subsets of the real line as the examples I wish to present are sets
of real numbers,

The notion of "meusure zero" {y easler than the general notion of measure.
A set has measure zero if it may be covered by a union of sets which is arbitrarily
small in the appropriate sense. In particular, a set X will be said to have measure

zero in dimension d 1if for all €, there is a sequence of sets Ui with

= £(dam ui)d <€

Notice that as € = 0 80 does wmax(diam Ui}. The notion of "finite measure" which
is then suggested is that there is a number M such that for all & > 0 cthere is a

sequence l.l1 with

X cuyy diam U, < & I(diam ui)d <M

If X does not have finite weasure in a given dimension it will be said to have

infinite measure in that dimension. The Hausdorff dimension is characterized by

Proposition 1. If X has finite measure in dimension d, then it has measure zero
in all larger dimensions. If X has non zero measure in dimension d, then it has
infinite measure in all smaller dimensions. Thus each set X has a dimension

dim(X) such that X has measure zero in dimension d > dim(X) and infinite measure
in dimension d < dim(X).

Proof. Exercise based on the observation that ro is a decreasing function of d

£f B2 3 €3

Note that the emphasis on covers means that one is essentially dealing with an outer
measure. This has led to some apparent pathologies. The examples given here are

actually rather tame; in particular, they have finite, non-zero measure in their
Hausdorff dimension.




There are two common types of representation of numbers. The first is the
decimal or, more generally, the base g representation; and the second is the
continued fraction. Both have been studied in the context of Hausdorff dimension,
and I will pive an example of the determlnation of the Hausdorff dimension of a set
defined by the properties of each of these representations,

The CLASSTCAL CANTOR SET, here called CCS, consists of those x, 0 < x<1
having a base 3 expansion without the digit 1. Since

CCs = ¢q(CC5) U cz(ces)
(1)
where ci(x) = &§£

a d-dimensional measure would assign each ci(CCS) measure 3—d times the measure
of CCS. Since each of these is half of CCS, it seems that d = log 2/log 3 18 the
only reasonable choice for the dimension. This was proved by Hausdorff [10], but the
generalization to sets defined by missing digits in the base g expansion came much
later (see Best [2] and Volkmann [14]). I will give a proof in the next section.
The set E2 consists of all numbers having infinite continued fraction
expansions with partial quotients 1 or 2. In particular, every element x of E

2
satisfies
X +2ﬁi X &1+ 3
and the part of EZ with zeroth partial quotient equal to 1, 1 =1 or 2, is
selected by the map
ei(x) = f + 1/x.
Since e, is not an affine map, one cannot use the equation
E, = ¢, (Ey) U e, (E))
in the same way as one ueed (1) to guces the dimension.
Techniques for bounding the dimension of Ez have been known for some time.
In 1941, I.J. Good proved
.5194 < dim Ez £ .5433 (2)

More recently, I [5] proved a general theorem characterizing the dimensions of
auch sets. The method was sufficiently constructive that it was possible to compute
upper and lower bounds on the dimension of EZ' Unfortunately, the method was so
slowly convergent that the results did not strengthen (2). Meanwhile, Cusick [6]
found that dim Ez arose naturally in another problem, This caused a renewed
interest in finding a computation of dim E, that was simultanecusly naive, so that

2
it could be easily explalned, and accurate, so that it would be useful. The method



sketched here seems to satisfy both requirements. The idea of monotocity which wae
so valuable in Good's calculation has been Incorporated into my algoricthm. It

required only a few minutes on a home computer to prove

25312 < dim E, < .5314. (3)

a2

The proof of (3) will be sketched in the third section of this paper.
There 1s another example to which these methods apply which should be mentioned
although T shall give no details. Starc with three circular discs of radii Lys Ty

T, in the plane each two of which are externally tangent. The complement of these

discs has two components. The closure of the bounded component is a "triangle" whose
sldes are circular arcs, These triangles are parameterized by the numbers tl‘rZ'tj'
A classical construction determined a unlque clrcular dlsc inscribed in this triangle.
Remaval of this disc leaves three smaller triangles in place of the given triangle.
Iteration of this constructlon gives a Cantor set construction. The underlying geo-
metry ls now Inversive geometry in che plane, or one-dimensional complex projective
geometry. The llousdorff{ dimenuion of this ser has been determined by D.W. Boyd [4].
The arithmwetic signiflcance of this has been noted by A.L. Schmide [13]. A

complex continued fraction can be described by this conmstruction, and a dual construc-
tion for subdividing the disc (marked with its three points of tangency) which was

removed from the triangle,

The dimension of CCS. The cover of CCS by the intervale of length 3™ occurring

in ite construction haw I(dium UL}d =1 for all n 1f d = log 2/log 3. It follows
that CCS has finite measure in this dimension, hence measure zero in all larger
dimensions. If Ce§ can be shown not to have measure zero in dimension d =

log 2/log 3 it will follow that CCS hase dimension d. Part of that result is
contained in

Proposition. If each U1 is of the form [a/Jn, u+1/3n] vhere & has only digits

0 and 2 base 3, then
cCS guui=> L(diam lli‘)d 2 1.

Remarks. The value of n 1is allowed to depend on Ui’ and there may be infinitely
many such intervals, so this is different from the observation uased to show that CCS
has finite measure in dimension d., Conventional wisdom suggests that the Ui could
be replaced by open sets with a small effect on the measure and then compactness could
somehow be used to get the desired conclusion or something just as good. Indeed, the
claseical method for finding dimensions of subsets of the real line used a theorem

of G1111s [7] whose proof involved the Heine-Borel theorem, I will prove a "little
man who isn't there" theorem which is the contrapositive of the given statement by an

argument which resembles a proof of the Heine-Borel theorem attributed to Besicovitch



(see Hardy [9], section 106).

Proof. Start with a collection of intervals v, of the required type with
£(diam Ui)d < 1. For cthe purpose of this proof, such a collection will be called
"deficient".

Clearly no deficient collection can contain [0,1]. Hence the intervals can
meet only one of cD(ccs), cz(ccs). The sum then splits into two pleces, so at least

one plece is less than 1/2. Select ¢, so that the sum assoclated to CL(CCS) is

less than 1/2., Then the image of these intervals under cil is a deficient collec-

tion.

This sequence of choices determine a nest of intervals in the construction of
€CS. The intersection of these intervals is our "litcle man". The above construc-
tions shows that the intervals [a/3", a+1/3"] which contain him cannot be in our

collection of intervals Ul' On the other hand, these are the only intervals which

we have allowed as Ui which can contain him. So, he i8 not there!

To show that these special intervals suffice to determine the Hausdorff dimen-

sion, assoclate an arbitrary sec U, with the smallest interval [a/3", (a+1)/3")

containing Ui M CCS, It is easily seen that this interval is no more than three

times the length of Ui'

A more delicate analysis will show that our proposition holds for arbitrary Ui.
This analysis has been employed by Wegmann [15] to determine the measure in dimension
log(g-1)/log g of the set of numbers missing the digit a in their base g expan-
eions.

The dimension of Ez. The mappings e, and e to its two parts are

1 2 relating BZ
not linear. They cannot be used to give the lengths of the construction intervals as

easily as was done for CCS. However, they are fractional linear functions so they

preserve the projective geometry of the line. Each ratio AB/AC can be written as a

cross ratio where P 1s the point at infinity. To determine the effect when

AR PC
AC+PB -1 3
this ratio is mapped by ei , 1t suffices to locate e, (P) and compute the appro-

priate cross ratio. Over several such steps, the point at infinite goes first to 0,

then to a value between -1 and =-1/3 and eventually to a neighborhoood of
1
(-2 ¢ E,).

The lengths of various subintervals of one of the construction intervals as a ratioc
of the length of that interval can be expressed in terms of lengths of the correspond-

ing subintervals of the "template" 1 = [ +l. v3+1] by using the inverse image of

2
the point at infinity under the mapping sending the template onto the given conatruc-

tion interval. This function 1s a continuous function of the point corresponding to
infinity., 1If, as in [5), this value is written as =-1/X, the values of A 1n a
neighborhood of Ez determine all other values.



1f E2 has a d-dimensional measure, then the ratio of any projective transform
of E2 to the d-th power of the length of that transform of 1 will be a continu-
ous function of A where =1/A 18 the preimage of infinity for that mapping. Use

of el(Ez) and EZ(EZ) to compute the measure gives rise to a subdivision operator

d d
@) = |@-/3) ERCI L+ |-/ D\ g 4 H.
1+A/3 24X (Y3+3)

[This formula suffered a misprint (the insertion of a spurious '+') on p. 201 of [s]
which is corrected here.] Any measure would then be a positive invariant function,
{.e. a positive eigenfunction with eigenvalue 1. The result of [5] is that the
classical Perron-Frobenius theory of non-negative matrices holds for T. The eigen-
function can then be used to show that the measure of EZ is zero Iif the elgenvalue
is less than 1 and infinite Lf the eigenvalue is greater than 1. The eigenvalue
is a continuous decreasing function of d 8o there will be a dimension in which the
eigenvalue is equal to 1, and in this dimension the eigenfunction gives the ratio
of the measure of each part of E, to the d-th power of the length of the corres-
ponding construction interval., This eigenfunction is unique up to a scale factor.
The usual properties of Haar measure on groups [16] seem to have analogies here,

How can this be used to compute the dimension as accurately as I have claimed?

The first ingredient is a corollary of the Perron-Frobenius theory.

Proposition. A necessary and sufficlent condition that.the spectral radius of T be
greater than or equal to 1 1w that there exist a positive function f with

Tf > f. Dually, the spectral radlus of T {is less thsn or equal to 1 1f and only
if there is a positive function with Tf < f.

Proof (sketch). The eigenfunction establishes the neceasity. To prove sufficlency,
note that {f: Tf > £ > 0} 1is taken into itself by the positive operator T. Com-
bining this with the proof of existence of an eigenfuncrion shows that the eigenfunc-
tion has thie property.

The second ingredient is the observation that T 1is conjugate to the operator
C defined by

€O = 2ea + b + 2@ o 5.

This could be based on the fact that the continuant to the power (-2) is an estimate

of the length of the a construction interval for a Cantor set defined by the continued

fraction expansion. (See Cusick [6] for propercies of continuants.) Alternatively

one could give an explicit multiplication operator M such that MC = TM (exercise).
The functions g (A) = (aA+l)-2d have special properties for the operator C.

Exerclse: compute Csutl). I won't spoil the surprise by giving the answer. It

will follow that the eigenfunction has the form



Iaa()u) dp (o) 4)

(whatever this means!), We shall only require the following corollary which could be
obtained directly from the definition of C.

Proposition. There is a cone of positive decreasing functions stable under C. In
particular, there {s a constant b < 0 such that

{f: 0> £'/¢ > b}
is stable under C.

Proof: Exercise.

Remark. There is much more to (4) than will be needed here. It seems to establish
some sort of self-duality of C. In particular the measure yu appears to be the
d-dimensional Hausdorff measure on Ez that we have been seeking. For a related

result on a different operator related to the continued fraction expansion see
Babenko [1].

A method of producing a function satisfying Cf > £ in this case is to take

fo = Li £, = fq VO (02 0)

0

[Here (f Vv g) stands for the function with (fV g)(}) = max(£(A),g(A)).]

Proposition. f f . Hence the following are equivalent:

>
ntl — 'n
) S Er

(1) cf > €

(111)  (Cf ) (+T) > 1.
Proof: f1 = fOV Cff) 2 fO. Now 1f fn ol fn-l' then fn+1 - £0 VCf“ 2 EOVCfn_l-fn.
Induction on this showa that rn 3 fo so that (L1)==> (i1). Conversely
(11) = cfrl = rn+l > En which 18 (1). Since Cfn is a decreasing function, it
exceeds 1 everywhere on [ if it exceeds 1 at the right endpoint. Thus (i4)
and (i1ii) are equivalent. (I must apologize for stating the proposition as Lf it
were gpecific to this one example, The proof 1s easy enough that other applications
should afford no difficulty.)

It is easy enough to do this with n = 10. It takes just a couple of minutes to
compute (Cfn)(1+J§) recursively on a home computer. (I also have a version of this
algorithm for a programmable calculator - but a calculation with n = 10 takes
several days on such a machine.) Much larger values of n would give only slight
improvements in the result, but would take much longer as the number of steps is

proportional to 2=,



In actuality, (3) required a further improvement on this method. The details
can be skipped here as becter methods are likely to be found. I should leave you
vith some hints about the methods I used since they lead to some results about the
functions g, which are interesting in their own right.

Exercises: (1) Determine conditions for gu/ga to be increasing.

(2) Let ha 8 , + g

l+E 2

(3) Determine conditions for hthB to be increasing.

Express Cha in terms of the h,.

B

ot

It will follow from the exercises that the operator which multiplies by hB,
applies C, and then divides by hB will have a stable cone of monotonic functions
if B=14/3 or B = (1+/3)/2. These are the operators used to prove (3).

Conclusions. The sets considered here have thelr roots in arithmetic, but the theore~
tical tools introduced to compute their Hausdorff dimensions should have broader
interest and application. [In particular, the relation of the Hausdorff dimension te
the spectral radius of the subdivision operator provides a means of eliminating ad

hoc estimates, thereby sharpening the calculations. The use of monotonicity to allow
inequalities of functions to be tested by finite numerical calculations does not seem
to have a place in the numerical analysis arsenal., It bears furcther study. The
“gpectral analysis' given by equation (4) {llustrate a self-duality which seems to be
present also for the circle-packing example. This 1s likely to be an important
structure,
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