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Abstract

These are some notes on Discrete State Sapce Markov Processes.

0.1 Stochastic Processes with a Finite State Space

Let S be a countable set; either finite or infinite. A discrete time stochastic process (Xj) with state

space S is a function associating to each j ∈ N, or some other subset of the integers, a random

variable Xj on some probability space (Ω, P ) where each Xj has values in S. A continuous time

stochastic process (Xt) with state space S is a function associating to each t ∈ [0,∞), or some

other connected subset of the real numbers, a random variable Xt on some probability space (Ω, P )

where eaxh Xt has values in S. The Poisson process is an example of a continuous time stachastic

process with values in the non-negative integers.

Any sequence of random varibles {Xj}j∈N, with values in a countable set S may be regarded

as a stochastic process, and we have spent considerable time studying the case in which the Xj’s

are independent and identicallly distributed. We now move beyond this special situtation.

For each (random) outcome ω ∈ Ω, a discrete time strochastic process (Xj) gives us a random

sequence j 7→ Xj(ω), while a continuous time stochastic process (Xt) gives us a random path

t 7→ Xt(ω). These random functions are called the sample paths of the stochastic process, and

they are the main object of study in the theory of stochastic processes.

0.1 EXAMPLE. The Ehrenfest process is a stochastic process arsing as follows: For N ∈ N,

consider a set of N numbered balls that are distributed among two urns, urn A and urn B. At each

step of the process, a number k ∈ {1, . . . , N} is selected uniformly at random. The kth ball is then

taken out of the urn that it is in, and it is put into the other urn, Let Xj denote the number of

balls in urn A at the jth step, The state space of this stochastic process is {0, 1, . . . , N}.
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0.2 Markov chains

0.2 DEFINITION (Markov chain). A discrete time stochastic process (Xj) with discrete state

space S indexed by j ∈ {0, 1, 2, . . . } is a Markov chain in case for each n ∈ N, and all

(x0, . . . , xn+1) ∈ Sn+1,

P (Xn+1 = xn+1|Xn = xn, X)n−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn) .

A Markov chain has stationalry transitions in case for all i, j ∈ S,

P (Xn+1 = j|Xn = i)

is independent of n.

That is, a discrete time stochastic process (Xj) with values in S is a Markov chain if, given

the value of Xn, Xn+1 is independent of {X0, . . . , Xn−1}. Of course, a sequence of independent

random variables is Markov, but the Markov property is much more general, as we shall see in the

examples that follow.

0.3 EXAMPLE. The Ehrenfest process is a Markov chain with stationary transitions and state

sapce S = {0, 1, . . . , N}. To see this, suppose that Xn−1 = j. Then Xn will be either j − 1 (if

j 6= 0) or j + 1 (if j 6= N) depending on whether the next ball selected is in urn A or urn B.

Given that Xn−1 = j, the probability that the selected ball is in urn A is j
N

and hence P (Xn =

j − 1|Xn = j) = j
N

. Likewise, the probability that the selected ball is in urn B is then N−j
N

and

hence P (Xn = j − 1|Xn = j) = N−j
N

. The process is Markov, because the statsitics of the value

of Xn+1 depend only on the value of Xn, and not on any othe rest of the previous histroy of the

process. The transitions are stationaly becasue the transition probabilities do not depend on n.

Let us focus first on the case of a Markov chain with stationary transitions and a finite states-

pace S. We identify S with {1, . . . ,M} for some M ∈ N. Then the M × M matrix P with

entries

Pi,j = P (X1 = j|X0 = i)

is called the transition matrix of the Markov chain (Xj). The initial distribution is the vector

π0 ∈ [0, 1]M with entries

(π0)k = P (X0 = k)

. Given π0 and the transition matrix P , we can compute the probability of any event of the form

{X0 = x0, X0 = x1, . . . , Xn = xn} ,

and therefore, any event at all. All of the information needed to answer any question about the

sample paths is contained in π0 and P .
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To see this, use the chain rule, and the Markov property to wrtie

P (Xn = xn, . . . , X0 = x0) = P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0)P (Xn−1 = xn−1, . . . , X0 = x0)

= Pxn−1,xnP (Xn−1 = xn−1, . . . , X0 = x0)

= P (Xn−1 = xn−1, . . . , X0 = x0)Pxn−1,xn ,

where in the last step we simply moved the number Pxn−1,xn to the right for convenience.

The same reasoning then gives

P (Xn−1 = xn−1, . . . , X0 = x0) = P (Xn−2 = xn−2, . . . , X0 = x0)Pn−2,xn−1 ,

and then, combining formulas

P (Xn = xn, . . . , X0 = x0) = P (Xn−2 = xn−2, . . . , X0 = x0)Pn−2,xn−1Pxn−1,xn .

Continuing in the same way, we ventually arrive at

P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (X0 = x0)Px0,x1Px1,x2 · · ·Pxn−1,xn

= (π0)x0Px0,x1Px1,x2 · · ·Pxn−1,xn . (0.1)

We can now give a useful fromula for P (Xn = j).

0.4 THEOREM. Let (Xj) be a Markov chain with stationary transitions and state sapce S,

initial distribution π0, and transition matrix P . Then for all j ∈ S and all n ∈ N ,

P (Xn = j) = (π0P
n)j , (0.2)

where the right side is the jth entry of the vector πP n obtained by multiplying the row vector π

on the right by P n, the nth matrix power of P .

Proof. To apply the previous formula, write xn in place of j. Then summing over all possible

values of X1, . . . , Xn−1,

P (Xn = xn, X0 = x0) =
M∑

x1,...xn−1=1

P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)

=
M∑

x1,...xn−1=1

(π0)x0Px0,x1Px1,x2 · · ·Pxn−1,xn .

Therefore,

P (Xn = xn|X0 = x0) =
P (Xn = xn, X0 = x0)

P (X0 = x0)

=
M∑

x1,...xn−1=1

Px0,x1Px1,x2 · · ·Pxn−1,xn ,
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which is nothing other than the x0, xn entry of P n, the nth matrix power of the transition matrx

P . Again by the chain rule,

P (Xn = xn) =
M∑

x0=1

P (Xn = xn|X0 = x0)P (X0 = x0) =
M∑

x0=1

(π0)x0(P
n)x0,xn .

In other words, for each j ∈ S, P (Xn = j) is the jth entry of πP n, where we regard π0 as a row

vector (a 1×M matrix) so we can multiply it on the right by the M ×M matrix P n.

For each n ∈ N, define the probability vector πn by

(πn)j = P (Xn = j) ,

and regard it as a row vector. Then we can restate the conclusion of Theroem 0.4 is

πn = π0P
n . (0.3)

It follows that for all m,n ∈ N, πm+n = π0P
m+n = (π0P

m)P n = πmP
n. That is,

πm+n = πmP
n . (0.4)

0.3 Properties of the transition matrix

Let P be the transition matrix of a Markov chain with stationary transtions and state space

S = {1, . . . ,M}. Then since for each n,

Pi,j = P (Xn = j|Xn−1 = i) ,

and since 1 = P (Xn ∈ {1, . . . ,M}),

1 =
M∑
j=1

P (Xn = j|Xn−1 = i) =
M∑
j=1

Pi,j ,

the sum of the entries in each row is 1, and of course since each entry is a probability, each entry

is non-negative. Such a matrix is called a row stochastic Matrix.

0.5 LEMMA. For any vector v =

 v1
...

vM

 ∈ RM , and every M ×M row stochastic matrix P ,

max
1≤i≤M

{(Pv)i} ≤ max
1≤i≤M

{vi} and min
1≤i≤M

{(Pv)i} ≥ min
1≤i≤M

{vi}

Proof. This is an immediade conseqeunce of the fact that each (Pv)i is a weigthed avaerage of

the entries {v1, . . . , vM} of v because an average is always no smaller than the minimum, and no

greater than the maximum, no matter what the weights are.
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Conversely, given an M ×M row stochastic matrix P and a probability row vector π, we can

construct a Markov chain with stationary transitions, initial distribution π and transition matrix P

by using (0.1) to define probabilities of events of the form P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0).

By the discussion that led to this formula, this specification of the probabilities makes (Xj) a

Markov chain with stationary transitions.

0.6 LEMMA. An M ×M matrix P is row stochastic if and only if it has non-negative entries

and v1, the vetor that has 1 in each entry, is an eigenvectors of P with eigenvalue 1.

Proof. For each i,

(Pv1)i =
M∑
j=1

Pi,j(v1)j =
M∑
j=1

Pi,j .

Therefore, Pv1 = v1 if and only if for each i, then (Pv1)i = 1 and hence if and only if for each i∑M
j=1 Pi,j = 1

0.7 COROLLARY. Let P and Q be any two M ×M row stochastic matrices. Then the product

PQ is row stochastic. In particular, P n is row stochastic for all n ∈ N.

Proof. Since each entry of P and of Q is no negative so is
∑M

K=1 Pi,kQk,j Moreover (PQ)v1 =

P (Qv1) = Pv1 = v1, so that v1 is an eigenvector of PQ with eiqgenvalue 1.

0.8 LEMMA. Let P be any M ×M row stochastic matrix. If λ is any other eigenvalue of P ,

then |λ| ≤ 1.

Suppose moreover that for some n, P n
i,j > 0 for all i, j, and let v1 be the vector in RM all of

whose entries are 1. Then v1 spans the eigenspace for the eigenvalue 1, and all other egienvalues

λ of P satisfy |λ| < 1.

Proof. Let v =

 v1
...

vM

 be any eigenvector: Pv = λv. Suppose that the i0 entry of v is largest

in absolute value. We may normalize v so that vi0 = 1, and then |vj| ≤ 1 for all j. Then

λ = (Pv)io =
M∑
j=1

Pi0,jvj ,

and hence

|λ| ≤
M∑
j=1

Pi0,j|vj| ≤
M∑
j=1

Pi0,j1 = 1 .

This completes the proof of the first part. Now suppose that for some n, P n
i,j > 0 for all i, j.

Again, let v =

 v1
...

vM

 be any eigenvector of P , and let λ be the corresponding eigenvalue.
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Again we normalize v so that vi0 = 1 and |vj| ≤ 1 for al j. Then v is an eigenvector of P n with

eigenvalue λn, so that, as above,

λn = (P nv)io =
M∑
j=1

P n
i0,j
vj ,

and hence

|λn| =

∣∣∣∣∣
M∑
j=1

P n
i0,j
vj

∣∣∣∣∣ ≤
M∑
j=1

P n
i0,j
|vj| ≤

M∑
j=1

Pi0,j1 = 1 .

There is equality in the first inequality if and only if vj = |vj| for each j, and then there is equality

in the second inequality if and only if |vj| = 1 for each j. Hence |λn| = 1 if and only if vj = 1 for

each j. But in this case, v = v1. Hence if |λn| = 1, v = v1, and then λ = 1. Otherwise, |λn| < 1,

and hence |λ| < 1.

0.9 LEMMA. Let P be any M ×M row stochastic matrix. Suppose that for some n, P n
i,j > 0

for all i, j, Then there is a row probability vector π∞ such that

lim
n→∞

P n =

 π∞
...

π∞

 ,

where the matrix on the right is the M ×M matrix, each of whose rows is π∞. The row vector

π∞ is a left eigenvector of P with eigenvalue 1; that is

π∞P = π∞,

and π∞ spans the corresponding eigenspace.

Proof. We suppose first that P is diagonalizable. Then there exists a basis {v1, . . . ,vM} of CM

consisting of eigenvectors of P : Pvj = λjvj for j = 1, . . . ,M . Without loss of generality, we may

suppose that λ1 = 1 and the v1 is the vector each of whose entries is 1. Let V = [v1, . . . ,vM ], the

M×M matrix whose jth column is vj. Let Λ be the M×M diagonal matrix whose jth diagoanal

entry is λj. Then PV = V Λ, and since the columns of V are linearly independent, V is invertible

and P = V ΛV −1. It follows that

P n = V ΛnV −1 . (0.5)

Now since λ1 = 1 and |λj| < 1 for all j > 1,

lim
n→∞

Λn =


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 = Λ∞ ,
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where the matrix on the right has a 1 in the upper left corner, and all of the other entries are zero.

It follws that

lim
n→∞

P n = V Λ∞V
−1 . (0.6)

Since Λ∞ is a rank one matrix, so is limn→∞ P
n limn→∞ P

n, and all of its rows are proportional.

Moreover, for each n, since P n is row stochastic, each row of P n is a probability vector, and this

must be true in the limit. But probability vectors that are proportional are equal, and so all rows

of the limit are the same probability vector, which we shall call π∞.

Since limn→∞ P
n = limn→∞ P

n+1 = (limn→∞ P
n)P , we have that π∞

...

π∞

P =

 π∞
...

π∞

 which is the same as

 π∞P
...

π∞P

 =

 π∞
...

π∞

 ,

showing the π∞P = π∞. Now let x = (x1, . . . , xM) be any row vector in CM that is a left

eigenvector of P with eigenvalue 1. Then for all n, x = xP n, and hence

x = x

 π∞
...

π∞

 =

(
M∑
i=1

xi

)
π∞ .

This shows that x is a multiple of π∞; hence π∞ spans the left eigenspace with eigenvalue 1.

If P is not diagonalizable, one must use generalized eigenvectors: For every M ×M matrix P ,

there is a basis of CM consisting of generalized eigenvectors of P . The first thing to be shown is that

there is no generalized eigenvector of P with eigenvalue 1 apart from multiples of the eigenvector

v1. Suppose this is false: Then there is some non-zero vector v such that (P − I)2v = 0 but

(P − I)v 6= 0. This means that w := (P − I)v is an eienvector of P with eigenvalue 1, hence it

is a multiple of v1. Multiplying v by a constant, we may assume that (P − I)v = v1. That is,

Pv = v + v1. Iterating, we see that

P nv = v + nv1 .

But since P n is a row stochastic matrix, by Lemma 0.5, the entries on the left are bounded

unifirmly in n, but those on ghe right are not. This contradiction shows that there is no generalized

eigenvector of P with eigenvalue 1.

Hence in the basis {v1, . . . ,vM} of P consisirting of generalized eigenvectors, we have that

Pvj−λjvj with |λj| < 1 for all j > 1. It is then a simple matter to see that (0.6) is still valid.

0.10 EXAMPLE. Consider the Ehrenfest process for N = 3. If we identify S with {1, 2, 3, 4} by

letting j denote the state in which there are j− 1 balls in urn A, then: Then the transition matrix

P is the 4× 4 matrix

P =


0 1 0 0
1
3

0 2
3

0

0 2
3

0 1
3

0 0 1 0

 .
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However, it can be adavantageous to consider other orderings of the states. Since Xj changes

from even to odd or odd to even at each step, if X0 ∈ {0, 2}, then X2 ∈ {0, 2}, while if X0 ∈ {1, 3},
then X2 ∈ {1, 3}. This will give P 2 a block structure if we number our states accoridng to these

groups.

Therefore, let state 1 denote 0 balls in urn A, state 2 denote 2 balls in urn A, state 3 denote

1 ball in urn A, and state 4 denote 3 balls in urn A. That is, relative to our first ordering, we

have swapped the roles of states 2 and 3. This swaps the second and third columns and rows of

the matrix P , so that now

P =


0 0 1 0

0 0 2
3

1
3

1
3

2
3

0 0

0 1 0 0

 =

[
0 C

D 0

]
where C =

1

3

[
3 0

2 1

]
and D =

1

3

[
1 2

0 3

]
. .

For this ordering of the states, we compute

P 2 =


1
3

2
3

0 0
2
9

7
9

0 0

0 0 7
9

2
9

0 0 2
3

1
3

 =

[
A 0

0 B

]
where A =

1

9

[
3 6

2 7

]
and B =

1

9

[
7 2

6 3

]
. .

It follows that for m ∈ N,

P 2m =

[
Am 0

0 Bm

]
and P 2m+1 =

[
0 C

D 0

] [
Am 0

0 Bm

]
=

[
0 CB2m

DA2m 0

]
.

In particular, it is never the case that P n
i,j > 0 for all i, j, no matter what n, is. This reflects the

fact that for each ω, Xn(ω) aleternates between even and odd as n increases.

However, A and B are both rwo stochastic matrices, and even for their first power, all entries

are strinctly positive. Hence all of Lemma 0.9 applies to them.

It is easy to compute Am by diaginalizing A: We compute that the characteristic polynomial of

A is t2 − 10
9
t + 1

9
, and hence the eigenvalues are λ1 = 1 and λ2 = 1

9
. Corresponding eigenvectors

are v1 =

(
1

1

)
and v2 =

(
3

−1

)
. Then with V = [v1,v2] =

[
1 2

1 −1

]
,

A = V

[
1 0

0 9−1

]
V −1 so that Am = V

[
1 0

0 9−m

]
V −1

Therefore,

lim
m→∞

Am = V

[
1 0

0 0

]
V −1 =

1

4

[
1 3

1 3

]
=

[
πA

πA

]
where πA =

1

4
(1, 3) .

In the same way, one finds that

lim
m→∞

Bm =
1

4

[
3 1

3 1

]
=

[
πB

πB

]
where πB =

1

4
(3, 1) .
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The diagonalization of A and B illustrates how the proof of Lemma 0.9 works, but to compute

the limits limm→∞A
m and limm→∞B

m, we did not need to carry out the full diagonalization: All

we needed to do was to compute the left eigenvectors of A and B with eigenvalue 1.

We now do this for A: Let π = (a, b) be such that π = πA, or what is the same, ATπT = πt.

To find πT , We find all solutions of (AT − I)x = 0. Since

(AT − I) =
1

9

[
−6 2

6 −2

]
,

every solutiuon x of (AT − I)x = 0 orthogonal to

(
−6

2

)
, and the only such vector whose entries

sum to 1 is 1
4

(
1

3

)
. Therefore,

πA =
1

4
(1, 3) and lim

m→∞
Am =

[
πA

πA

]
.

Similar computations may be made for B. Avoiding the full diagonalization was not so important

i nthis 2 × 2 example, but it becomes mushc more importanta as the size of the row stochastic

matries we are working with becomes larger.

In any case, we have found that for large m,

P 2m ≈ 1

4


1 3 0 0

1 3 0 0

0 0 3 1

0 0 3 1

 and then P 2m+1 = PP 2m ≈ 1

4


0 0 3 1

0 0 3 1

1 3 0 0

1 3 0 0

 .

Now suppose π0 = (a, b, c, d). Then P (X2m = j) may be determined by computing

π2m = π0P
2m ≈ (a+ b, 3(a+ b), 3(c+ d), c+ d)) ,

where the approximation is exact in the limit m→∞. Recalling the ordering of the states we have

that, for large m,

P (X2m = 0) ≈ P (X0 = 0) + P (X0 = 2)

P (X2m = 2) ≈ 3P (X0 = 0) + 3P (X0 = 2)

P (X2m = 3) ≈ 3P (X0 = 1) + 3P (X0 = 3)

P (X2m = 4) ≈ P (X0 = 1) + P (X0 = 3)

0.11 EXAMPLE. We have seen that the transition matrix P Ehrenfest process does not satisfy

the condition that for some n, P n
i,j > 0 for all i, j. However, with a small change, we arrive at a

process for which this condition is satsified:

At each step, instead of choosing a number in {1, 2, 3}, and then moving the ball with that

number to the other urn, we choose, uniformly at random a number in {0, 1, 2, 3}. If the number

chosen is zero, no change is made. If the number chosen is in {1, 2, 3}, we proceed as before.
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Before we made the change, one could go from any even number of balls in urn A (0 or 2) to

any other even number in two steps. One could also go from any odd number of balls in urn A (1

or 3) to any other eodd number in two steps. However, if i := X0(ω) is even, then after any even

number n of steps, Xn(ω) will be even, so that for j odd, P n
i,j = 0, while after any odd number n

of steps, Xn(ω) will be odd, so that for j even, P n
i,j = 0.

In the modified version, we have the option of staying in place, and so after 3 steps one can go

from any state to any other: If you have already gone from i to j in one or two steps, you don’t

have to leave on the next step, and can wait around if you have arrived early. So for the modified

process, P 3
i,j > 0 for all i, j.

There is no longer any reason to group the states in any special way so we number our state in

the simpliest way: We identify S with {1, 2, 3, 4} by letting j denote the state in which there are

j − 1 balls in urn A. Then one easily works out that the transition matrix is

P =
1

4


1 3 0 0

1 1 2 0

0 2 1 1

0 0 3 1

 .

To find π∞, we have to solve the equation (P T − I)x = 0. We compute

P T − I =
1

4


−3 1 0 0

3 −3 2 0

0 2 −3 3

0 0 1 −3

 .

Using Gaussian elimination, we find that the equation (P T − I)x = 0 is equivalent to the equation

Ux = 0 where

U =
1

4


−3 1 0 0

0 −2 2 0

0 0 −1 3

0 0 0 0

 .

By back substitution, we find that every solution of Ux = 0 is a multiple of


1

3

3

1

. There is only

one multiple for which hte entries sum to 1, and hence we have that

π∞ =
1

8
(1, 3, 3, 1) .

0.4 The rate of approach to equilibrium

Throughout the rest of these notes, we consider a Markov chain (Xj) in S = {1, . . . ,M} with

stationary transitions governed by the row stochastic matrix P , and we suppose that:

For some m ∈ N, Pm
i,j > δ for all i, j . (0.7)
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We have seen in the previous section that

lim
n→∞

P n = P∞ =

 π∞
...

π∞

 =: P∞

where π∞ is the unique probability vector satisfying π∞ = π∞P , and that, as a consequence, for

any initial probability vector π0, limn→∞ π0P
n = π∞.

In this section, we shall show that these two limits are achieved exponentially fast, and shall

explain some of the implications of this. Let f be any real valued function on {1, . . . ,M}. We

may identify the function f with the vector f =

 f(1)
...

f(M)

. Then

E(f(Xt)) =
N∑
j=1

(πn)jf(j) = πn · f

Since limn→∞ πn = π∞, we define

〈f〉∞ =
M∑
j=1

(π∞)jf(j) = π∞ · f (0.8)

The main theorems in this section are the following:

0.12 THEOREM. Suppose that the Markov chain (Xj) with state space {1, . . . ,M} satisfies

(0.7). Then there are constants C < ∞ and r < 1, depending only on the values of m and δ in

(0.7), such that for all n,

|E(f(Xn))− 〈f〉∞| ≤
(

max
1≤j≤M

{|f(j)|}
)
Crn . (0.9)

In particular, if f is such that 〈f〉∞ = 0, then E(f(Xn)) converges to zero exponentially fast, no

matter what the initial distribution π0 may be. In particular, for all i,

M∑
j=1

|(πn)j − (π∞)j| ≤ Crn , (0.10)

From this theorem, we shall deduce an interesting theorem on average occupation times. For

any function f on {1, . . . ,M}, define

f(X)N :=
1

N

N∑
j=1

f(Xj) .
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The random variable f(X)N is the weighted average value of f , when we weight the average by the

fraction of the steps the Markov chain spends in each sate in {1, . . . ,M}. Here is a particularly

interesting choice for f . For each i ∈ {1, . . . ,M} define

1i(j) =

{
1 j = i

0 j 6= i
.

Then the random variable 1i(X)N is the fraction of the steps 1 through N that the Markov chain

spends in state i.

0.13 THEOREM. Suppose that the Markov chain (Xj) with state space {1, . . . ,M} satisfies

(0.7). Then there is a constant K < ∞ depending only on the values of m and δ in (0.7), such

that for all N ∈ N, and all ε > 0,

P (|1i(X)N − (π∞)i| > ε) ≤ K

Nε2
. (0.11)

That is, with high probability, for large N , the fraction of the first N steps of the Markov chain

that are spent in state i is very close to (π∞)i, no matter what the initial distribution π0 may be.

We shall give a complete proof of Theorem 0.13, which is quite simple. Working harder, but still

using the ideas that go into the proof we give, together with some more ideas that we will not go

into, one can show that the rate of convergence in (0.13) is also exponential.

However, Theorem 0.13, simple as it may be, is enough to give important insight into the

meaning of the vector π∞: For large values of N , and any i ∈ {1, . . . ,M} it is very likely that the

fraction of the first N steps the Markov chain is in state i is very close to (π∞)i.

0.14 EXAMPLE. A jogging enthusiast owns 5 pairs of running shoes. Each pair is kept at either

the front doors or the back door of the jogger’s house. Every day the jogger tosses a fair coin and

goes to the front door if the toss is “heads” and goes to the back door if the toss is “tails”. The

jogger puts on a pair of running shoes if there is one at the chosen door, and goes jogging. If there

are no pair of shoes at the chosen door, the jogger goes barefoot.

At the end of the jogger’s run, they flip a fair coin again and enter home by the front door

if the toss is “heads” and by the back door if the toss is “tails”. They take off the running shoes

and leave them at the chosen door. The jogger follows this routine for several years. What is the

fraction of the days in these several years that the jogger ran barefoot?

Let Xn be the number of pairs of running shoes at the front door before the run on day n. Then

(Xn) is a stochastic process, and in fact it is a Markov process: Given that Xn = j, Xn+1 will be

one of j−1 (if j 6= 0), j, or j+1 (if j 6= 5),and the probabilities of the various possible transitions

can be computed knowing only that Xn = j.

Suppose Xn = 0. If the jogger goes to the front door before the run, there are no shoes, they

run barefoot, and after returning home, there are still no shoes at the front does. If the jogger goes

to the back door before the run, there are 5 pairs of shoes. They pick one and go jogging. If they
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return to the back door, they leave the shoes there, and still there are no shoes at the front door.

But if they go to the front door upon returning, they leave a pair of shoes there. Therefore:

P (Xn+1 = 0|Xn = 0) =
3

4
and P (Xn+1 = 1|Xn = 0) =

1

4
.

all other transition probabilities, given Xn = 0, are 0.

Suppose Xn = 1. If the jogger goes to the front door before the run, they put on the pair of

shoes there, and after returning home, if the go to the front door, they leave the shoes there, and

again there is exactly one pair at the front door. But if the return to the back door, thy leave

the shoes there, and then there are no shoes at the front door. If they go to the back door before

running, they put on a pair of shoes, and run. If they return to the back door, they leave the shoes

there, and the result is that there is still one pair at the front door. But if they return to the front

doors there will now be two pairs at the front door, Therefore,

P (Xn+1 = 0|Xn = 1) = P (Xn+1 = 2|Xn = 1) =
1

4
and P (Xn+1 = 1|Xn = 1) =

1

2
.

all other transition probabilities, given Xn = 1 are 0.

In the same way, we find:

P (Xn+1 = 1|Xn = 2) = P (Xn+1 = 3|Xn = 2) =
1

4
and P (Xn+2 = 2|Xn = 2) =

1

2
.

all other transition probabilities, given Xn = 2 are 0.

P (Xn+1 = 2|Xn = 2) = P (Xn+1 = 4|Xn = 3) =
1

4
and P (Xn+1 = 3|Xn = 3) =

1

2
.

all other transition probabilities, given Xn = 3 are 0.

P (Xn+1 = 0|Xn = 4) = P (Xn+1 = 5|Xn = 4) =
1

4
and P (Xn+1 = 4|Xn = 4) =

1

2
.

all other transition probabilities, given Xn = 4 are 0.

P (Xn+1 = 5|Xn = 5) = P (Xn+1
3

4
and P (Xn+1 = 4|Xn = 5) =

1

4
.

all other transition probabilities, given Xn = 5 are 0.

The transition matrix is then the 6× 6 matrix

P =
1

4



3 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2 1

0 0 0 0 1 3


.
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To find π∞, we find all solutions of the equation (P T −I)x = 0, since we want the left eigenvectors

of P with eigenvalue 1, so we solve for the right eigenvectors of P T with eigenvalue 1.

4(P T − I) =



−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1





x0
x1
x2
x3
x4
x5


=



0

0

0

0

0

0


By row reduction, this is equivalent to

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −‘ 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 0





x0
x1
x2
x3
x4
x5


=



0

0

0

0

0

0


,

and no evidently x0 = x1 = x2 = x3 = x4 = x5. That is, the eigenvectors are all multiples of v1,

the vector each of whose entries is 1. Normalizing to male this a probability vector,

π∞ =
1

6
(1, 1, 1, 1, 1, 1) .

Actually we could do this without any computation: The matrix P is symmetric, and clearly

you can get from any state to any other state in exactly 5, staying put if you arrive early – there

is positive probability not to move from each state. So P 5
i,j > 0 for all i, j. Hence v1 spans the

eigenspace of P for eigenvalue 1. But P is symmetric, so the same is true of P T .

The runner goes barefoot only if there are no shoes at the front door, (probability 1
6
) and they

go to the front door at the start of the run (probability 1
2
), or if there are no shoes at the back door

(probability 1
6
) and they go to the back door at the start of the run (probability 1

2
). So the fraction

of the time they run barefoot is
1

2

1

6
+

1

2

1

6
=

1

6
.

0.5 Proof of Theorem 0.13

We now prove Theorem 0.13, assuming Theorem 0.12, which we prove next.

0.15 LEMMA. Suppose the Markov chain (Xj) is such that (0.10) is satisfied. Let f and g be

two real valued functions on {1, . . . ,M} such that

max{|f(j)| ; 1 ≤ j ≤M} ≤ 1 and max{|g(j)| ; 1 ≤ j ≤M} ≤ 1 .

Suppose also that 〈g〉∞ = 0. Then

|E(f(Xm)g(Xm+n)| ≤ Crn .
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Proof. E(f(Xm)g(Xm+n) =
M∑
j=1

f(j)E(g(Xm+n|Xm = j)(πm)j. Let δj denote the probability vec-

tor whose jth entry is 1. By the Markov property, E(g(Xm+n|Xm = j) = δjP
n · g. and hence

E(f(Xm)g(Xm+n) =
M∑
j=1

f(j) (δjP
n · g) (πm)j . (0.12)

where g is the vector whose k entry is f(k). But for each j, since 〈g〉∞ = π∞ · g = 0,

δjP
n · g = δjP

n · g − π∞ · g = (δjP
n − π∞) · g .

Therefore,

|δjP
n · g| = |(δjP

n − π∞) · g| ≤ ‖δjP
n − π∞‖1 ≤ Crn ,

using the fact that |g(j)| ≤ 1 for all j. Going back to (0.12) and using the fact that |f(j)| ≤ 1 for

all j,

|E(f(Xm)g(Xm+n)| ≤ Crn
M∑
j=1

(πm)j = Crn .

Proof of Theorem 0.12. We compute, using Lemma 0.15 in the first inequality,

E((f(X)N)2) =
1

N2

N∑
i,j=1

E(f(Xi)f(Xj))

=
1

N2

N∑
i,j=1

E(f(Xi)f(Xj))

=
2

N2

N∑
i=1

(
N∑
j=i

E(f(Xi)f(Xj))

)

≤ 2

N2

N∑
i=1

(
N∑
j=i

Crj−1

)

≤ 2

N2

N∑
i=1

(
∞∑
j=i

Crj−1

)

≤ 2

N2

N∑
i=1

(
C

1

1− r

)
=

2C

N(1− r)

Therefore, for any ε > 0, by Markov’s inequality,

P (|f(X)N | > ε) ≤ K

Nε2
. (0.13)
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0.6 Proof of Theorem 0.12

In class, we gave a proof by means of “coupling”. Here we give a proof based in analysis fo the

eigenvectors and eigenvalues of the transition matrix P .

First of all, to discuss convergence, we need to specify the notions of distance that we shall use

to measure how close we have come to the limit. The word “close” needs to be given a precise,

quantitative mathematical meaning. In other words, we need to specify the metrics that we shall

use. We need two of these: one metric for vectors and one metric for matrices.

For any vector v in CM , define

‖v‖1 =
M∑
j=2

|vj| . (0.14)

It is easy to see that for all v,w ∈ CN , ‖v + w‖1 ≤ ‖v‖1 + ‖w‖1 simply because |vj + wj| ≤
|vj|+ |wj| for each j. Therefore, for all u,v,w ∈ CN ,

‖u−w‖1 = ‖(v −w) + (v −w)‖1 ≤ ‖v −w‖1 + ‖v −w‖1 . (0.15)

Define d1(v,w) := ‖v −w‖1. Then (0.15) can be rewritten as

d1(u,w) ≤ d1(u, v) + d1(v, w) . (0.16)

In other words, the function (v,w) 7→ d1(v,w) satisfies the triangle inequality, and defines a

metric on CM , the other conditions being obviously satisfied. The function v 7→ ‖v‖1 has one

more simple, but important, property:

0.16 LEMMA. For all v ∈ CM and all λ ∈ C,

‖λv‖1 = |λ|‖v‖1 .

Proof. This follows immediately from the fact that for each j, |λvj| = |λ||vj|.

We now define a metric on the set of M ×M matrices that is intimately related to the metric

we have just defined on CM . For any M ×M matrix A, we define

‖A‖1,1 = max{‖Av‖1 : ‖v‖1 = 1 } .

The maximum is attained since {v : ‖v‖1 = 1 } is a closed and bounded subset of CM , and

v 7→ ‖A‖1,1 is continuous on CM .

For any two M ×M matrices A and B, let v0 be such ‖A+B‖1,1 = ‖(A+B)v0‖1. Then

‖(A+B)v0‖1 = ‖Av0 +Bv0‖1 ≤ ‖Av0‖1 + ‖Bv0‖1 .

Since v0 satisfies the condition ‖v‖1 ≤ 1, but it may not be the maximizer for either A or B just

because it is the maximizer for A+B, ‖Av0‖1 ≤ ‖A‖1,1 and ‖Bv0‖1 ≤ ‖B‖1,1 . Hence

‖A+B‖1,1 ≤ ‖A‖1,1 + ‖B‖1,1 .
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Then just as for vectors, it follows that if we define

d1,1(A,B) = ‖A−B‖1,1 ,

this function satisfies the triangle inequality and defines a metric. This metric is compatible with

matrix multiplication in the following sense:

0.17 LEMMA. Let A and B be any two M ×M matrices, Then

‖AB‖1,1 ≤ ‖A‖1,1‖B‖1,1 ,

so that, in particular, for any three M ×M matrices A, B and C,

d1,1(CA,CB) ≤ ‖C‖1,1d1,1(A,B) and d1,1(AC,BC) ≤ ‖C‖1,1d1,1(A,B) .

Proof. Let v satisfy ‖v‖1 ≤ 1. Then by the definition of ‖ · ‖1,1, ‖ABv‖1 = ‖A(Bv)‖1. Then as

long as Bv 6= 0, define

w =
1

‖Bv‖1
Bv .

By Lemma 0.16, ‖w‖1 = 1 and then by definition

‖ABv‖1 = ‖A(Bv)‖1 = ‖Bv‖1‖Aw‖1 ≤ ‖B‖1,1‖A‖1,1 .

Now we apply this to study the rate of convergence to equilibrium for Markov chains. Suppose

first that P is diagonalizable. Then from (0.5) and (0.6):

P n − P∞ = V (Λn − Λ∞)V −1 = V (Λ− Λ∞)nV −1 ,

using the specific structure of Λ and Λ∞ to obtain the last equality. Taking the transpose, and

defining Q = P T , Q∞ = P T
∞ and W = V T , we can rewrite this is

Qn −Q∞ = W−1(Λ− Λ∞)nW ,

Let

r := max{|λ2|, . . . , |λN}

be the second largest number among the absolute values of the eigenvalues of P . We have seen

that r < 1, and then all of the diagonal entries of Λ−Λ∞ are bounded in magnitude by r, so that

‖Λ− Λ∞‖1,1 ≤ r, and then by Lemma 0.17 and a simple induction, for all n,

‖(Λ− Λ∞)n‖1,1 ≤ rn .

By Lemma 0.17 once more,

‖Qn −Q∞‖1,1 ≤ (‖W‖1,1‖W−1‖1,1)rn .
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That is, letting C denote the constant C := ‖W‖1,1‖W−1‖1,1

‖Qn −Q∞‖1,1 ≤ Crn .

Now let π0 be any initial probability vector, so that πn = π0P
n is the probability vector

specifying the distribution of Xn, Then

πT
n = QnπT

0 and Q∞π
T
0 = πT

∞ ,

where the second equality holds because each column of Q∞ is πT
∞, and π0 is a probability vector,

so that Q∞π
T
0 is a weighted average of the columns of Q∞. Therefore,

‖πT
n − πT

∞‖1 = ‖QnπT
0 −Q∞πT

0 ‖1 ≤ ‖Qn −Q∞‖1,1‖π0‖1 = ‖Qn −Q∞‖1,1 ≤ Crn .

That is,
M∑
j=1

|(πn)j − (π∞)j| ≤ Crn , (0.17)

showing that the probability vectors πn converge exponentially fast to π∞ in the metric d1. Notice

that (0.10) is much stronger that the statement that |(πn)j − (π∞)j| ≤ Crn for each j, especially

if M is very large.

A similar result may be proved using generalized eigenvectors when P is not diagonalizable,

but since it may be hard to find the eigenvalue that has the second largest magnitude, it may

be hard to compute r. Fortunately, there is another way, relying more on probabilistic reasoning

than on linear algebra, but still using the same metrics.


