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From the Problems in Chapter 5:

10: (a) Since the probability that the passenger arrives exactly at 7 : 00 is zero, we are concerned

with arrivals after 7 : 00. Since a train (for A) arrives exactly at 8 : 00, this is the last train

that concerns us. If the passenger arrives in any of the intervals (7 : 00, 7 : 05), (7 : 15, 7 : 20),

(7 : 30, 7 : 355) 0r (7 : 45, 7 : 50), they will take the train for B, and otherwise they take a train for

A. The total length of the intervals of arrival in which the passenger will travel to B is 20 minutes,

1/3 of the total. Hence the probability that the passenger travels fo B is 1/3, and the probability

that the passenger travels fo A is 2/3.

(b) Once again, there are exactly 4 intervals of length 5 minutes such that if the passengers

arrives in one of these intervals, they travel to B. Hence the answer is the same as in part a.

23: For the first part, we define independent Bernoulli variables as follows: Tj = 1 if the result of

the jth toss is 6, and Tj = 0 otherwise. Evidently P (Tj = 1) = p = 1
6 , and P (Tj = 0) = q = 5

6 . Let

Sn =
∑n

j=1 Tj . We want to estimate

P (150 ≤ S1000 ≤ 200) .

For n = 1000, np = 1662
3 ≈ 166.7, and

√
npq = 25

3

√
2 ≈ 11.78. Then

P (150 ≤ S1000 ≤ 200) = P (−16.7 ≤ S1000 − 166.7 ≤ 33.3)

= P

(
− 16.7

11.78
≤ S1000 − 166.7

11.78
≤ 11.78

3
3.3

)
≈ P

(
−1.418 ≤ S1000 − 166.7

11.78
≤ 2.827

)

By the DeMoivre-Laplace Theorem, the random variable
S1000 − 166.7

11.78
is approximately stan-

dard norm – to an excellent degree of approximation since there are 1000 trials. Hence

P

(
−1.418 ≤ S1000 − 166.7

11.78
≤ 2.28

)
≈ 1√

2π

∫ 2.827

−1.418
e−x

2/2dx = Φ(2.817)− Φ(−1.418) .

Using the table, or otherwise numerically evaluating the integral, one finds

P (150 ≤ S1000 ≤ 200) ≈ 0.9198 .
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For the second part, the conditional probability of tossing a 5 given that one does not toss a 6

is 1
5 . So now we have n = 800 independent tosses, each with a probability p = 1

5 of resulting in a

5. As above we compute

np =
800

5
= 160 and

√
npq = 8

√
2 ≈ 11.31 .

By the DeMoivre-Laplace Theorem, X :=
S800 − 160

11.31
is approximately standard normal, so that

P (S800 < 150) ≈ P
(
X ≤ − 10

11.31

)
≈ P (X < −0.8841) = Φ(−0.8841) = 0.8117 .

From the theoretical exercises in Chapter 5:

5: Using the fact that

E(Xn) =

∫ ∞
0

P (Xn > t)dt ,

which is proved in exercise 5.2, but see below, we make the change of variables t = xn, so that

dt = nxn−1dx. Then∫ ∞
0

P (Xn > t)dt = n

∫ ∞
0

P (Xn > xn)xn−1dx = n

∫ ∞
0

P (X > x)xn−1dx

since the event {Xn > xn} is the same as the event {X > x}.
This was all you needed to do. But to show that for all non-negative random variables Y ,

E(Y ) =
∫∞
0 P (Y > t)dt, suppose that Y has a density fY so that

P (Y > t) =

∫ ∞
t

fY (s)ds and hence
d

dt
P (Y > t) = −fY (y) .

Then integrate by parts:∫ ∞
0

P (Y > t)dt =

∫ ∞
0

P (Y > t)

(
d

dt
t

)
dt

= tP (Y > t)

∣∣∣∣∞
0

−
∫ ∞
0

(
d

dt
P (Y > t)

)
tdt

=

∫ ∞
0

tfY (t)dt = E(Y ) .

There is no loss of generality in assuming Y has a density since we may approximate Y by Y + εZ

where Z is an independent standard normal variable. Then Y + εZ does have a density, and the

above argument is valid. Taking ε to zero yields the general case, though a bit of thought is required

to dot the i’s and cross the t’s.

12: If X is exponential with parameter λ, then P (X > t) = e−λt and hence, integrating by parts,

E(X2) = 2

∫ ∞
0

te−λtdt = 2

∫ ∞
0

t

(
− 1

λ
e−λt

)′
dt =

2

λ

∫ ∞
0

e−λtdt =
2

λ2
.


