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Abstract

These are some notes on the DeMoivre-Laplace Theorem.

0.1 The DeMoivre-Laplace Theorem

Let {Tj}j∈N be an infinite sequence of independent Bernoulli random variables, each with success

parameter p. Let q = 1− p. Then for each j,

E(Tj) = p and Var(Tj) = pq . (0.1)

Think of an infinite sequence of coin tosses with a coin that is weighted so that the probability of

heads is p. We assume 0 < p < 1 to avoid trivialities.

Define Sn to be the cumulative number of successes at the n stage:

Sn =
n∑
j=1

Tj .

It then follows from (0.1) and the independence of the Bernoulli variables, that

E(Sn) = np and Var(Sn) = npq . (0.2)

For each n ∈ N, define the random variable

Xn =
Sn − np√

npq
.

It follows that E(Xn) =
1
√
npq

E(Sn − np) =
1
√
npq

(np− np) = 0, and then, using (0.2),

Var(Xn) =
1

npq
Var(Sn − np) =

1

npq
Var(Sn) = 1 .

The random variables Xn depend on n in a non-trivial way: The maximum value of Xn is

n− np
√
npq

=

√
nq

p
,

1
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which certainly depends on n. However, the expected value of Xn and the variance of Xn are

independent of n: We have E(Xn) = 0 and Var(Xn) = 1 for all n. It turns out that other

important probabilistic characteristics of Xn are essentially independent of n for large values of n

– and by large we mean a couple hundred or less, depending on p and q. We are not talking about

astronomically large numbers.

Specifically, the cumulative distribution function of Xn is nearly independent of n for large

n, and in fact it is nearly equal to the cumulative distribution function of the standard normal

distribution:

0.1 DEFINITION. The function Φ(a) given by

Φ(a) =

∫ a

−∞

1√
2π
e−x

2/2dx , (0.3)

is the cumulative distribution function of the standard normal density f(x) =
√

2πe−x
2/2. We

always reserve the symbol Φ for this function.

The function Φ cannot be computed in closed form, but its values are tabulated in many

references; e.g. the table on page 196 in the text.

It follows from the definition that if X is a standard normal random variable, P (X > b) =

1− Φ(b). In particular, from the table we see that

P (X > 1) = 0.1587 , P (X > 2) = 0.0228 , P (X > 3) = 0.0013 .

Thus, if X is a standard normal variable, it can take on arbitrarily large values, however, the

probability that it takes on large values is very small. Even the probability that X ≥ 3 is barely

better than 1 in a thousand. Larger values are far less likely: P (X ≥ 10) ≤ 7.9199× 10−24. The

standard normal distribution is fundamentally important on account of the following theorem:

0.2 THEOREM (DeMoivre-Laplace Theorem). Let Xn defined as above in terms of an infinite

sequence of independent identically distributed Bernoulli variables. Then for all a < b ∈ R,

lim
n→∞

P (a < Xn ≤ b) = Φ(b)− Φ(a) . (0.4)

Since Φ is continuous, for any a, and any ε > 0, we can find an δ so that Φ(a+δ)−Φ(a−δ) < ε.

It follows that for all sufficiently large n, P (Xn = a) ≤ P (a− δ < Xn ≤ a+ δ) < ε, and therefore,

limn→∞ P (Xn = a) = 0 for all a. Therefore, we can also write (0.4) as

lim
n→∞

P (a ≤ Xn ≤ b) = Φ(b)− Φ(a) . (0.5)

0.2 Applying the DeMoivre-Laplace Theorem

As our first example, we apply the DeMoivre-Laplace Theorem to coin tossing. Suppose a fair

coin is tossed 2m times. What is the probability that the result is exactly m heads?
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Let Tj = 1 if the jth toss is heads, and Tj = 0 otherwise. Then S2m is the total number of

heads, and by the DeMoivre-Laplace Theorem, the cumulative distribution function of

X2m =
S2m −m√

m/2

is approximately equal to Φ. The possible values of X2m are the numbers

xn,k =
k −m√
m/2

.

Note that S2m = k if and only if X2m = xn,k. Hence

k − 1
2
≤ S2m ≤ k + 1

2

if and only if

xn,k −
1√
2m
≤ X2m ≤ xn,k +

1√
2m

.

Now take k = m. Identifying the event S2m = m with the event m− 1
2
≤ S2m ≤ m + 1

2
, which is

known as the continuum correction, we have

P (S2m = m) = P

(
− 1√

2m
≤ X2m ≤

1√
2m

)
.

The DeMoivre-Laplace Theorem says that for fixed a < b,

lim
m→∞

P (a ≤ X2m ≤ b) = Φ(b)− Φ(a) .

In our case, a and b depend on m, but let us make the approximation suggested by the DeMoivre-

Laplace Theorem anyway:

P (S2m = m) = P

(
− 1√

2m
≤ X2m ≤

1√
2m

)
≈ Φ

(
1√
2m

)
− Φ

(
− 1√

2m

)
. (0.6)

Let’s put in some numbers and see how we did. Taking m = 20,

Φ

(
1√
40

)
− Φ

(
− 1√

40

)
= 0.12563...

The exact value is

P (S40 = 20) =

(
40

20

)
2−40 = 0.12537...

This is really quite good and certainly m is not that large.

Now let’s consider a problem in which the exact answer is not so easy to numerically evaluate.

Suppose we are given what is claimed is a fair coin, and we toss it !0, 000 times and obtain 5, 050

heads. How likely is it that if the coin is fair, 10, 000 tosses result in at least 5, 050 heads?
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The exact answer is

2−10,000
10,000∑
k=5,050

(
10, 000

k

)
,

but just try to evaluate this on a calculator. Identifying the even S10,000 ≥ 5, 050 with the event

X10,000 ≥
5, 050− 5, 000√

2, 500
= 1 ,

The DeMoivre-Laplace Theorem says that

P (X10,000 ≥ 1) ≈ Φ(1) = 0.1587... .

It is not really very likely that the coin is fair.

0.3 Proof of the DeMoivre-Laplace Theorem and more

We will now prove the DeMoivre-Laplace Theorem and somewhat more. In doing so, we will see

why it gives good results even for values of n that are not so large, and why it was justified to

make the approximation that we made in (0.6), in which the endpoints on the interval also depend

on n.

The basis of the proof is Stirling’s formula, which is essentially due to DeMoivre. Stirling’s

formula says that

n! ≈
√

2πnn+1/2e−n .

Stirlings’s contribution was to identify the constant
√

2π. DeMoivre had the same formula apart

from the constant, for which he had only a good decimal approximation, which was good enough

for his purposes. The fact that this constant is exactly
√

2π could even be deduced from the

DeMoivre-Laplace Theorem, as we shall see.

The random variable Xn takes on the values

xn,k :=
k − np
√
npq

for o ≤ k ≤ n . (0.7)

These values are evenly spaced with the distance between them being

∆nx :=
1
√
npq

. (0.8)

Since P (Sn = k) =

(
n

k

)
pkqn−k,

P (Zn = xn,k) =

(
n

k

)
pkqn−k . (0.9)

We are going to prove:
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0.3 THEOREM. For any R > 0, and any ε > 0, there is an N0 depending only of R, ε and p

such that for all n ≥ N0 and all k such that |xn,k| ≤ R,

(1− ε)f(xn,k)∆nx ≤ P (Xn = xn,k) ≤ (1 + ε)f(xn,k)∆nx . (0.10)

where

f(x) :=
1√
2π
e−x

2/2 .

Theorem 0.3, known as the local DeMoivre-Laplace Theorem implies the DeMoivre-Laplace

Theorem as stated in Theorem 0.2. Before turning to the proof of Theorem 0.3, we first give

another useful corollary that we will use to deduce the Theorem 0.2 from Theorem 0.3, among

other things.

0.4 COROLLARY. With Xn defined as above, for all piecewise continuous functions g on R
such that for some finite C, |g(x)| ≤ C for all x,

lim
n→∞

Eg(Xn) =
1√
2π

∫
R
g(x)e−x

2/2dx . (0.11)

To see that the corollary implies implies the DeMoivre-Laplace Theorem, take

g(x) =

{
1 a ≤ x ≤ b

0 otherwise
, (0.12)

which is bounded and piecewise continuous, The corollary says that

lim
n→∞

P (a ≤ Xn ≤ b) = lim
n→∞

Eg(Xn) =

∫
R
g(x)f(x)dx =

∫ b

a

f(x)dx = Φ(b)− Φ(a) ,

which is (0.5). We first prove Corollary 0.4, and then Theorem 0.3.

Proof of Corollary 0.4. Since for each n, EX2
n = 1,

P (|Xn| > R) ≤ E(R−2X2
n) = R−2 , (0.13)

where we used the fact that the random variable R−2X2
n is at least 1 on the event {|Xn| > R},

as in the proof of the law of large numbers. Pick ε > 0, and then pick any R large enough that

CR−2 < ε.

By the definition of the expectation,

Eg(Xn) =
n∑
k=0

g(xn,k)P (Xn = xn,k)

=
∑

k : |xn,k|≤R

g(xn,k)P (Xn = xn,k) +
∑

k : |xn,k|>R

g(xn,k)P (Xn = xn,k) .
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By what we have noted above,∣∣∣∣∣∣
∑

k : |xn,k|>R

g(xn,k)P (Xn = xn,k)

∣∣∣∣∣∣ ≤ C
∑

k : |xn,k|>R

P (Xn = xn,k)

= CP (|Xn| > R) ≤ CR−2 ≤ ε .

Next, by Theorem 0.3, there is an N0 such that for all n ≥ N0 and all k such that |xn,k| ≤ R,

|g(xn,k)P (Xn = xn,k)− g(xn,k)f(xn,k)∆nx| = |g(xn,k)|P (Xn = xn,k)− f(xn,k)∆nx|
≤ Cεf(xn,k)∆nx .

Therefore, ∑
k : |xn,k|≤R

g(xn,k)P (Xn = xn,k) =
∑

k : |xn,k|≤R

g(xn,k)f(xn,k)∆nx± Cε(1− ε)−1

where we have used the fact that∑
k : |xn,k|≤R

f(xn,k)∆nx ≤ (1− ε)−1
∑

k : |xn,k|≤R

P (Xn = xn,k) ≤ 1 ,

which is again a consequence of Theorem 0.3. Altogether,

Eg(Xn) =
∑

k : |xn,k|≤R

g(xn,k)f(xn,k)∆nx± ε(C(1− ε)−1 + 1) .

Then since

lim
n→∞

∑
k : |xn,k|≤R

g(xn,k)f(xn,k)∆nx =

∫ R

−R
g(x)f(x)e−x

2/2dx , (0.14)

which is true since g is bounded and piecewise continuous,

lim
n→∞

Eg(Xn) =

∫ R

−R
g(x)e−x

2/2dx± ε(C(1− ε)−1 + 1) .

Finally, ∣∣∣∣∫ R

−R
g(x)e−x

2/2dx−
∫
R
g(x)e−x

2/2dx

∣∣∣∣ ≤
√

2

π
C

∫ ∞
R

e−x
2/2dx

≤ C

∫ ∞
R

x

R
e−x

2/2dx = C
e−R

2/2

R
.

It is readily checked that Re−R
2/2 ≤ 1 for all R, and so the final bound is no more than CR−2 ≤ ε.

Then we have

lim
n→∞

Eg(Xn) =

∫
R
g(x)e−x

2/2dx± ε(C(1− ε)−1 + 2) .

Since ε is arbitrary this proves the claim.
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0.5 Remark. The estimate∫ ∞
R

e−x
2/2dx ≤ 1

R

∫ ∞
R

xe−x
2/2dx =

e−R
2/2

R

is often useful.

0.6 Remark. Looking back over the error terms in the proof of Corollary 0.4, it can be seen that

the rate of convergence in (0.11) depends on g only through C and the rate of convergence in

(0.14). In particular, if g is Lipschizt with Lipschitz constant L, then the rate of convergence in

(0.14) can be controlled using L and p. (Note that ∆nx depends on n and p.) Hence the rate of

convergence in (0.11) is uniform over the class of all bounded, Lipschitz continuous g with bound

C and Lipschitz constant L. Taking Lipschitz approximations to the functions g defined in (0.14),

one can then easily prove that the rate of convergence in (0.5) is uniform in a and b.

Proof of Theorem 0.3. A more precise version of Stirling’s formula is:

√
2πnn+1/2e−ne

1
12n+1 ≤ n! ≤

√
2πnn+1/2e−ne

1
12n .

Taking logarithms, it follows that∣∣∣∣log n!− 1

2
log(2πn)− n log n+ n

∣∣∣∣ ≤ 1

12n
.

For n a natural number and 0 < k < n an integer, we compute

log

(
n

k

)
= log n!− log k!− log(n− k)!

≈ 1

2
log (2π) +

(
n+

1

2

)
log n−

(
k +

1

2

)
log k −

(
n− k +

1

2

)
log(n− k)

=
1

2
log

(
2π

n

)
−
(
k +

1

2

)
log

(
k

n

)
−
(
n− k +

1

2

)
log

(
n− k
n

)
where we have used (

n+
1

2

)
=

(
k +

1

2

)
+

(
n− k +

1

2

)
− 1

2

to obtain the last line. Therefore

log

((
n

k

)
pkqn−k

)
≈

1

2
log

(
2π

npq

)
−
(
k +

1

2

)
log

(
k

np

)
−
(
n− k +

1

2

)
log

(
n− k
nq

)
. (0.15)

Note that the error made in (0.15) is no greater that

1

12

(
1

n
+

1

k
+

1

n− k

)
(0.16)
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in magnitude.

We now rewrite (0.15) in terms of xn,k. From the definition (0.7),

k = np+ xn,k
√
npq and n− k = nq − xn,k

√
npq , (0.17)

and then
k

np
= 1 + xn,k

√
q

np
and

n− k
nq

= 1− xn,k
√

p

nq
. (0.18)

Let N0 be such that

max

{
R

√
q

N0p
, R

√
p

N0q

}
≤ 1

2
. (0.19)

Then for n ≥ N0, k ≥ np/2 and n− k ≥ nq/2, and so the quantity in (0.16) is no more than

1

12

(
1

n
+

2

np
+

2

nq

)
,

and this goes to zero as n increases to infinity. This bounds the size of the error made in (0.15)

uniformly, as required.

Having dealt with estimating the error, we return to the right side of (0.15) and apply the

Taylor expansion for the natural logarithm, which is

log(1 + t) = t− 1
2
t2 + 1

3
t3 + . . . ,

which converges for |t| < 1, and is an alternating decreasing series, meaning that∣∣log(1 + t)− t+ 1
2
t2
∣∣ ≤ 1

3
|t|3 . (0.20)

which allows up to control the errors in the approximation log(1 + t) ≈ t − 1
2
t2. Making this

approximation, and using the first formula in (0.17),(
k +

1

2

)
log

(
k

np

)
≈

(
np+ xn,k

√
npq +

1

2

)(
xn,k

√
q

np
− 1

2
x2n,k

q

np

)
= xn,k

√
npq +

1

2
qx2n,k +

(
1

2
xn,k − x3n,kq

)√
q

np
− 1

4
x2n,k

q

np

By (0.20), the error we have made here is bounded in magnitude by

1

3
R3

(√
p

nq

)3

since we apply (0.20) with t = xn,k
√

q
np

, and for n ≥ N0, |t| < 1
2

by (0.19).

Likewise, using the second formula in (0.17),(
n− k +

1

2

)
log

(
n− k
nq

)
≈

(
nq − xn,k

√
npq +

1

2

)(
−xn,k

√
p

nq
− 1

2
x2n,k

p

nq

)
= −xn,k

√
npq +

1

2
px2n,k +

(
1

2
xn,k − x3n,kq

)√
p

nq
− 1

4
x2n,k

p

nq
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and the analysis of the error is the same as we saw just above, only with the roles of p and q

interchanged, so we do not repeat it.

Using these two expressions in (0.15), we see that for all n ≥ N0 and k such that |xn,k| ≤ R,

log

((
n

k

)
pkqn−k

)
=

1

2
log

(
2π

npq

)
− 1

2
x2n,k ±

C√
n
,

where the constant C depends only on R and p.

Now exponentiating,[
1√
2π
e−x

2
n,k/2∆nx

]
e−C/

√
n ≤

(
n

k

)
pkqn−k ≤

[
1√
2π
e−x

2
n,k/2∆nx

]
eC/
√
n (0.21)

Now for any ε > 0 choose n0 such that eC/
√
n0 ≤ 1 + ε. Then e−C/

√
n0 ≥ 1− ε. Replacing N0 with

the maximum of n0 and the previously chosen N0, we have completed the proof.

0.7 Remark. The constant
√

2π in Stirling’s formula shows up as the constant
√

2π in the

standard normal density function. If we only knew that∣∣∣∣log n!− 1

2
log(Cn)− n log n+ n

∣∣∣∣ ≤ K

n

for some constants C and K, the exact same reasoning we have just gone through would show

that for all R >,

lim
n→∞

P (−R ≤ Xn ≤ R) =
1

C

∫ R

−R
e−x

2/2dx .

Since E(X2
n) = 1 for each n, P (|Xn| > R) ≤= R−2, as in the proof of Corollary0.4. It follows

that for all n,

1−R−2 ≤ P (−R ≤ Xn ≤ R) ≤ 1 .

It then follows that for all R,

1−R−2 ≤ 1

C

∫ R

−R
e−x

2/2dx ≤ 1 .

Taking R → ∞ yields 1 ≤ 1

C

√
2π ≤ 1, and this shows that C =

√
2π, Stirling’s contribution to

Stirling’s formula.

0.4 Universality

A remarkable and important aspect of Corollary 0.4 may be hidden by our compact notation.

Recall that if {Tj} is a sequence of independent Bernoulli random variables with success parameter

p, 0 < p < 1, and q = 1− p,

Xn =
n∑
j=1

Tj − p√
npq

=
1√
n

n∑
j=1

Tj − p√
pq

,
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and so the corollary says that, for appropriate g,

lim
n→∞

Eg

(
1√
n

n∑
j=1

Tj − p√
pq

)
=

1√
2π

∫
R
g(x)e−x

2/2dx .

The success parameter appears on the left, but not on the right. The random variables

T̃j :=
Tj − p√
pq

(0.22)

have distributions that depend on p, though they have the same mean, 0, and the same variance,

1. The limiting behavior of the distribution of the normalized sums

1√
n

n∑
j=1

Tj − p√
pq

=
1√
n

n∑
j=1

T̃j

is universal; it does not matter what the success parameter is.

In fact, this is only a small hint of the scope of this universality: It really does not matter

at all that the underlying random variables Tj are Bernoulli variables. All that matters is the

mean and the variance. However, to keep the proof of the next lemma from getting too technical,

we will make some mild additional assumptions on g and on the random variables T̃j. Note that

we are not assuming that the random variables T̃j in the lemma are constructed out of Bernoulli

variables as in (0.22).

0.8 LEMMA. Let g be a function with three continuous derivatives such that for some finite

constant C,

max{g(x), g′(x), g′′(x), g′′′(x)} ≤ C

for all x. Let {T̃j}j∈N be any sequence of independent, identically distributed random variables

such that E(T̃j) = 0 and Var(T̃j) = 1. Suppose further that for some K <∞, E|T̃j|3 = K. Then

lim
n→∞

Eg

(
n∑
j=1

T̃j√
n

)
=

1√
2π

∫
R
g(x)e−x

2/2dx .

Proof. Let {Tj}j∈N be an infinite independent sequence of such Bernoulli variables. Define S̃n =∑n
j=1 T̃j, and put Sn =

∑n
j=1 Tj as before. For each k = 0, . . . , n, define

Wn,k :=
k∑
j=0

2(Tj − 1
2
) +

n∑
j=k+1

T̃j

Then Wn,0 = S̃n and Wn,n = Sn − 1
2
n. Therefore, we have the telescoping sum

g

(
2(Sn − 1

2
n)

√
n

)
− g

(
S̃n√
n

)
= g

(
Wn,n√
n

)
− g

(
Wn,0√
n

)
=

n−1∑
k=0

[
g

(
Wn,k+1√

n

)
− g

(
Wn,k√
n

)]
.
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By linearity of the expectation,

Eg

(
2(Sn − 1

2
n)

√
n

)
− Eg

(
S̃n√
n

)
=

n−1∑
k=0

E

[
g

(
Wn,k+1√

n

)
− g

(
Wn,k√
n

)]
.

The sums defining Wn,k+1 and Wn,k+1 differ only in the (k + 1)st term. Define

Un,k =
k∑
j=0

2(Tj − 1
2
) +

n∑
j=k+2

T̃j

Then

Wn,k+1 = Un,k + 2(Tk+1 − 1
2
) and Wn,k = Un,k + T̃k+1 .

Therefore, by Taylor’s Theorem,

g

(
Wn,k+1√

n

)
= g

(
Un,k√
n

)
+ g′

(
Un,k√
n

)
2(Tk+1 − 1

2
)

√
n

+
1

2
g′′
(
Un,k√
n

)(
2(Tk+1 − 1

2
)

√
n

)2

± C

(
2|Tk+1 − 1

2
|

√
n

)3

.

Taking the expectation, since E2(Tk+1− 1
2
) = 0, E(2(Tk+1− 1

2
))2 = 1 and E|2(Tk+1− 1

2
)|3 = 1, and

using the independence of Tk+1 and Un,k, we have

Eg

(
Wn,k+1√

n

)
= Eg

(
Un,k√
n

)
+

1

2
Eg′′

(
Un,k√
n

)
1

n
± C

n3/2
.

Since we also have E(T̃k+1) = 0, E(T̃k+1)
2 = 1 and E|T̃k+1|2 = K <∞, we have by the exact same

reasoning that

Eg

(
Wn,k√
n

)
= Eg

(
Un,k√
n

)
+

1

2
Eg′′

(
Un,k√
n

)
1

n
± CK

n3/2
.

This shows that ∣∣∣∣Eg(Wn,k+1√
n

)
− Eg

(
Wn,k√
n

)∣∣∣∣ ≤ C(K + 1)

n3/2
,

and hence ∣∣∣∣∣Eg
(

2(Sn − 1
2
n)

√
n

)
− Eg

(
S̃n√
n

)∣∣∣∣∣ ≤ C(K + 1)

n3/2
.

Since we know that

lim
n→∞

Eg

(
2(Sn − 1

2
n)

√
n

)
=

1√
2π

∫
R
g(x)e−x

2/2dx ,

this proves that

lim
n→∞

Eg

(
S̃n√
n

)
=

1√
2π

∫
R
g(x)e−x

2/2dx .



12

0.9 THEOREM. Let {Yj}j∈N be a sequence of independent identically distributed random vari-

ables such that EYj = µ, Var(Yj) = σ2 and E|Yj|3 <∞. Let g be a function with three continuous

derivatives such that for some finite constant C,

max{g(x), g′(x), g′′(x), g′′′(x)} ≤ C

for all x. Then

lim
n→∞

Eg

(∑n
j=1 Yj√
n

)
=

1√
2πσ

∫
R
g(y)e−(y−µ)

2/2σ2

dy .

Proof. Define T̃j = (Yj − µ)/σ. Then ET̃j = 0, Var(T̃j) = 1 and E|T̃j|3 <∞. Define a function h

by

h(x) = g

(
x− µ
σ

)
. (0.23)

Then g

(∑n
j=1 Yj√
n

)
= h

(∑n
j=1 T̃j√
n

)
, and by the previous lemma and (0.23),

lim
n→∞

Eg

(∑n
j=1 Yj√
n

)
= lim

n→∞
Eh

(∑n
j=1 T̃j√
n

)
=

1√
2π

∫
R
h(x)e−x

2/2dx

=
1√
2π

∫
R
g

(
x− µ
σ

)
e−x

2/2dx =
1√
2πσ

∫
R
g(y)e−(y−µ)

2/2σ2

dy .

The assumptions in the theorem can be relaxed, using simple results form analysis. The

requirement that E|Yj|3 < ∞ was used only because we used the simplest form of the remainder

in Taylor’s Theorem. Working harder with the integral form, one can show that nothing more is

needed than E|Yj|2 <∞, which is already required to have a finite variance.

Next, any uniformly continuous function g may be uniformly approximated by other functions

with three continuous derivatives that satisfy the hypotheses, It is enough to assume that g is

bounded and uniformly continuous. Finally since large values of x are largely irrelevant, and since

every continuous function on R is uniformly continuous on all bounded, closed subsets of R, it is

actually enough to assume that g is continuous and does not get too large as x increases.


