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From the Problems in Chapter 5:

10: (a) Since the probability that the passenger arrives ezactly at 7 : 00 is zero, we are concerned
with arrivals after 7 : 00. Since a train (for A) arrives exactly at 8 : 00, this is the last train
that concerns us. If the passenger arrives in any of the intervals (7 : 00,7 : 05), (7 : 15,7 : 20),
(7:30,7:355) Or (7:45,7:50), they will take the train for B, and otherwise they take a train for
A. The total length of the intervals of arrival in which the passenger will travel to B is 20 minutes,
1/3 of the total. Hence the probability that the passenger travels fo B is 1/3, and the probability
that the passenger travels fo A is 2/3.

(b) Once again, there are exactly 4 intervals of length 5 minutes such that if the passengers
arrives in one of these intervals, they travel to B. Hence the answer is the same as in part a.

23: For the first part, we define independent Bernoulli variables as follows: T; = 1 if the result of
the jth toss is 6, and Tj = 0 otherwise. Evidently P(T; =1) =p = ¢, and P(T; =0) = ¢ = 3. Let
Sn =11 Tj. We want to estimate

P(150 < Syg00 < 200) .
For n = 1000, np = 1662 ~ 166.7, and \/npq = 2v/2 ~ 11.78. Then

P(150 < S1p00 < 200) = P(—16.7 < Sipoo — 166.7 < 33.3)
P( 16.7 < S1000 — 166.7 < 11.783.3)

1178 T 1178 T3
S1000 — 166.7
~ P|l-1418 < —— < 2.82
< 8< 11.78 = 2827
S — 166.7
By the DeMoivre-Laplace Theorem, the random variable 21000 — “27 1 g approximately stan-

dard norm — to an excellent degree of approximation since there are 1000 trials. Hence

1 2.827
V21 J-1.418

Using the table, or otherwise numerically evaluating the integral, one finds

S1000 — 166.7

—2%/2 Q= _ o
TR e " 2dx = (2.817) — B(—1.418) .

P (—1.418 < < 2.28> ~

P(150 < 51000 < 200) ~ 0.9198 .



For the second part, the conditional probability of tossing a 5 given that one does not toss a 6

is é So now we have n = 800 independent tosses, each with a probability p = % of resulting in a

5. As above we compute

np = &50 = 160 and V/pg = 8vV2~11.31 .

Sso0 — 160

By the DeMoivre-Laplace Theorem, X := 1131

is approximately standard normal, so that

10
P(Sgoo < 150) ~ P <X <

—— ) &~ P(X < —0.8841) = ®(—0.8841) = 0.8117 .
< 11.31> (X < —0.8841) = &(—0.8841) = 0.8117

From the theoretical exercises in Chapter 5:

5: Using the fact that
E(X") = / P(X™ > t)dt
0

which is proved in exercise 5.2, but see below, we make the change of variables t = z™, so that
dt = nz""'dx. Then

o0 oo [e.e]
/ P(X" > t)dt = n/ P(X" > 2™)z" ' = n/ P(X > z)z" 'dx
0 0 0
since the event {X™ > 2"} is the same as the event {X > z}.
This was all you needed to do. But to show that for all non-negative random variables Y,
E(Y) = [,° P(Y > t)dt, suppose that Y has a density fy so that

P(Y >t) = /too fr(s)ds and hence %P(Y >t)=—fy(y) .

Then integrate by parts:

/Ooo PY >t)dt = /Ooo P(Y >1t) (it) dt
:O - /OOO <§tP(Y > t)> tdt

_ /Oo fy (t)dt = B(Y) .
0

= tP(Y >1t)

There is no loss of generality in assuming Y has a density since we may approximate Y by Y 4 ¢Z
where Z is an independent standard normal variable. Then Y + ¢Z does have a density, and the
above argument is valid. Taking € to zero yields the general case, though a bit of thought is required
to dot the ¢’s and cross the t’s.

12: If X is exponential with parameter A, then P(X > t) = e~ and hence, integrating by parts,

o @ (1 ' 2 [ 2
E(X?) = 2/ te Mdt = 2/ t <—e)‘t> dt = / e Mt == .
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