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Abstract

These are some notes on the Gambler’s Ruin Problem.

0.1 The Gambler’s Ruin Problem

Consider a game between two players. The game consists of a sequence of independent, identical

trials in each of which there is a probability p that player A wins, and a probability of 1− p that

player B wins. We assume 0 < p < 1 to avoid trivialities. For example, in each trial, two standard

dice could be tossed, and player A would win if the sum of the resulting numbers was 5 or 7, while

player B would win if the sum was anything else. In this case p = 10
36

.

Now suppose players A and B have have n0 and m0 dollars, respectively, to wager. At each

trial, the loser pays the winner one dollar. The game ends when one player is broke, so that when

the game ends, one player ends up with n0 +m0 dollars, and the other with nothing. What is the

probability that player A ends up with all of the money?

Define T = m0 + n0; T denote the total fortune of the two players. What is the probability

that player A wins, as a function of n0, T and p?

0.2 The probability space

The first step towards solving this problem is to write down a probability space (S, P ) within

which it can be solved. This takes us into new territory. Let S be the set of all infinite sequences

{xj}j∈N where each xj is either 1 or −1. Let xj = 1 correspond to player A winning the jth trial.

The set S is uncountable. This is because it has the same cardinality as the set of all infinite

sequences of 0’s and 1’s, and each such sequence that has only finitely many entries that are 1

can be viewed as specifying the canonical binary expansion of a real number in the interval [0, 1),

and there are uncountably many of these. The problem of defining a probability measure P on an

uncountable set requires measure theory for its full solution, but we can avoid this by considering,

for each N , a special class of events in S, and this is very natural to do, and useful for other

purposes.
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0.1 DEFINITION. A subset E of S is is measurable at trial N in case the question as to whether

or not ω = {xj}j∈N does or does not belong to E can be answered knowing only (x1, . . . , xN), and

not anything about the rest of the infinite sequence specifying ω. That is, membership in the set

E depends only on the outcomes of the first N trials. The set of all such events is denoted FN .

For example, consider the event E that player B wins the first three trials. Then

ω = {xj}j∈N ∈ E ⇐⇒ (x1, x2, x3) = (−1,−1,−1) .

Therefore, E ∈ F3. Note also that E ∈ FN for all N ≥ 3, but E does not belong to F1 or F2. A

little reflection will show that for any event E ∈ FM for some M , E ∈ FN for N ≥M .

The point of the definition is that it is easy to assign probabilities to events that belong to FN

for some N . As an example, consider the event E that player B wins the first three trials. By

the independence of the trials, and the fact that it does not matter, as far as membership in E is

concerned, what happens after the first three trials, we must have that

P (E) = (1− p)3 .

More generally, for N ∈ N, let SN denote the set of vectors ω̂ = (x1, . . . , xN) where each xj
is either 1 or −1, interpreted as before. There are 2N outcomes in SN , and by independence,

if ω̂ has k positive terms, the probability of ω̂, which we shall denote by P̂ (ω̂), is given by

P̂ (ω̂) = pk(1− p)N−k. For any event Ê ⊂ SN , we then have

P̂ (Ê) =
∑
ω̂∈E

P̂ (ω̂) . (0.1)

Then (SN , P̂ ) is a well defined finite probability space.

0.2 EXAMPLE. Consider once more the event E that player B wins the first three trials, which

belongs to F3 and F4, and for that matter to FN for all N ≥ 3, since once you know the result of

the first 3 trials, you know whether the event occurred or not. Hence, knowledge of the results of

the first 4 or more trails is overkill.

If we apply formula (0.1) in S3, we have

Ê = {(−1,−1,−1)} and P (E) = P̂ (Ê) = (1− p)3 .

If we apply formula (0.1) in S4, we have

Ê = {(−1,−1,−1, 1), (−1,−1,−1,−1)} and P (E) = P̂ (Ê) = (1− p)3p+ (1− p)4 = (1− p)3 .

A bit of reflection on the example will how that for any event E ∈ FM for some M , then one

can compute P (E) by applying (0.2) in SN for any N ≥M , and the result is always the same.

Now given E ∈ FN , define Ê to be the subset of SN such that

ω = {xj}j∈N ∈ E ⇐⇒ ω̂ = (x1, . . . , xN) ∈ Ê .
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That is, Ê is precisely the set of outcomes of the first N trials that qualify for membership in E,

which makes sense because membership in E depends only on the outcomes of the first N trials

by the very definition of FN . Now define our probability measure P on the events E that belong

to FN for some N ∈ N by

P (E) = P̂ (Ê) . (0.2)

There is no N on the right side for the following reason: If E ∈ FN for some N , then there is a

least N0 such that E ∈ FM0 , and then E ∈ FM for all M ≥ N0. But by what we have explained

in Example 0.2 and the remark following it, P̂ (Ê) may be computed in (SM , P̂ ) for any M ≥ N0,

and the result is always the same.

0.3 EXAMPLE. Let UN be the event that the game is undecided after N trials. Note that

ω = {xj}j∈N belongs to UN if and only if

−n0 <
∑̀
j−1

xj < m0 (0.3)

for all ` ≤ N , since this is precisely the condition that neither player has cleaned the other player

out by the N th trial. Clearly UN ∈ FN , since membership in U is determined by the first N trials,

and ÛN ⊂ SN is given by the set of vectors (x1, . . . , xN) that satisfy (0.3). Thus, the probability

of UN , P (UN), is given by P (UN) = P̂ (ÛN), and this probability is given by a finite sum.

We now claim that limN→∞ P (UN) = 0. In fact, it converges to zero quite fast, and we can

be fairly extravagant with our upper bounds. Take N much larger that m0 and n0. Let E1 be the

event that the first m0 + n0 trials all result in −1. Let E2 be the event that the second m0 + n0

trials all result in −1, and so forth. Let M be the largest integer such that M(m0 +n0) ≤ N . Then

the events {E1, . . . , EM} are all in FN , and the events {Ê1, . . . , ÊM} are mutually independent in

(SN , P̂ ). Also, again by the independence of the trials, P̂ (Êj) = (1− p)m0 for each j = 1, . . . ,M .

Thus, P (Ej) = (1− p)m0+n0 for each j = 1, . . . ,M .

Clearly, if any of the events Ej happen, the game is decided. Therefore

M⋃
j=1

Ej ⊂ U c
N ,

and hence

UN ⊂

(
M⋃
j=1

Ej

)c

=
M⋂
j=1

Ec
j .

It follows that

P (UN) ≤ (1− (1− p)m0+n0)M .

and since M →∞ and N→∞, this proves that P (UN) converges to zero.

Now let us consider the event that is most relevant to the Gambler’s Ruin problem, namely

the event W that player A wins the game. Note that ω = {xj}j∈N belongs to W if and only if for
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some k ∈ N,
k+1∑
j−1

xj = m0 , (0.4)

and

−n0 <
∑̀
j−1

xj < m0 (0.5)

for all ` < k. This is because (0.5) says that no player has cleaned the other player out up through

the kth trial, so nobody has already one before the kth trial, but then by (0.4) player A cleans

out player B on the kth trial. Since k can be arbitrarily large, W does not belong to FN for any

N ∈ N.

All is not lost. As we have seen the probability that the game is not over by the Nth trial goes

to zero, exponentially fast even, as N increases. Define WN to be the event that player A has won

the game by the Nth trial, Evidently WN ∈ FN , and so this event has a well-defined probability.

Moreover it is clear that for all M < N , WM ⊂ WN , because if player A has won by the Mth

trial they have won by the Nth, but even if they haven’t ,they might still win in the next N −M
trials. Therefore, P (WN) is an increasing function of N . Furthermore, since whenever player A

does win, they must have won by the Nth trial for some N , and hence

W =
⋃
N∈N

WN .

That is, we have

W1 ⊂ W2 ⊂ · · ·WN ⊂ WN+1 ⊂ · · · ⊂ W ,

and the union of all of the sets on the left is not only contained in W , it equals W . In this

circumstance, we define

P (W ) = lim
N→∞

P (WN) ,

where the limit exists because bounded monotone sequences always converge.

Now we can give a proper definition of the quantity of interest: For any m,n,N ∈ N, let WN be

the event that player A wins by the Nth trial given that the initial fortune of player A is n0 = n,

and the initial fortune of plater B is m0 = m. Let T denote m0 +n0 = m+n. Then for this event

WN , define

Pn,T,N = P (WN) ,

and define

Pn,T = lim
N→∞

Pn,T,N .

where both quantities are properly defined by what has been explained above.
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0.3 Recursion for Pn,T

We are now ready to tackle the Gambler’s Ruin problem and answer the question posed at the

beginning of tis section of notes. Let E be the event that player A wins the first trial. Suppose

0 < n < T . Then, with WN defined exactly as in paragraph above,

WN = (WN ∩ E) ∪ (WN ∩ Ec)

and since the events on the right are mutually exclusive,

P (WN) = P (WN ∩ E) + P (WN ∩ Ec) .

Notice that the probabilities are well-defined since all of the events in question belong to FN . Now

to take advantage of the independence, we write this in terms of conditional probabilities:

P (WN) = P (E)P (WN |E) + P (Ec)P (WN |Ec) .

Given the event E, after the first trial, player A has n + 1 dollars, and player B has M − 1.

T is unchanged, and player A has N − 1 more trials in which to win (if the game does not end

earlier). Since the trials are independent, the game starts afresh from this new starting point, and

P (WN |E) = Pn+1,T,N−1 .

The same reasoning yields P (WN |Ec) = Pn−1,T,N−1, and of course P (E) = p and P (Ec) = 1− p.
Altogether,

Pn,T,N = P (WN) = pPn+1,T,N−1 + (1− p)Pn−1,T,N−1 .

Now taking N →∞, we obtain

Pn,T = pPn+1,T + (1− p)Pn−1,T . (0.6)

So far, we have supposed that 0 < n < T . But if n = 0, player A cannot win, so P0,T = 0, while

if n = T , player A has already won, so P0,T = 1.

0.4 LEMMA. For any T ≥ 2, p 6= 1/2, a vector (f1, . . . fT ) satisfies

fn = pfn−1 + (1− p)fn+1 (0.7)

for all 0 < n < T if and only if, for some constants α and β

fn = α + β

(
1− p
p

)n

(0.8)

for all 0 ≤ n ≤ T . Moreover, the values of α and β are uniquely determined.
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Proof. Let us seek a solution of (0.7) of the form fn = an, with a to be chosen. Then (0.7) becomes

an = pan+1 + (1− p)an−1 .

Dividing by an−1, we obtain the quadratic equation

a2 − 1

p
a+

1− p
p

= 0 .

The two roots are a = 1 and a = 1−p
p

. As long as p 6= 1/2, this gives us two distinct solutions,

namely fn = 1 for all n, and fn =
(

1−p
p

)n
for all n. Since the equation is linear, every linear

combination of solutions is a solution, and hence (0.8) does indeed specify a solution.

It remains to show that every solution has this form for exactly one choice of α and β. Let

(f̃0, . . . , f̃T ) be any such solution. Let (f0, . . . , fT ) be given by (0.8). We seek to choose α and β

so that f0 = f̃0 and f1 = f̃1. This will imply that fn = f̃n for all n, since the recursion equation

can be written as

fn+2 =
1

p
fn+1 −

1− p
p

fn

for all 0 < n < T − 2. It is clear from this that once the first two terms are known, all the rest

are determined. Therefore, we try to solve f0 = f̃0 and f1 = f̃1, which gives us

α + β = f̃0

α + β
1− p
p

= f̃1 .

Subtracting the first equation from the second, β 1−2p
p

= f̃1 − f̃0, and thus the unique solution is

β =
p

1− 2p
f̃1 − f̃0 and α = β − f̃0 .

To apply this, we see that the vector (P0,T , P1,T , . . . , PT,t) is a solution of (0.7), and hence it

must be given by (0.8) for some uniquely determined α and β. That is,

Pn,T = α + β

(
1− p
p

)n

for all 0 ≤ n ≤ T . Since we also know that P0.0 = 0, we see that α + β = 0, so we eliminate α to

find

Pn,T = β

(
−1 +

(
1− p
p

)n)
Next, we also know that PT,T = 1, and therefore

1 = β

((
1− p
p

)T

− 1

)
,

which specifies β. Finally we have proved:
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0.5 THEOREM. With Pn,T defined as above, for 0 ≤ n ≤ T ,

Pn,T =

(
1−p
p

)n
− 1(

1−p
p

)T
− 1

. (0.9)

0.6 EXAMPLE. Consider the problem raised at the beginning. Player A has a probability of

p = 10
36

of winning each trial, but starts with a fortune of n = 100 dollars. Player B starts with a

fortune of m = 10 dollars. What is the probability that A wins?

In this case, n = 100, T = 110 and p = 10
36

, and (1− p)/p = 13
5

, so the answer is

P100,110 =
(13
5

)100 − 1

(13
5

)110 − 1
= 0.00070838037.... .

The chance that A wins, even with their much deeper pockets, is very, very small.

There is more to learn from the last example. Notice that (13
5

)100 is really large and (13
5

)110 is

even larger, and so the −1 terms hardly matter. In fact, for b > a > 1, and t ≤ 1,

d

dt

a− t
b− t

=
a− b

(b− t)2
≤ 0 .

Thus,
a− 1

b− 1
≤ a

b
.

It follows that:

0.7 LEMMA. whenever p < 1/2,

Pn,T ≤
(

p

1− p

)m

(0.10)

independent of n ≥ 1.

Proof. By what we have noted just above,

Pn,T =

(
1−p
p

)n
− 1(

1−p
p

)T
− 1
≤

(
1−p
p

)n
(

1−p
p

)T =
(

p
1−p

)m
.

Therefore, if you could convince the richest person in the world, Jeff Bezos at the time of

writing, to play this game, and you had just 10 dollars to stake again all of their fortune, you

would have a probability of no less than 1 − ( 5
13

)10 = 0.999929... of winning their entire fortune.

Of course if each trial takes only one second, the minimum amount of time it will take you to win

your first billion is 109 seconds, which is about 31.7 years. And that is if you win all of the first

billion trials, which is not going to happen.



CL January 29, 2015 8

What we have seen so far, is that in such a game, the important thing is to stake out a position

where the odds on each trial are in your favor. Then even if you start with a modest fortune,

you have a good chance of cleaning out an arbitrarily rich opponent. However, will you live long

enough to do this? How long will it take you to make your first billion in such a wager? We shall

return to these questions when we have more theoretical tools to handle them. For now, we close

with one more example:

0.8 EXAMPLE. Suppose p = 0.49 so the odd are only slightly in favor of player B. Suppose the

initial fortune of player B is m = 1 dollar, and the initial fortune of player A is n = 100 dollars.

Using the formulas, we find that the probability that A wins is only 0.96008224.... There is an

almost 4% chance that player B cleans player A out. And with m = 18 and n = 100, the chance

of B cleaning A out is over half. Even a slight tilt in the odds makes a big difference.

0.4 The case p = 1/2

When p = 1/2, we still have the recursion relation (0.6), which becosmes

Pn,T = 1
2
Pn+1,T + 1

2
Pn−1,T . (0.11)

As before, we seek all vectors (f0, . . . , fT ) satsifying

fn =
1

2
(fn+1 + fn−1) (0.12)

for all 0 < n < T .

We always have the constant solution fn = 1 for all n; this is a solution for every choice of

p. You might be able to guess the second solution, especially if you recognize the equation as

a discrete approximation to the differntial equation f ′′(x) = 0. However, let’s derive the second

solution by a limiting procedure. This will make it clear how the case p = 1/2 meshes with the

cases p 6= 1/2.

For p 6= 1/2, we found the general solution

fn = α + β

(
1− p
p

)n

,

for constants α and β. If we take the limit p → 1/2 for fixed α and β, we just get the triavial

constant solution. To get a linearly indepndent solution, take α = − 1
p−1/2 and β = 1

p−1/2 . This

gives us the solution

fn =
1

p− 1
2

((
1− p
p

)n

− 1

)
.

For each p 6= 1/2, this solves the equation (0.7) by Lemma 0.4. Now lets take the limit p→ 1/2.

This ammouts to taking a derivative: Define

ϕ(p) =

(
1− p
p

)n

=

(
1

p
− 1

)n

.
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Then ϕ(1/2) = 1, so that the limit

lim
p→1

2

1

p− 1
2

((
1− p
p

)n

− 1

)
= ϕ′(1

2
) = −4n .

We can ignore the multiple −4, and thus our second solution is fn = n, and the general solution

of (0.12) is

fn = α + βn .

If we require f0 = 0, then α = 0, and if we require fT = 1, then β = 1
T

. Therefore, for p = 1/2,

Pn,T =
n

T
.

For p = 1/2, the chance that A wins is proportional to their initial fortume.


