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Problems in Chapter 3:

17 The probability space (S, P ) consists of S, the set of all families ω in the community. (The

families are the“outcomes”; think of randomly selecting a family.) For each family ω, P (ω) is the

inverse of the number of families in the community.

Define events as follows: D is the event consisting of families owning a dog. C is the event

consisting of families owning a cat. B is the event consisting of families owning both a dog and a

cat, i.e,, B = D ∩ C. We are given that P (D) = 0.36, P (C|D) = 0.22, and P (C) = 0.30.

(a) P (C ∩D) = P (D)P (C|D) = (0.36) ∗ (0.22) = 0.0792, so lets say 8% of families own both a cat

and a dog.

(b) P (D|C) = P (C∩D)
P (C) = 0.792

0.30 = 0.264, so 26.4% of families that own a cat also own a dog.

41 First Solution: After the ace is inserted into the second half of the deck, and this is then

reshuffled, there are 27 cards from which one is selected randomly. Let E be the event the the

selected card is the inserted acs. Let F be the event that the selected card is some ace.

P (F ) = P (E)P (F |E) + P (Ec)P (F |Ec)

It is clear that P (E) = 1
27 and hence P (Ec) = 26

27 . It is also clear that P (F |E) = 1, and P (F |Ec) =
3
51 , because when we select any other card out of the cut deck, we are selecting a random card from

the whole deck, minus the ace that was selected from the other part. The second card is equally

likely to be any of the 51 remaining cards, and 3 of those are aces. Hence

P (F ) =
1

27
+

26

27

3

51
=

43

459
.

Second Solution The second solution is longer, but also instructive. When the deck is divided in

half, the half deck on the left will contain k aces, and the half deck on the right will contain 4− k

aces, where k ∈ {0, 1, 2, 3, 4}. Let Ek, k = 0, 1, 2, 3, 4, be the event that the half of the deck on the

left contains k aces.

We are given that a randomly selected card from the left half deck is an ace. Let F denote this

event. It is evident that

P (F |Ek) =
k

26
.

We would rather know (Ek|F ) for k = 0, 1, 2, 3, 4. By Bayes’ formula,

P (Ek|F ) =
P (Ek)

P (F )
P (F |Ek) .
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When we shuffle the deck, cut the deck, and then select one card form the left half, we are selecting

a random card from the whole deck. Hence P (F ) = 4
52 . We need to compute P (Ek), = 0, 1, 2, 3, 4.

There are
(
4
k

)
ways to choose the k aces that will go into this half of the deck, and then there

are
(

48
26−k

)
ways to choose a set of 26− k cards that are not aces. There are of course

(
52
26

)
ways to

choose a set of half of the cards. Thus

P (Ek) =

(
4
k

)(
48

26−k
)(

52
26

) .

Altogether,

P (Ek|F ) =

(
4
k

)(
48

26−k
)(

52
26

) k

2
.

Explicitly,

P (E1|F ) =
46

833
, = P (E2|F ) =

104

833
, P (E3|F ) =

325

833
and P (E4|F ) =

92

833
.

You can check that these probabilities sum to 1 as they must.

Now, after placing the ace in the right half of the deck and shuffling, let Fk denote the event

that this half of the deck contains exactly k aces. Evidently, k ∈ {1, 2, 3, 4}. If Ej occurs, then

there were j aces in the left half and 4− j in the right half before moving one ace over. Afterwards,

there are 4 − j + 1 aces on the right. That is, the event Fk occurs exactly when E4−k+1 occurs.

Given Fk, i.e., that there are k aces in the 27 cards now on the right, the probability that the next

card drawn is an ace is k
27 . Let G be the event that the next card drawn is an ace:

P (G) = P (E1|F )
4

27
+ P (E2|F )

3

27
+ P (E3|F )

2

27
+ +P (E4|F )

1

27
=

43

459
.

as we found before.

59 The probability of HHHH is p4. The probability of THHH is (1−p)p3. If the pattern HHHH

occurs first, it must occur as the result of the first four tosses because once the initial run of heads is

broken, it is followed by a run of tails, after which a run of heads begins again. When this happens,

the initial T will already be in place, and before a run of four heads can occur, a run of three heads

will occur, following an initial T . Hence the probability that HHHH occurs first is p4, and hence

the probability that THHH occurs first is 1− p4.

82 Consider first the games in which the players seek 2 or 3 heads in a row, let E1 be the event

that A wins on their first turn. Let E2 be the event that B wins on their first turn, and let E3 be

the event that neither A nor B win on their first turns. Let F be the event that A eventually wins.

Since the events {E1, E2, E3} are mutually exclusive an exhaustive,

P (F ) = P (F ∩ E1) + P (F ∩ E2) + P (F ∩ E3) .

Since F ∩ E2 = ∅, and since F ∩ E1 = E1 this can be simplified to

P (F ) = P (E1) + P (F ∩ E3) = P (E1) = P (E3)P (F |E3) .
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However, given that neither A or B have won their first turns, the game is no back to its starting

point, and so P (F |E3) = P (F ). Altogether, P (F ) = P (E1) + P (E3)P (F ), or

P (F ) =
P (E1)

1− P (E3)
.

Now suppose the condition for winning is two heads in a row. Then P (E1) = P 2
1 , and P (E3) =

(1− P 2
1 )(1− P 2

2 ). Hence

P (F ) =
P 2
1

1− (1− P 2
1 )(1− P 2

2 )
.

By the same reasoning, if the condition for winning is k heads in a row, for any k ≥ 1, including

3, the answer is

P (F ) =
P k
1

1− (1− P k
1 )(1− P k

2 )
.

Before moving on, let’s consider the case P1 = P2 = 1
2 . Then, by the computation just above,

if k heads in a row is the winning combination, the probability that A wins is

2−k

21−k − 2−2k
=

1

2

1

1− 2−k−1
.

Notice that as k increases, the advantage A has in going first quickly goes to zero, which is natural

because the advantage that A has lies in the fact that they can win before B even gets a chance at

all, but the probability of this goes to zero exponentially fast in k.

Now consider the games in which the condition for winning it 2 or 3 heads total. This is different

because now it matters how close to winning the players came in previous turns, while before it did

not. We use recursion, and solve a more general problem: Let Wm,n denote the probability that A

wins if they need m heads to win, while B needs m heads to win. Evidently W0,1 = 1 and W!,0 = 0,

while from the above we have

W1,1 =
P1

1− (1− P1)(1− P2)
.

We will condition on A winning in their first turn (the event E1) , B winning in their first turn

(the event E2), and neither player winning in their first turn, as before, but we must break up this

last event to keep track of how much progress was made by each player. Let Gk,` be the event that

neither player has won, but player A got k heads in their first turn, and player B got ` heads in

their first turn. Of course, we only consider 0 ≤ k < m and 0 ≤ ` < n. Then, conditioning as

before, with F denoting the event that player A wins,

Wm,n = P (F ) = P (E1) +
m−1∑
k=0

n−1∑
`=0

P (Gk,`)Wm−k,n−` .

Evidently, the event Gk,` occurs when the tossing sequence begins with k heads for A, followed by a

tail, and then ` heads for B, followed by a tail. Thus, P (Gk,`) = P k
1 (1−P1)P

`
2(1−P2). Rearranging

terms, we have

Wm,n =
(1− P1)(1− P2)

1− (1− P1)(1− P2)

∑
k<m,`<n,k+`>0

P k
i P

`
2Wm−k,n−` .
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For example,

W2,1 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)
P1W1,1 =

(1− P1)(1− P2)

(1− (1− P1)(1− P2))2
P 2
1

and then

W12 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)
P2W1,2 =

(1− P1)(1− P2)

(1− (1− P1)(1− P2))2
P1P2 .

We can now compute

W2,2 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)
(P1W1,2 + P2W2,1 + P1P2W1,1)

=
(1− P1)

2(1− P2)
2

(1− (1− P1)(1− P2))3
(P 3

1 + P 2
1P2)

+
(1− P1)(1− P2)

(1− (1− P1)(1− P2))2
P 2
1P2 .

This answers the question concerning two heads total. To do 3 heads total, we first apply the

recursion to compute

W3,1 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)
(P1W2,1 + P 2

1W1,1

and similarly for W1,3. Then compute

W3,2 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)
(P1W2,2 + P 2

1W1,2 + P2W3,1 + P2P1W2,1 + P2P
2
1W1,1) ,

and likewise compute W2,3. Now one has everything on the right side of

W3,3 =
(1− P1)(1− P2)

1− (1− P1)(1− P2)

∑
k<3,`<3,k+`>0

P k
i P

`
2W3−k,3−` ,

computed explicitly.

From the theoretical exercises in Chapter 3:

30 Let Ci, i = 0, . . . , k be the event that coin i is selcted. Let E be the event that the first n

flips result in exactly r heads. Let F be the event that the n + 1st flip results in heads. We are to

compute P (F |E)

We write

P (F ∩ E) =

k∑
i=0

P (E ∩ F ∩ Ci) =

k∑
i=0

P (Ci)P (E ∩ F |Ci) .

Then we have P (Ci) = 1
k+1 and P (E ∩ F |Ci) =

(
n
r

) (
i
k

)r+1 (
1− i

k

)n−r
. Finally,

P (E) =
1

k + 1

k∑
i=0

(
n

r

)(
i

k

)r (
1− i

k

)n−r
.

Then from

P (F |E) =
P (F ∩ E)

P (E)
,
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P (F |E) =
1

k+1

∑k
i=0

(
n
r

) (
i
k

)r+1 (
1− i

k

)n−r
1

k+1

∑k
i=0

(
n
r

) (
i
k

)r (
1− i

k

)n−r .

Then we can replace the factors of 1
k+1 top and bottom by 1

k since they cancel, and then the sums

are Reimann sums for the ratio of integrals∫ 1
0 xr+1(1− x)n−rdx∫ 1
0 xr+1(1− x)n−rdx

.

By the identity, which follws from recursive integration by parts,∫ 1
0 xr+1(1− x)n−rdx∫ 1
0 xr+1(1− x)n−rdx

=
(r + 1)!(n− r)!

(n + 2)!

(n + 1)!

r!(n− r)!
=

r + 1

n + 2
.


