
The underlying diagram is Figure 7 in Felix Klein’s paper ‘Uber die Transfor-
mation der elliptischen Funktionen und die Auflosung der Gleichungen funften
Grades’ which appeared in May 1878 in Mathematische Annalen. This shows
the standard apartment of the Tits building of a hyperbolic Kac-Moody group
whose Weyl group is PGL2(Z).
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While such groups have been widely studied, there is only sparse literature on
triangle groups of noncompact hyperbolic type, which are generated by reflections
in the sides of a hyperbolic triangle with one or more angles equal to zero, that
is, one or more of r, s, t equal �. Such a hyperbolic triangle has a point on the
boundary of the Poincaré disk for every zero angle.

HYPERBOLIC TRIANGLE GROUPS

Triangle groups of compact hyperbolic type are groups W = W (r, s, t) generated
by reflections in the sides of a triangle in the hyperbolic plane (Poincaré disk)
with angles �/r, �/s, �/t, with 1

r + 1
s + 1

t < 1 and all angles greater than 0.



NONCOMPACT HYPERBOLIC TESSELLATIONS

Some noncompact hyperbolic tessellations were described in the book of Mag-
nus, Noneuclidean tessellations and their groups, Academic Press, 1974, but
only those arising from the modular group W (⇥, 3, 2) �= PGL2(Z) and its fi-
nite index subgroups.

We will describe all the noncompact hyperbolic reflection groups that arise as
Weyl groups of rank 3 symmetrizable Kac-Moody algebras of noncompact hyper-
bolic type and describe their noncompact tessellations of the Poincaré disk.

We will also construct actions of these groups on simplicial trees that are natu-
rally related to their tessellations.

We first discuss the representation theoretic properties of locally compact groups
associated to Kac-Moody algebras.



KAC-MOODY ALGEBRAS

A Kac-Moody algebra is the most natural generalization to infinite dimensions
of a finite dimensional simple Lie algebra.

The data for constructing a Kac-Moody algebra includes a ‘generalized Cartan
matrix’ A which is a generalization of the notion of a Cartan matrix of a finite
dimensional Lie algebra, and which encodes the same information as a Dynkin
diagram.

The rank of a Kac-Moody algebra equals the number of rows and columns in
the generalized Cartan matrix. ‘Symmetrizability’ is an important property
of a generalized Cartan matrix, necessary for the existence of a well-defined
symmetric invariant bilinear form (· | ·) on the Kac-Moody algebra.

TYPES OF GENERALIZED CARTAN MATRICES

Finite type: A is positive definite, det(A) > 0.

A⇥ne type: A is positive semi-definite but not positive definite, det(A) = 0.

Hyperbolic type: A is neither of finite nor a⇥ne type, but every proper indecom-
posable submatrix is either of finite or a⇥ne type, det(A) < 0.

Compact hyperbolic type: Every proper indecomposable submatrix of A is of
finite type.

Noncompact hyperbolic type: A has a proper indecomposable submatrix of a⇥ne
type.



WEYL GROUP OF A KAC-MOODY ALGEBRA

Let g be a Kac-Moody algebra and let h denote its Cartan subalgebra. Then g
has an associated root system �.

Let aij denote the entries of the generalized Cartan matrix A. For each simple
root �i ⌥ � we define the simple root reflection

wi(�j) := �j � aij�i.

The wi generate a subgroup W ⇥ Aut(h�), called the Weyl group.

For i, j ⌥ I, and for i �= j, we set

cii := 1, cij := 2, 3, 4, 6 or ⌃

if
aijaji = 0, 1, 2, 3, or ⇤ 4 respectively .

Then W is the Coxeter group with presentation:

W =  mi | i ⌥ I, (mimj)cij = 1, if cij �= ⌃⌦,

and W acts on the set of all roots, preserving a symmetric bilinear form.

Then W is infinite ⌅⇧ � is infinite ⌅⇧ g is infinite dimensional.



ba

Example: Rank 2 a�ne or hyperbolic
Let

A =
�

2 �a
�b 2

⇥

If ab = 4, A is a⇥ne. If ab > 4, A is hyperbolic. For ab > 4, A has Dynkin
diagram

We have
W =< w1, w2 | w2

1 = 1, w2
2 = 1 > .

Then W is the infinite dihedral group

W = Z/2Z ⇥ Z/2Z ⌅= Z ⇥ {±1}.
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Example: Rank 3 noncompact hyperbolic type

Let

A =

⇤

⇧
2 �2 0
�2 2 �1
0 �1 2

⌅

⌃

A has Dynkin diagram

The Weyl group of A is the (⇤, 3, 2)-triangle group:

W = < w1, w2, w3 | w2
1 = w2

2 = w2
3 = 1, (w2w3)3 = (w1w3)2 = 1 > ⇥= PGL2(Z)

A has a�ne submatrix
A(1) =

1

�
2 �2
�2 2

⇥



GROUPS ASSOCIATED TO KAC-MOODY ALGEBRAS

In order to associate an analog of a Lie group to a Kac-Moody algebra, Tits
associated a group functor GA on the category of commutative rings, such that
for any symmetrizable generalized Cartan matrix A and any ring R there exists
a group GA(R). He also showed that over a field K the group GA(K) is unique
up to isomorphism.

Locally compact forms of G = GA(K) can be constructed over finite fields, that
is, for K = Fq. This was first observed by Tits (1980s) and distinct construc-
tions were given by Carbone and Garland (1999), Rémy and Ronan (2006).
When constructed over a finite field Fq, G is locally compact and totally discon-
nected.

ACTIONS ON HYPERBOLIC BUILDINGS

Moreover, G = GA(Fq) admits an action on a locally finite simplicial complex
known as the Tits building X. The Tits building has a geometric realization
which can be expressed as a union of subcomplexes (apartments) which are
isomorphic Coxeter complexes satisfying certain axioms.

In our case of interest, when G is of rank 3 noncompact hyperbolic type, apart-
ments in X are hyperbolic planes tessellated by the action of a hyperbolic Weyl
group W of noncompact type.



LATTICES IN LOCALLY COMPACT KAC-MOODY GROUPS

We recall that a discrete subgroup � of a locally compact group G is a lattice if
the quotient �\G carries a finite invariant measure. If further, �\G is compact,
we say that � is cocompact. Otherwise we say that � is nonuniform.

A classical example of a nonunifom lattice is � = SL2(Fq[t]) � G = SL2(Fq((t�1))).

A locally compact Kac-Moody group G = GA(Fq) is a source of lattice sub-
groups with interesting representation theoretic, K-theoretic and ‘arithmetic’
properties.

The group G = GA(Fq) has a twin BN -pair corresponding to positive and
negative roots. The minimal parabolic subgroup B� of the negative BN -pair is
known to be a nonuniform lattice subgroup of G (Carbone and Garland (1999),
Rémy (1999)).

We study G = GA(Fq) and B� in analogy with lattices in Lie groups.



SUMMARY OF INGREDIENTS SO FAR

A, a symmetrizable generalized Cartan matrix of a⇤ne or hyperbolic type

g = gA(K), a Kac-Moody algebra over a field K

gFq = gA(Fq), a form of g over Fq

h, the Cartan subalgebra of g

W � Aut(h⇥), the Weyl group of g

G = GA(Fq), a locally compact totally disconnected group associated to gFq

X, the locally finite Tits building of a BN -pair for G

B�, the minimal parabolic subgroup of the negative BN -pair for G

� = B� ⇥ G, a nonuniform lattice

We will now discuss the representation theoretic and K-theoretic properties of
the groups G = GA(Fq) in the setting described above.



Summary of representation theoretic and K-theoretic
properties of groups

A locally compact group G satisfies the Haagerup property if it admits a con-
tinuous, isometric, proper action on an a⇥ne Hilbert space.

The Haagerup property is a strong negation of Kazhdan’s Property (T) which
states that every continuous action of G by isometries on a Hilbert space has a
fixed point.

The Baum-Connes conjecture in non-commutative geometry conjectures an iso-
morphism between K-homology and K-theory, relating the analytic and topo-
logical properties of a group.

The strongest form of the Baum-Connes conjecture: the conjecture with coe⇥-
cients in any C�-algebra.



Representation theoretic properties and results on the Baum-Connes conjecture

for Kac-Moody groups can be summarized in the following table, where G is

a symmetrizable locally compact a�ne or hyperbolic Kac-Moody group over a

finite field Fq (Carbone (2009)).

Rank r of G Assumptions on G Properties of G

r = 2 a�ne or hyperbolic type
Haagerup property

Baum-Connes conjecture
with coe�cients

r = 3
noncompact hyperbolic type

q su�ciently large

Haagerup property
Baum-Connes conjecture

with coe�cients

r = 3
compact hyperbolic type

q su�ciently large

Property (T)
Baum-Connes assembly

maap is injective

r � 3
a�ne type

q su�ciently large

Property (T)
Baum-Connes assembly

map is injective

4  r  10
hyperbolic type

q su�ciently large

Property (T)
Baum-Connes assembly

map is injective



Special case - G has rank 3 noncompact hyperbolic type

Let G be a locally compact symmetrizable rank 3 Kac-Moody group of noncom-
pact hyperbolic type. Then the minimal parabolic subgroup B� of the negative
BN -pair for G is a nonuniform lattice subgroup of G (Carbone and Garland
(1999), also Rémy (1999)) and B� has the Haagerup property (Carbone (2009)).

It is also known that the Haagerup property predicts a continuous proper action
by isometries on a ‘median space’ (Chatterji, Drutu and Haglund (2007)). In
joint work with Yusra Naqvi (2009), we explicitly construct a proper action of
the lattice B� � G on a bihomogeneous tree X , which is an example of a median
space.

Construction of a lattice acting properly on a tree cannot be made in a locally
compact Kac-Moody group G of a⇥ne or hyperbolic type (compact or noncom-
pact) if rank(G) ⇥ 4 since such groups have Kazhdan’s Property (T). By a
theorem of de la Harpe and Valette, every action of a Property (T) group on a
tree fixes a vertex. In particular this applies to lattice subgroups of G.

On the other hand, if G is a rank 2 locally compact Kac-Moody group, then G is
symmetrizable and is of a�ne or hyperbolic type, The Tits building of G is then
itself a homogeneous tree X. It is known that G has the Haagerup property and
that the subgroup B� acts properly on X (Carbone and Garland). Our results
therefore give an action on a simplicial tree for any locally compact Kac-Moody
group with the Haagerup property.



Tree Y associated to W �� Poincaré disk D tessellated by W

fundamental
apartmentsubtree

Tree X �� Tits building X of G

The natural retraction of X onto D induces a retraction of X onto Y.

PROPER ACTION OF B� � G ON A TREE

In joint work with Yusra Naqvi (2009), we explicitly construct a proper action
of the lattice B� � G on a bihomogeneous tree X for a symmetrizable locally
compact rank 3 Kac-Moody group G of noncompact hyperbolic type.

The Weyl group W of G is a hyperbolic triangle group W = W (r, s, t) with at
least one of r, s, t equal to ⇥.

The tree X is constructed from a tree Y which we associate to the Weyl group
W . The tree X is naturally inscribed in the Tits building X of G, a rank 3
locally finite hyperbolic building.
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WEYL GROUPS OF RANK 3 NONCOMPACT HYPERBOLIC TYPE

The classification of hyperbolic Dynkin diagrams shows that there are 33 possi-
ble symmetrizable generalized Cartan matrices of rank 3 noncompact hyperbolic
type. However, there are only 9 isomorphism classes of Weyl groups:

W (�,�,�), W (�, 2,�), W (�, 3,�),

W (�, 3, 2), W (�, 4, 2), W (�, 6, 2),

W (�, 3, 3), (�, 4, 4), (�, 6, 6).

There are many subgroup relations among these:



When W = W (�,�,�), the tree associated to W is Y = Y3,2.



When W = W (⇥, 3, 2) �= PGL2(Z), the tree associated to W is Y = Y3,2.

Note that W (�, 3, 2) has the same tree as its subgroup W (�,�,�) of index 6.



When W = W (�, 3, 3), the tree associated to W is Y = Y3,3.



When W = W (�,�, 3), the tree associated to W is Y = Y6,2.



When W = W (�, 6, 2), the tree associated to W is Y = Y6,2.

Note that W (�, 6, 2) has the same tree as its subgroup W (�,�, 3) of index 2.



AMALGAM DECOMPOSITIONS OF HYPERBOLIC
WEYL GROUPS

A group G is said to have Property (FA) if every action of G on a tree has
a global fixed point. Serre showed that if a group has Property (FA), then it
cannot split as a free product with amalgamation or HNN extension.

Theorem (Carbone and Naqvi (2009)) Let A be a symmetrizable a⇥ne or
hyperbolic generalized Cartan matrix. Let G = GA(Fq) be a locally compact
Kac-Moody group associated to A and the finite field Fq, with q su⇥ciently
large.

(i) If r = rank(G) = 2 or if rank(G) = 3 and G has noncompact hyperbolic
type, then G has the Haagerup property and W = W (A) has a nontrivial
amalgamated product decomposition. Thus W does not have Property (FA).

(ii) If r = rank(G) = 3 and G has compact hyperbolic type, or if rank(G) ⇥ 3
and G has a⇥ne type, or if 4 � r � 10 and G has hyperbolic type, then G has
Property (T) and W = W (A) has Property (FA).



D6 D4Z/2Z

Z/2Z Z/2Z

Z/2Z

{1}
{1}{1}

{1}

Using the Bass-Serre correspondence between group actions on trees and quo-
tient graphs of groups we obtain:

W (⇤, 3, 2) ⇥= PGL2(Z) ⇥= D6 �Z/2Z D4

W (⇤,⇤,⇤) ⇥= Z/2Z � Z/2Z � Z/2Z

These amalgam decompositions coincide with the JSJ-decompositions for Weyl
groups given by Mihalik and Ratcli�e-Tschantz.

GRAPH OF GROUPS PRESENTATION FOR W ON Y

The action of W the Poincaré disk induces an action of W on Y. If F is
a fundamental triangle for the action of W on the Poincaré disk, then the
intersection of the closure of F with Y will be a fundamental domain for the
action of W on Y.

The quotient graphs of groups for W (�, 3, 2) and W (�,�,�) on Y are:



OTHER DIRECTIONS, OPEN QUESTIONS

⇥ Other noncompact tessellations for A of rank 3
noncompact hyperbolic type but not symmetrizable ?

⇥ Strengthen the Baum-Connes conjecture for Kac-Moody groups and other
groups with Property (T) ?

⇥ Let G be a rank 2 locally compact Kac-Moody group over a finite field Fq. If
q = 2s then G contains a cocompact lattice � ⌅= Mq �Mq⇥gMq

�Mq with quotient a
simplex. When q = 2, G also contains an infinite descending chain of cocompact
lattices ... �3 ⇤ �2 ⇤ �1 ⇤ � (Carbone and Cobbs (2009)).

⇥ If our Kac-Moody group G has the Haagerup property, we claim that the
graph of groups presentation for B� ⇤ G acting on a simplicial tree satisfies the
Kac-Peterson conjecture on the structure of B�. We have a proof of this when
G has rank 2. What is the quotient graph of groups B�\X when G has rank 3
noncompact hyperbolic type?

⇥ Development of a theory of congruence subgroups for nonuniform lattices in
locally compact hyperbolic Kac-Moody groups is in progress.

⇥ Construction of Eisenstein series on quotients of Tits buildings by nonuniform
lattices in locally compact hyperbolic Kac-Moody groups is in progress.

⇥ R-forms of hyperbolic Kac-Moody groups play a role in supergravity theories.


