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We introduce an invariant of finite permutation groups called the arity which is
well known to model theorists but has not been examined from an algebraic point
of view. There are few cases in which this invariant is known explicitly. We analyze
the behavior of this invariant in power representations of wreath products. We
compute it exactly for the action of the symmetric group on n letters on the set of
k-sets from an n-element set, and we estimate it rather closely for symmetric powers
of these actions. In the case k =1 we formulate an explicit combinatorial conjecture
which would pin down the values exactly in all cases.  © 1996 Academic Press, Inc.

INTRODUCTION

This paper is devoted to the study of a certain invariant attached to a
finite permutation group (G, X)), which we call the “arity” of the permutation
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group. An action of a group G on a set X induces actions of G on each
power X”. The arity of G on X may be defined very roughly as the least
r such that the set of orbits of G on X" determines the set of orbits of G
on X" in a straightforward manner. More precisely, what we require of r
is that for each n, any two n-tuples a, b from X should lie in the same
G-orbit if they have the following property: every r-tuple from a lies in the
same orbit as the corresponding r-tuple from b.

A word of warning is in order here: although many permutation groups
arise naturally as automorphism groups of graphs, they are rarely of
arity 2. On the other hand the regular representation of any group has arity
2. Another point worth noting is that the arity of the full symmetric group
on n>1 symbols is 2, while for the alternating group it is n—1, so that
while such groups may be nearly indistinguishible from some points of
view, for us they lie at opposite ends of the spectrum.

Although the arity has played a leading r6le in some very general model
theoretic work on finite structures, notably [10], [5], and [9], sur-
prisingly little is known about it in concrete cases, even for very familiar
primitive permutation representations. The most striking, though ill-posed,
question in this context is whether one can say anything at all about
a large, primitive permutation group, given only a bound on the arity.
There is some general machinery for at least attempting to reduce such
questions to the study of almost simple groups, associated in the first place
with O’Nan/Scott and subsequently with Aschbacher [1], and vigorously
exploited in [8] in a rather more promising context of a similar type. One
(early) step in such a reduction would be to reduce the case of a wreath
product of a group G by another group H, acting on a power, to the
analysis of the actions of G and H separately. (All necessary definitions will
be given in §1.)

Our goal initially was to produce concrete information about the arities
of certain primitive permutation representations of symmetric groups, but
it soon became clear that a systematic investigation of arities of wreath
products would be a necessary ingredient of any such project. Conse-
quently we deal almost exclusively with the analysis of wreath products
here. At the same time, for the general theory of wreath products it turns
out to be quite useful to know the arities of some specific representations
of symmetric groups (k-set actions: see §3).

In order to say something intelligible about the arity of a power
representation of a wreath product (G H, XV), we have found that it is
necessary to consider the induced action of H on #(Y), the power set of Y.
It turns out that the arity of the power set representation (H, #(Y)) plays
a key role in the computation of the arity of a general wreath product, and
this has no clearcut relationship to the arity of (H, Y). Our most general
result is as follows.
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THEOREM 1. Let F ={(GQ{H,X")} be a family of permutation
representations of wreath products. Then there will be a uniform bound on the
arities of the permutation representations in 7 if and only if the following
two conditions are satisfied.:

(1)  The arity of the componentwise actions (G, X) are uniformly bounded,

(2) There is a uniform bound on the arities of the power set representa-
tions (H, 2(Y)) associated with the representations (H, Y) which occur as
factors.

Here we assume tacitly that |X|>1 as there is little point in taking a
wreath product otherwise.

In view of this result it would be worthwhile to undertake a systematic
study of power set representations. Because of the applications we had in
view we have tended to focus on the case in which H is the full symmetric
group operating on Y. In this case we have a completely explicit result:

THEOREM 1I. Let H=Sym(d) operating naturally on a d-element set Y.
Then the arity of H on ?(Y) is [1+1og, d].

COROLLARY. Let F ={(G{Sym(d), X*)} be a family of permutation
representations of wreath products with all X of cardinality greater than 1.
Then there will be a uniform bound on the arities of the permutation
representations in F if and only if the following two conditions are satisfied:

(1)  The arity of the componentwise actions (G, X ) are uniformly bounded,

(2) There is a uniform bound on d.

This may be illustrated by the following two cases, which make use of
further concrete information given below.

Case 1. Let I be an index set consisting of triples (#, k, d) of integers
with 2k <n, and let %, be the set of actions of Sym(#n) ¢ Sym(d) on the set
of d-tuples of k-sets taken from an n-element set, as (n, k, d) range over L
Then the arities of these actions are uniformly bounded if and only if k and
d are bounded uniformly for triples in /. If K and D are bounds for k and
d, then the arities of the representations in %, are bounded by:

[2+1og, K][1+1og, D].

Case 2. Let I be an index set consisting of pairs (x, d) with d a natural
number and x a finite multiset of natural numbers; write || =3 ;.. i, sum-
ming with multiplicities. Let %, be the set of actions of Sym(|x|)? Sym(d)
on the set &< of all d-tuples of partitions of a |x|-element set of type «.



252 CHERLIN, MARTIN, AND SARACINO

Then the arities of all these actions are uniformly bounded if and only if
d is uniformly bounded and for some uniform bound K we have:

(1) # contains at most K elements greater than 1;

(i1) If m is the multiplicity of 1 in x then: inf(m, sup k) < K; x con-
tains at most one element greater than K; and if max(m, sup x) > K then
the multiplicity of any element of x other than 1 is one.

Theorem I follows immediately from the following rather loose estimates.
We use the notation Ar(G, X) for the arity of G on X. We sometimes write
Ar(X) or even Ar X when the group and its action on X have been
described recently in the text.

TrHeEOREM III. Let (G, X) be a permutation representation of arity r,
with | X| > 1, and let (H, Y) be a permutation representation with H nontrivial
Let r*=Ar(H, #(Y)). Then

max(ry, r*) <Ar(GQH, XY)<r,-r*.

Both of these estimates give the correct value in certain cases. It will be
seen from the proof that the upper value will be achieved when (G, X) has
enough “room” in it.

If one is only concerned with the qualitative information produced by an
assumed bound on the arity, then Theorem III or even Theorem I is
entirely adequate. As we have said, our own point of view has been some-
what different. We are hoping to use these results in the study of concrete
representations of the kind considered in case 2, and in such cases it is
reasonable to ask for exact values or at least very sharp asymptotic
estimates as the parameters involved tend to infinity in various ways. By a
direct argument used also in the proof of Theorem II we have exact infor-
mation for the representation of Sym(n) on k-sets, less exact but still quite
sharp asymptotic information on the families Sym(#) ¢ Sym(d) acting on
d-tuples of k-sets, and very weak information on the actions on partitions
(equivalence relations).

We will write [}] for the set of unordered k-element subsets of a fixed
set of n elements; but we generally write n¢ for [7]% Our results on the
natural action of (Sym n? Sym d) on [#]¢ include the following:

THEOREM IV A. Ar(29)=2+2-[log,d]. In other words, this is the
largest even integer below 2+ [log, d ].

TuEOREM IV B. Ar[[]9<[2+log, k][ 1 +log, d] with equality if n>
2k[1+1log,d].
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THEOREM IV C. Let r=[n/2k]. If r<[1+log,d] then Ar[}]?>
r[2 +1log, k7.

This result will be proved in a slightly sharper form below, which allows
a further contribution from the remainder of » after division by
[1+]1og,d].

In concrete cases these results leave a significant gap for n<2k
[1+1log, d]. We specialize further, to k=1, so that we consider wreath
products of the form (n¢, Sym(n)? Sym(d)) where one would certainly look
for very concrete results. In this case the results are asymptotically very
sharp, if one adds the following estimate:

TueoreM 1V D.  Ar(n9 Sym(n) Sym(d)) <[log,d] +n.

For k=1 the estimate in IV B is Ar(n?) <2[1+log, d], with equality
for n=2[1+1log,d]. Within the interesting range n<2[1+log, d], the
estimate in Theorem IV D is superior half the time (for n <2 +log, d).

ExampLES. We consider as examples the wreath product actions on 4’
and 4%, According to Theorem IV B we have the upper bounds of 6 and 8
on their respective arities. With £ =1 the bound in IV C is no better, and
sometimes worse, than the bound in Theorem IV A, which applies as a
lower bound for n > 2: so the arities are at least 4 in both cases. The upper
bounds in Theorem IV D are 6 and 7, so in this case Theorem IV D is
better than Theorem IV B, though for n =5 the situation would be reversed.
So we have

4<Ar(47)<6; A<Ar(d4%) <.

The correct values are 5 and 6 respectively.

Individual values of these arities can be computed exactly for suitably
small values of the parameters using linear algebra. A direct-search com-
putation of the arity by looking at the orbit structure on n-tuples involves
a blow-up in computation time which could be exponential and in any case
is not polynomially bounded in the degree of the representation. In practice
this is satisfactory in most cases up to degree 50, a number which is
however considerably less than, say, 4. However if one has an a priori
bound R on the arity then the problem of computing the arity of a wreath
product n¢ can be reduced to the study of the lattice of integer solutions to
a R-p(R—1)xp(R) homogeneous linear system where p(R) is the number
of partitions of an R-element set. (So for R =6 this is a 312 x 205 system.)
The precise problem is the identification of the vectors of minimum /'
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norm in this integer lattice. We will explain this in §5. This technique, it
should be emphasized, works in any wreath product (G Sym(d), X9)
though the linear systems will be distinctly larger, for a fixed set X, when
the group G is not the full symmetric group. If G is the identity group the
corresponding linear system would be of size R-|X|%~!x|X|% On the
other hand in this particular case our results yield the exact value
explicitly: [1+log, d].

At present the linear algebra technique is the only one we know of for
getting exact values for Ar(n?) in concrete cases with 3<n<2[1+log, d].
However it delivers not just numerical information, but optimal examples
in specific cases, and a study of these examples leads to conjectures regard-
ing the arity of n¢ which is discussed in §7. If these conjectures are correct
then it would be rather awkward to write down a formula for the arity of
n?, but it would be trivial to compute it. At present the conjectured formula
is known to give a lower bound for the arity, and Theorem IV D implies
a fairly close upper bound. We do not have a more general conjecture for
the case of [7]¢ with k> 1 and it would be interesting to explore construc-
tions analogous to those used in §6 in this more general context.

One special case of all of this was noticed long ago. The wreath products
(Sym(n) ¢ Sym(2), n?) may be thought of as graphs: the vertices are ordered
pairs of indices in the range (1, ..., n), with an edge between pairs that agree
in at least one coordinate. This is also called the “line graph” of the com-
plete bipartite graph K, ,. The classification of all finite homogeneous
graphs [11], [6] is quite simple: apart from m - K,,= the disjoint sum of
some complete graphs, and its complementary graph, there is only the pen-
tagon (5-cycle) and the line graph of K; 5, that is (3%) in our notation.
What happens in fact is that the arity of (n?) is 4 for for n>3 and hence
these structures cannot be thought of as homogeneous binary structures.

We conclude this introduction with a bit more discussion of the model
theoretic background alluded to above. If one bounds both the arity r of
a permutation group as well as the number of orbits on r-tuples, one gets
a very highly developed theory presented in [10], [5], [9] and developed
further in [ 8], applicable also to a class of infinite permutation groups, and
which does not require primitivity or even transitivity, though it depends
on a detailed analysis of the primitive case, based on the classification of
the finite simple groups. The permutation-theoretic condition we have
given is expressed in model-theoretic terms as: “homogeneity with respect
to a finite relational language”. The main result of Lachlan’s theory resists
summary, but it may be expressed very loosely as saying that large finite
structures which are homogeneous for a finite relational language can be
classified into finitely many types in a manner which is quite satisfactory
from a theoretical point of view. Since as we have noted every regular
representation of a finite group has arity 2, no such statement would be
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valid just under the assumption of a bound on the arity. It is less clear
what the effect of such a bound will be in the primitive case.

Accordingly we would like to know what can be said about a “typical”
finite primitive permutation group if the arity r is bounded, but no restriction
is placed on the number of orbits of G on r-tuples. Given the detailed
knowledge already available for a broad variety of families of permutation
representations, and the theoretical underpinnings provided by O’Nan/Scott
and Aschbacher, this seems like a reasonable enterprise.

Though this is not the place to enter into the details, it seems worth not-
ing that these questions also make sense for infinite structures. The setting
would then be that one has a structure 2 and a finite permutation group
(H, Y), and one forms the generalized product 2" ¥ which can be described
syntactically in a Feferman-Vaught style language: for each formula ¢ in m
variables in the language of 2, there is a “truth value” map {¢):
(X¥)™— 2(Y) taking a sequence of elements a', .., a” e X to the set of y
for which ¢(aj, ..., a’') holds, and then for every orbit ¢ in 2(Y) under the
induced action of H, there is a predicate in the language of 2 ¥ interpreted
as: “{¢>(a', .., a")e @ . The question then becomes: assuming 2" admits
quantifier elimination in a language with r,-place relations, what is the
minimum 7 for which 4 ¥ admits quantifier elimination in a language with
r-place relations? Here we consider only the finite case, which can be
treated by methods that are more widely understood.

We thank Ron Solomon for information about heights of subgroup
lattices.

1. PRELIMINARIES

We will define the arity of a permutation group precisely (in two nearly
identical variants) and give its most basic properties. We include a discus-
sion of an upper bound that can be used in concrete cases to make a direct
computation of the arity practical on a computer, by bounding the length
of a search, when the size of the set on which the group acts is not too
large.

We consider a group G acting on a finite set X. We do not insist that the
action be transitive, or even faithful, though there is no harm in imposing
the latter condition. Occasionally, in statements of the form “G equals
some given group” it is tacitly assumed that G has been replaced by its
image in Sym X.

An orbit of the action of G on X" is called an n-type. We write tp(a) for
the G-orbit of the n-tuple a. For I<={l,..,n} we have the projection
7;: X" — X which induces a map from X"/G to X’/G; if we take an order-
preserving bijection of I with {1, ..,r} we may view this as a map from
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n-types to r-types, which is again denoted z,. The r-type of an n-tuple a,
for r <n, will be the function which associates to each /< {1, .., n} of car-
dinality r the type 7,tp(a)=tp(z,a). We will say that r-types determine
n-types if any two n-tuples with the same r-type have the same n-type. The
arity of (G, X) is the least r such that r-types determine n-types for all n>r;
it is clear that this is at most |X]|.

There is a slightly different definition which is equally natural, and occa-
sionally gives a different value. Let X" denote the set of n-tuples with no
repeated entry (so this is empty for large ). Repeat all the definitions using
X in place of X”. Call the resulting notion of arity the “weak arity”. (This
amounts model theoretically to treating equality as a logical notion rather
than as part of the structure imposed on X.) For the symmetric group the
arity is 2 and the weak arity is 0. This is virtually the only discrepancy
between these notions:

ProrposiTION 1. If (G, X) is a finite permutation group of arity r and
weak arity v’ then:

(1) r=max(r',2) unless G=(1), in which case r=1 unless |X|=1
(and r=0);

(2) r=r" unless G=1]Sym(X,) with (X;) a partition of X. In this
case r' =1 unless G is Sym(X), in which case r' =0.

Proof.  One divides into two cases: either ' > 2 and then easily r =7/, or
else ' <2 and then G has the form stated in (2). ||

We will use the notation Ar(G, X) for the arity, and Ar'(G, X) for the
weak arity. By a common abuse of notation in contexts where one or the
other of G or X is understood we may use notations like Ar(G) or Ar(X)
(more often the latter).

One should observe that the notion of the arity of a permutation group
is in some sense complementary to the notion of the degree of transitivity
of the group. In particular notice that if the arity of (G, X) is r and the
action is r-transitive, then G is the full symmetric group.

Fact. Ar(G, X) is the greatest v for which (r — 1)-types do not determine
r-types.

ExampLE. This does not mean that the arity is the least r for which
r-types do determine (r + 1)-types, though this is frequently the case. As an
example, in the action of Sym(4){ Sym(2) on X = Q2 where Q has order
4 and Sym(4) acts as Sym(£) on 2, one may check that 2-types determine
3-types, but the arity is 4.
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Note also that (Alt X, X) has arity |X|—1. This is a rather extreme
example. With few exceptions we expect the arity in general to be less than

| X| for reasons indicated below.

Notation. 1f A< X, Let G, denote the pointwise stabilizer of the set A
in G, and let X,=X—A. Then G, acts on X ,.
In several cases the upper bound in the next result turns out to be tight.

PrOPOSITION 2. Let (G, X) be a permutation group and let k <|X| be
positive. Then

max(Ar(G,, X,): A< X, |A| =k) <Ar(G, X)
<max(Ar'(G,, X, ) A< X, |[A|=k)+k
with one exception: the case k=1, G=Sym X.

Proof. Letr=Ar(G, X)andlet 4 < X. We claim first that Ar(G 4, X ,) <r,
or in other words that for n>r, r-types determine n-types in (G, X ,).

Fix n-tuples a, be X, with the same r-type in (G4, X,). We claim then
that a and b have the same type in (G ,, X,). Extend a, b to (n+ k)-tuples
a’, b’ by adding the elements of 4 in some definite order. Observe then that
a’, b’ have the same r-type in (G, X). It then follows that a’ and b’ are in
the same orbit under G, which means precisely that a and b lie in the same
G , orbit, as claimed.

Now suppose that Ar'(G,, X ,) <r for all A of order k contained in X.
We claim then that Ar(G, X) <r+k, that is that (r+ k)-types determine
n-types in (G, X) for all n=r+k.

Let a, b be n-tuples in X with the same (r + k)-types. It is possible that
r+ k <2, but this means that we are in the exceptional case mentioned. So
we may take r + k =2, and consequently we may suppose that in a, b there
are no repeated entries. Now write a=a’a”, b=b'b", with a’, b’ of length
k and a”, b” of length n — k. Then a’ and b’ have the same type in (G, X)
and hence after applying an element of G we may suppose a’=b'. Let 4 be
the set consisting of the elements of the sequence a’. In (G,, X,) the
sequences a” and b” have the same r-type, hence have the same type. This
means that in (G, X) the sequences a and b have the same type, as
claimed. |

We specialize this result to the k-transitive case:

COROLLARY 3. Let (G, X) be a k-transitive permutation group, and let
A S X have order k. Then

Ar(G,, X)) <Ar(G, X)<Ar'(G,, X, ) +k
unless k=1 and G = Sym(X).
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PrOPOSITION 4. Let (G, X) be a permutation group and let Y be a G-invariant
subset of X, or more generally an equivalence class of a G-invariant equiv-
alence relation. Then

Ar(G, Y) < Ar(G, X).

(If one prefer to work with faithful actions, replace (G, Y) by the induced
action (GY, Y).)

Proof. The action of G on Y” is part of the action of G on X" for
all n. |

We will say that (G, X) is the complete sum of the permutation groups
(GY, Y) where Y varies over the orbits of G on X (or any other partition
of X into G-invariant sets) if G induces [, G on X.

Fact. The arity of a complete sum of permutation groups is the maxi-
mum arity of the constituents.

Proof. Let r be this maximum arity. We know r < Ar(G, X) and the
reverse inequality is also evident. |

By contrast with the preceding proposition, quotients are notoriously
badly behaved in this context. Every transitive permutation group is a
quotient of a regular representation, and these have arity 2.

We now introduce another invariant which gives a weak bound on the
arity. This is of no direct relevance to the work in the present paper,
though as we will explain it is quite relevant to computational issues and
may perhaps illustrate the behavior of the arity in a useful way.

DerFINITION.  The height h(G, X) of a permutation group is the least
number / such that every set 4 € X contains a set B of order at most &
with G, = Gy.

For example, a transitive permutation group is regular if and only if it
is of height 1.

LEMMA 5. Let (G, X) be a permutation group of height h. Then:
(1) h is the smallest number such that every subset A of X of order
h+ 1 contains a subset B of order h with G, = Gpg;

(2) IfG<GL(n, F,) and X is a vector space of dimension n over [F, on
which G acts naturally, then h<n.

(3) Ar(G, X)<h+1.
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Proof. (1) The main point is that if A< B and G,=G,, for some
proper subset 4, of A, then setting By=A,u(B—A), we have Gz=Gp,
with B, a proper subset of B.

(2) This is clear.

(3) Let r=h+1, and let a, b be two n-tuples in X with the same
r-type. Let a’ be a subsequence of a of length at most % such that G, =G,
and let b’ be the corresponding portion of b, that is: a’=n,a and b'=7,b
for some I of order 4. As a and b have the same A-type we may apply an
element of G and suppose that a’=b’. We claim that then a =b. Suppose
that i<n and set J=17u {i}. Then 7,a and 7n,b have the same type, as
|J| <h+1, so there is some g € G carrying 7 ,a to 7 ,b. In particular g fixes
a’ pointwise and hence fixes a; as well, so b;=a,. Thusa=b. |

COROLLARY 6. If G is sharply t-transitive on X and G # Sym X then
Ar(G, X)=t+1.

Proof. By assumption the stabilizer of any ¢ points is trivial, so A <¢
and hence Ar(G, X) <+ 1.

On the other hand if Ar(G, X) <t and G is ¢-transitive then G is n-trans-
itive for all n, and G=Sym X. ||

This is one source of examples with relatively large arity. If we take the
projective line over a quite small field (say, of order 13) we violate the
inequality Ar(G, X) <./|X| which we mentioned at the outset. We expect
that the primitive groups violating this inequality can be classified along
the lines suggested below. (On the other hand we do not think this
inequality is very sharp in practice.)

We will say a few words about the significance of the invariant / for
computation of the arity. The arity is the least r such that r-types determine
h-types, where 4 is the height. As the number of r-types tends to grow
rapidly, perhaps even exponentially, with r, this is a useful cutoff point for
a computation of the arity by brute force, and in fact is the main reason
that brute force succeeds on small examples. Actually this remark can be
refined in a useful way. Call a set A independent if its stabilizer is not the
stabilizer of proper subset, and call a type nondegenerate if its entries form
an independent set. In computing the arity it is enough to work with non-
degenerate types (unless this results in arity 1, in which case the original
arity may have been 2), so not only does this bound the sizes of the types
in a useful way, it also prunes the search tree in a way that has significant
impact on the computation time in practice. Of course in the cases of inter-
est in the present paper there are much better computational approaches,
as well as better a priori upper bounds on the arity. On the other hand, we
think it might be interesting to get an overview of the arities of a// primitive
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representations of a few small nearly simple groups, and for this brute force
computation might well be the most appropriate approach. We have com-
puted arities of almost all primitive permutation groups of degree at most
50 using these ideas.

We may also note a few formal properties of the height.

Lemma 7. Let (G, X) be a permutation group.

(1) If(Y,:i<o) are the orbits of G on X then h(G, X) <3 h(G™", Y,).

(2) If G is transitive on X and imprimitive, and E is a nontrivial
G-invariant equivalence relation on X with ¢ classes, then for any E-class C
in X we have

h(G, X)<c-h]GS, C).

(3) h(G, X)<|X|—2 unless G contains eigher Alt(X) or Sym(X;) x
Sym(X,) with X\, X, a partition of X.

Proof. (1) and (2) are instances of a single principle: if we have a
G-invariant equivalence relation we can estimate the height of G by sum-
ming the heights of (G, C) over each E-class C. This follows at once from
the definitions.

For (3) we begin by proving:

G, X)<|X|—1 unless G =Sym X. (%)

Let n=|X]. It is clear in any case that #/(G, X)<n—1.If (G, X)=n—1
this means we have a set 4 of cardinality » — 1 such that for each element
aeA, G,_,>G,; in other words every transposition which involves the
unique element b ¢ 4 belongs to G, and thus G =Sym X.

Now suppose that 4#(G, X) =n—2. Then there is a set A4 of order n—2
such that for every element a € 4, the pointwise stabilizer of 4 —{a} in G
is nontrivial, and therefore contains a transposition or a 3-cycle. If G is
primitive on X then a theorem of C. Jordan (cf. [7, p. 171]) states that G
contains Alt X. Assume therefore that G is imprimitive on X and let E be
a nontrivial G-invariant equivalence relation on X. For each E-class C,
h(G€, C)<|C|—1 and hence by (1) and (2) it follows that £ has exactly
two equivalence classes X, X, on X. It is clear as well that the set 4 con-
tains all but one point in each of X; and X,. Hence as in the proof of (x)
G contains enough transpositions to generate Sym(X;) x Sym(X,). ||

No doubt one could get much sharper results in this vein by restricting
to primitive groups. For example one might try to show that in this case

h(G, X)<./|X| apart from some sporadic examples, such as some small
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multiply transitive groups. However in most cases this will give a poor
estimate for the arity.

COROLLARY 8. Let (G, X) be a permutation group with G # Alt X and
with | X| =4. Then Ar(G, X)<|X|—2.

Proof. This follows from the bound on /4 in part (3) of the previous
result unless G is one of the exceptions mentioned there. So the only case
that needs to be considered is that in which G has a nontrivial invariant
equivalence relation with two classes X,, X, and G contains Sym X, X
Sym X,. There are two cases: either G =Sym X, x Sym X, or G is a wreath
product Sym(X,) Sym(2) (here | X|, = |X]|,=|X]/2). In both cases (G, X)
has arity 2, by inspection. ||

2. WREATH PRODUCTS ACTING ON POWERS

If (G, X) and (H, Y) are two permutation groups there is a natural
action of the wreath product G H= GY x H acting on X*. Here G” acts
on the points of X coordinatewise, and H permutes the coordinates.

THEOREM 1. Let (G, X) be a permutation representation of arity r,
with |X| > 1, and let (H, Y) be a permutation group of degree d. Let r* =
Ar(H, ?(Y)). Then

Fo<AT(GUH, XV)<ry-1r*.

Proof. The lower bound r,<Ar(GQH, X") is immediate. Any two
ro-tuples a, b in X with the same (r,— 1)-type and distinct ry-types will
extend to similar r,-tuples 4, b in X7, by taking the remaining entries equal
to a fixed constant c € X. The extended r,-tuples certainly have the same
(ro—1)-type in X7, and it is easily seen that their r,-types remain distinct.

We now consider two n-tuples a, b in XY with the same (r,-r*)-type
under G { H, and we claim that they have the same type. Each element of
a or b will be thought of as a row vector with entries in X, indexed by Y.
Let d=|Y| (the “dimension”). The n-tuples a and b may be thought of as
n x d matrices (a;), (b;) with entries in X. The main point will be to look
closely at the columns, which are indexed by elements of Y. The column in
a or b indexed by y will be denoted a, or b, respectively. Each such column
is an n-tuple in X and as such its type is determined by its r,-type in X.

We now associate with a and b a number of subsets of Y. For each sub-
set I of {1, .., n} with |I| =r,, and for each ry-type p, let 4, , be the set of
y€ Y such that 7, tpa,=p, and let B, , be associated in a similar way with
b. As we have assumed that a and b have the same (r,-r*)-type in
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(GQH, X7"), it follows that the sequences of sets (4, ,) and (B, ,) have the
same r*-type in (H, #(Y)). This is the critical observation.

Accordingly, after applying an element of H we may suppose that
A; ,= B, , for all I, p, or in other words that for each y e Y, the columns
a, and b, have the same r(-type in (G, X). Accordingly these columns have
the same type in (G, X)) and some element g, carries a, to b,. The element
(g,:y€Y) then carries a to b. ||

This result contains most of Theorem III, from which the main
purely qualitative result Theorem I follows. We now finish the proof of
Theorem III.

THeOREM 1II. Let (G, X) be a permutation representation of arity r, with
(as always) |X|>1, and let (H, Y) be a permutation representation. Let
ro=Ar(G, X) and r* =Ar(H, ?(Y)). Then

max(ry, r*) <Ar(GQH, XV)<ry-r*.

Proof. 1t remains to get the bound r* < Ar(G H, X¥). Consider the set
4 of “constant elements” in XY. The pointwise stabilizer of 4 in G H is
just H. Let ¢, ¢’ be two elements of X, and let P={c, ¢’} ”. Then P is an
H-invariant subset of X¥ and (H, P) may be naturally identified with
(H, #(Y)). Thus we have:

Ar(H, 2(Y))=Ar(H, P) < Ar(H, X¥) < Ar(G, X7)

where we have used Propositions 1.2 and 1.4. ||

Now we look for an improved lower bound. Within a family of naturally
occurring permutation groups it frequently occurs that the larger ones
contain many independent copies of the smaller ones in a natural way.
Accordingly we make the following definitions.

DerFNITION.  Let (G, X) be a permutation group.

(1) The subset X, = X is said to be smoothly embedded in X if any
two r-tuples a, b in X, which liec in the same orbit under the action of G,
are also in the same orbit under the action of the induced group G*°.

(2) A collection of disjoint sets X; = X is said to be (jointly) smoothly
embedded in X if each X, is smoothly embedded in X and GY*' contains
I1G*.

For example, in the representation of Sym(n) on the set of k-sets [ ], if
n; are numbers with > n,<n then in various natural ways the collection
([%]) is smoothly embedded in [ {].
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THEOREM 2. Let (G, X) and (H, Y) be permutation groups. Let r* be
chosen so that in (H, 2(Y)) there are two r*-tuples with the same (r* —1)-
types and distinct types; so r* < Ar(H, #(Y)), although in general not every
value of r* below the arity will do. Suppose that (X;) is a collection of r*
disjoint subsets of X, which is smoothly embedded in X. Then

ANGH, X¥)=Y Ar(GY, X,).

Proof. Let r,=Ar(G*, X,), and within X, fix r-tuples a’, b’ with dis-
tinct types, but with the same (r;—1)-types. As X, is smoothly embedded
in X, these types may be taken either with respect to the action of G on X,
or with respect to the action of G*' on X;. In what follows it is better to
think of them under the action of G. Take two r*-sequences (I;:i<r*),
(I';: i<r*) of subsets of Y with distinct types but with the same (r*—1)
type.

For ye Y we define a sequence ¢, of length r =3 r;, with entries in X,
by concatenating r* sequences ¢, of length r, chosen as follows: ¢;, =a’ if
yel; and ¢,,=b’ otherwise. Substituting I for /; we define ¢|, similarly.

We consider the matrix C whose columns are the sequences ¢, for ye Y.
The rows of this matrix are elements of X and hence the whole matrix
may be viewed as an r-tuple & of elements of X*. Similarly the sequences
¢, make up a matrix C’ whose rows form an r-tuple ¢ of elements of X.
It remains to be checked that:

¢ and ¢’ realize distinct r-types; (1)

¢ and ¢ realize the same (r — 1)-type. (2)

We now check (1). Suppose that ge G ¢ H carries C to C'. In particular
g induces an element sz e H. Consider any #, y with 1 <i<r* and ye Y, and
suppose y € /,. Then the i-th block in ¢, is a’, and hence the i-th block in
c)» has the type of a’. However this block is either a’ or b’, and hence it is
a’, and y"eI’. It follows that & carries each I, onto I’, which contradicts
the choice of these sets.

We turn to (2). Consider the effect of dropping one of the rows of the
matrix C, and the corresponding row of C’, getting matrices D, D'. This
row will lie in the i,-th block for some i, <r*. Fix an element » € H which
carries I; to I’ for all i #i,. We claim

Corresponding columns of D" and D’ have the same type in X; (3)

it then follows that some element of G'*' carries D" to D'.
It remains to check the claim (3). Accordingly fix a column index y e Y.
Let y* ="', and consider the y*-th column d,. of D and the y-th column
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d), of D'. Then d . is the y-th column of D”, and we claim that d,. and d;,
realize the same type. For i +# i,, we have y* € I, iff y € I;, and hence the i-th
block of d,. and of d realize the same type. For i=i, since one entry is
omitted, the i-th block of d,« and of d’, again realize the same type. As these
blocks belong to a collection of jointly smoothly embedded subsets of X,
G operates independently on these blocks, and the two columns realize the
same type. This completes the proof of (3) and hence (2). ||

COROLLARY 3. Let (G, X) and (H, Y) be fixed with G=Sym(n) acting
on [}] where n, k are chosen so that n =2k Ar(H, ?(Y)). Then

Ar(GUH, XY) = Arg <G, {2:} > -Ar(H, 2(Y)).

n

Actually we will compute the arity of (Sym(n), [;]) and see that it is
independent of n for n > 2k and hence we can put this in the more striking
form

Ar(GH, X¥)=Ar(G, X) - Ar(H, 2(Y)).

More generally, when (G, X) contains a large enough smoothly embedded
collection of sets (X;) such that Ar(G, X) =Ar(G*, X,) for all i, then the
upper bound given in Theorem 1 is in fact the arity of the power action of
the wreath product. This condition is more likely to be met with in “com-
binatorial” contexts than in linear actions where a dimension parameter
would be expected to contribute to the arity in a way that cardinalities do
not. In any case, this condition on (G, X) is the “roominess” condition
referred to in the introduction.

We give one more rather specialized lower bound which may not look
very strong but actually is quite sharp (and which can be iterated in some
situations).

ProrosiTION 4. Let (G, X) contain a smoothly embedded pair of subsets
X,, X, with Ar(G*', X,) =2 (in other words, G*! does not reduce to the
identity). Let Y be a set of even order 2d and let H be a permutation group
on Y containing Sym(d) ) Sym(2) acting naturally with respect to some
decomposition of 'Y into two sets Y, Y, of size d. (We are thinking primarily
of the case in which H=Sym(2d), but this generalization costs nothing.)
Then

ANG U H, X¥) = Ar(G ) Sym(d), X?) +2.

Proof. Let r=Ar(GQSym(d), X{) and fix r-tuples a, b in X¢ with dis-
tinct types but with the same (r — 1)-type. We may think of a and b as r x d
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matrices with entries in X. It then makes sense to think of them as forming
a new matrix ab when placed side by side, whose rows may be construed
as elements of X”. Let ¢ =ab in this sense, that is view ¢ as an r-tuple of
elements of X7,

Now extend ¢ as follows. Pick distinct elements e, ¢’ of X; lying in the
same G-orbit and let é be the constant element of X with value e. Finally,
let é,e X" be defined for i=1, 2 as the sequence with value ¢’ on Y, and
eon Y—Y, Letd'=c, ¢, é;, an (r+2)-tuple in X for i=1, 2. These two
(r + 2)-tuples have distinct types by construction; to carry one to the other
it would be necessary to interchange Y, and Y,, which would force the
columns of a and b to realize the same types though not necessarily in the
same order. As by assumption Sym(d) acts on Y, and Y,, it would follow
that a and b realize the same types, a contradiction.

To conclude it will therefore suffice to check that d' and d? will realize
the same type after a single row is omitted from both sequences. There are
two possibilities to consider: the row omitted is one of the first r, or one
of the last two, and in either case the claim is clear. ||

3. POWER SET ACTIONS AND k-SETS

In the previous section we saw that the arity of a wreath product
(GUH, X") is controlled, to a large extent, by the arity of the induced
power set action (H, 2(Y)). We would prefer to express this in terms of the
arity of (H, Y), but this is not possible. For example, when H is the full
symmetric group it has arity 2 in its natural action but we will see that the
arity goes to infinity logarithmically in the size of Y in the power action.
On the other hand any action of a cyclic group of prime order has height
1 and hence (by Lemma 1.5) has arity <2. Varying the prime and taking,
say, the regular representation gives a series of primitive group actions of
unbounded degree for which the arity of the induced action on the power
set is bounded. It is of course true that the power set action has arity at
least that of the original action, since the original action occurs as one of
the orbits in the induced action.

There are two extreme cases which deserve special attention. If H=(1)
then the power X is the ordinary power which is normally used in algebra
and model theory. As the arity of A will be 1 in its action on any set with
more than one element, here Theorem III tells us that Ar(G) H, X¥) =
Ar(G, X). At the other extreme take H = Sym(Y); then (G H, X¥) may be
called the “symmetric power” of (G, X') by Y. We will give an explicit com-
putation of Ar(Sym(Y), Z(Y)) in a form which also gives the arities of the
individual orbits (Sym(Y),[}]); this gives an interesting family of
primitive representations for which the arity is known exactly. The results
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of the previous section will then give rather decent estimates (asymptoti-
cally excellent) on the arities of symmetric powers of k-set actions; here our
precise numerical information will be used twice, once in the factors and
once on the power set of Y. These latter results will be given in the follow-
ing section. The present section will conclude with some comments on the
general case of the power set representation, an area in which it would be
useful to have more incisive results of some generality.

In the present section we adopt the following notation. If K is a subset
of {1,..,n}, we will write [ %] for J,.x[;]- As we are interested in the
action of Sym(n) on [ %], we may always restrict ourselves to values with
2k < n, since for any k € K we may replace k by n — k, replacing each set by
its complement, and obtain an equivalent permutation group. One might
object that it is possible that both k and n — k already belong to K; in this
case we may omit one of these indices, and the arity of the resulting per-
mutation group will not be affected, though since some points are omitted
this representation will not be “equivalent” to the original one according to
the usual definitions. To see that the arity is not affected by the removal of
“duplicate” points, recall that only nondegenerate types in the sense of §1
need be considered, so that when two elements of X have the same stabi-
lizer in G they may be identified. For similar reasons the case k =0 may be
excluded without loss of generality. As we have indicated, we are interested
in just two cases: K is a singleton, and we compute the arity of
(Sym(n), [£]); or K consists of all k (with k<n or 1<k<n/2, as one
prefers) in which case we get the arity of (Sym(n), #(n)). In particular
when we examine symmetric powers [7]¢ we will be interested in both
cases.

ExampLE. We get a lower bound on the arity from a specific example.
Let n and k be fixed with 2k <n and let r =1+ [log, k]. Let Q be a set of
size n, let A< Q have order 27, and let 4'<Q — A have order k—2""".
Identify 4 with the set of strings in {0, 1}". For 1 <i<r let 4, be the set
of strings in A whose i-th coordinate is 1, and let A, and 4, be the sets of
strings in 4 with an even or odd number of nonzero entries, respectively.
Let B,=A,0A, B.=A4A,0A", B,=A,U A"

Let a=(B,, .., B,,B.) and b=(B,, .., B,, B,). We claim that a and b
have the same r-type and distinct (r + 1)-types.

Let g, be the element of Sym(£2) which takes a string in 4 to the same
string with its i-th bit altered, and which is the identity off 4. Then g,
carries B; to itself for j#i and switches B, and B,,. From this it follows that
a and b have the same r-type in (Sym £, [¥]). On the other hand, any
element of Sym 2 which carries B, to itself for every i<r must fix 4
pointwise, and hence cannot switch B, and B,. Thus a and b have distinct
types in (Sym Q, [ 2]).
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ProproSITION 1. Let K be a set of indices with 1 <k <n/2. Then the arity
of (Sym(n), [ 1) is at least 2+ [log, sup K.

In fact:

THEOREM 2. Let K be a set of indices k with 1 <k <n/2. Then the arity
of (Sym(n), [ %]) is 2+ [log, sup K. In particular:

(1) Ar(Sym(n), [{])=2+[log, k] for 1 <k<n/2;
Ar(

(2) Sym(n), Z(n)) =1+ [log, n]; here P(n) is the set of all sub-
sets of {1, .., n}.

Proof. We know Ar(Sym(n),[%])=2+[log,sup K] and we will
prove the reverse inequality.

Given two r-tuples a, b in [ %], let A and B be the boolean algebras they
generate, and let B, be the free boolean algebra on r generators cy, ..., ¢,.
Let f: B,— A and g: B, —» B be the homomorphisms induced by f(¢;) =a;
and g(c¢;) = b;, respectively. Then a and b realize the same type if and only
if for each atom a€ B,, f(a) and g(«) have the same cardinality. This is
because a permutation of {1, .., n} that carries a to b is a disjoint union
over the atoms a € B, of bijections from f(a) onto g(a).

It may also be useful to have a more explicit notation for the atoms of
B,..For ce B, let ¢' be ¢ and ¢! be the complement of ¢. There is a bijec-
tion a between {+1}" and the atoms of B, given by a(e)=();c% for
ee{+1}"

Now let k=sup K. We claim that for » > 1 4 [log, k], r-types determine
(r+ 1)-types. With r fixed, we consider the graph I, whose vertices are the
atoms of B, , with edges between atoms whose codes in { +1}"*" differ
in one place. We label such an edge with the union of the atoms associated
to its vertices. Observe that if ¢, &' € { +1}" " differ in the i-th position then
the label on the corresponding edge may be interpreted as an atom in the
algebra generated by the ¢; with j#1i.

Now consider two (r+ 1)-tuples a, b with the same r-type, where
r>1+[log,k]. Let A, B be the boolean algebras generated by the entries
in a and in b respectively. Let 1" be the labelled graph in which every ver-
tex and edge of I, is labelled by the cardinality of the corresponding ele-
ment of 4, and define I"? analogously. Our claim is that a and b have the
same type, or in other words that the vertex labels in "' and I'? coincide.

As a and b have the same r-type, the edge labels coincide in 7' and in
I'® respectively. Furthermore the graph I, is connected, and if two vertices
are joined by an edge then the sum of their labels is the label of that edge.
Accordingly, to prove that the vertex labels in I'# and in I'? coincide, it
suffices to find one vertex at which these labels coincide.
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Consider the 2"~ ! edges of I', that correspond to atoms in the algebra
generated by ¢, .., ¢,, for which ¢, =1. The images of these atoms under
f are 2"~ ! disjoint subsets of a;, which has at most k elements. Since
2"~'>k, at least one of these sets is empty, and hence one of these edges
is labelled 0 in I"{" and hence also in I"Z. It follows that both vertices adja-
cent to this edge are labelled 0 in I' and in I'?, and this completes the
argument. ||

We conclude this section with some further general observations about
arities of power set actions.

One source of power set actions of bounded arity comes by considering
the height of the representation as defined in §1. A case in which the height
is certainly bounded, independently of the particular permutation group
under consideration, is that in which H varies over the set of groups whose
subgroup lattice has height less than some specified bound. (It is quite
easy to prove that the height of a permutation group is at most the height
of the subgroup lattice of the abstract group.) This is equivalent to the con-
dition that the order of H has a bounded number of prime factors (with
multiplicities).

LEMMA 3. Let of be a collection of finite groups. Then the following are
equivalent:

(1) The subgroup lattices of the groups in o/ have bounded height;

(2) There is a bound on the number of prime divisors (with multiplicities)
of the orders of groups in <.

Proof. The height of the subgroup lattice of G is bounded by the num-
ber of prime divisors of the order of G. For the converse, given a bound
h on the height of the subgroup lattice of G, we have a bound on the length
of a composition series and the height of the subgroup lattice in each fac-
tor. So the problem reduces to the case in which the groups in .o/ are sim-
ple and nonabelian.

For solvable groups H the height of the subgroup lattice equals the num-
ber of prime factors of the order of H, with multiplicities. In particular this
applies to sylow subgroups of groups G e ./. Accordingly it is enough to
bound the number of distinct primes dividing |G].

As there are only finitely many sporadic groups they may be ignored,
and the alternating group presents no difficulty. So we consider groups
G =G(n, q) of Lie type, possibly twisted. A bound on the rank n may be
obtained by considering the Weyl group. Accordingly we may suppose that
the Lie type and the rank are fixed, and only the base field [, varies.

For G e o/, any element of prime order p with p /g is semisimple, and
lies in a maximal torus. The number of conjugacy classes of maximal tori
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is the same as the number of conjugacy classes in the Weyl group [2, § E].
As each torus is abelian, the number of primes dividing the order of each
torus is bounded by /4. So we have a bound on the total number of distinct
primes dividing |G|. |

One may expect that “generically”, chains of maximal length in subgroup
lattices of groups of Lie type will pass through Borel subgroups; this would
produce much tighter estimates above. Cf. [12] and the references cited
therein.

These examples show that one can form very “wide” wreath products of
permutation groups without appreciably increasing the arity. For example,
if one forms the family of wreath product actions of (G, X) by (H, Y),
where the (G, X) ranges over a family of representations and (H, Y) ranges
over a family of representations of unbounded degree for which Ar(H, 2(Y))
is bounded, then Ar(G ) H, X¥) is at most a bounded multiple of Ar(G, X).

When looking for other possibilities for families of representations whose
induced power set actions have bounded arity, it is natural to consider the
power set action induced by the action of Sym(n) on [}] with k fixed.
However, this succumbs to a fairly general constraint for n large: the
presence of too many “indiscernibles”, defined as follows.

DEerFINITION. A set /< X is indiscernible in the representation (G, X) if
G’ =Sym([).

For a general result on the existence of indiscernibles in primitive groups
see [ 5]. When one has a set of d indiscernibles then the power set represen-
tation induces (Sym(d), #(d)) on the corresponding subset, and the arity
of this is unbounded.

For natural linear representations of classical groups arity tends to go up
with the dimension. The rule of thumb which says that the “#” in Sym(n)

can be identified with, e.g., the “n” in GL(n, ¢), goes rather badly awry
here.

4. THE ACTION OF Sym(n) oN [{]¢

The remainder of this paper is devoted to the study of the arity of power
representations of wreath products of symmetric groups on [;]“ In par-
ticular (H, Y) =(Sym(d), {1, ..., d}) throughout. Most of the results of pre-
vious sections bear on this case. Specializing the main facts proved above
to this particular case, we will obtain:

TueOREM IV B. Ar[[]9<[2+log, k][ 1 +log, d] with equality if n>
2k[ 1 +1log, d].
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We will also illustrate the use of our previous results in a case not settled
by Theorem IV B. The main gap in our knowledge concerns the behavior
of Ar([#]9) for n, k fixed and d variable, especially for k> 1. For k=1 we
will give more precise information in §6 together with some very precise
conjectures.

We begin by restating Theorem III.

ProOPOSITION 1.
n d
max([2 +1log, k], [1 +1log, d]) < Ar qk} >< [2+1og, k] -[1+]1og, d].

The lower bound in Theorem 2.2 is easily computed explicitly but is
somewhat harder to write as a formula. The statement becomes:

PROPOSITION 2. Let (n;) be a collection of at most [ 1 +1og, d] numbers
whose sum is at most n. Then

w([i)zza(3])

Here we did not apply the formula for Ar([%]) because, as we will see,
there may be good reasons for taking n;<2k. However to a first
approximation the essential information is obtained by taking n,=2k, in
which case we may say:

COROLLARY 3. Letr=[inf(1 +log, d, n/2k)]. Then Ar([}19) > r[2 +log, k].

In particular:

COROLLARY 4. Forn>2k[1+log, d], Ar([}]?)=[2+1log, k][ 1 + log, d].

Proposition 1 and Corollary 4 yield Theorem IV B.

There is a clearcut way to exploit Proposition 2 more thoroughly. There
are two sorts of numerical improvements that can be made relative to the
statement in Corollary 3, entirely within the framework provided by
Proposition 2. Firstly, since the arity of [ ] is [2 + log, k] we may as well
take n; =k 4+ 20'°22%1_ rather than 2k, and secondly, we can make some use
of the remainder after division by this number.

ExampLE. We illustrate all this with a detailed example. Consider
[7]'¢. The upper bound given by Proposition 1 is Ar([ 3]'%) <4 -5=20.
We will examine several lower bounds given by Proposition 2, of which the
best will be 18 < Ar(3]'®). This is impressively close to the upper bound,
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but only because 52 is close to 55, where the upper bound becomes exact;
this is because we can strengthen Corollary 4—it is enough to have n>
(k + 2022511 4 log, d], using the stronger form of Corollary 3.

In applying Proposition 2, since 1+log, d=5 we may obtain a lower
bound from at most five numbers adding up to at most 52. The estimate
given in Corollary 3 is 3-4 =12, based on n, =n,=n;=14. However as
noted we can also use n;, =n,=ny=n, =11, even though 11 <2 -k, to get
four (instead of three) blocks with arity 4; this yields a lower bound of
4.4 =16. Furthermore we can go a step further with ns=28 and get an
additional Ar([5])=2; so our lower bound becomes 18.

Our feeling, which is supported by the limited numerical evidence
available, is that the natural lower bounds are close to the truth. Our
detailed study of the case k=1 in §6 will show that the situation is quite
complicated. We propose:

Problem. With n, k fixed determine

n d
lim Ar <[ } >/(1+10g2d).
d— o k

We conjecture that this limit is 1. In the case k=1 we conjecture also
that Ar([;]19)— (1 +1log, d)~n/2 as n, d— co, within the range 2<n<
2[1 +1log, d].

In the next section we will compute the arity of 2¢ explicitly and show
that it is near to the theoretical lower bound, but always even (hence fre-
quently slightly bigger). The technique used to analyze 29 involves linear
algebra and will be used to get strong lower bounds in other cases.

Before we enter into this, however, we will discuss the “propagation” of
lower bounds on arity. Our first remark is quite evident, but obviously
important in this context.

LEMMA 5. If n,<n,, and d, <d, then Ar(["/]1") < Ar([2]%).

Proof. Take a pair of r-tuples a and b in [“']?" realizing the same
(r—1)-type and distinct types. Extend them first to r-tuples a’ and b’ in
[#12 by adjoining the same d, — d, elements of ["'] to each of the given
elements of [“!']“. Then take a natural embedding of [“!']“* into ["%2]%~
The key to seeing that a’ and b’ realize distinct types is that an r-type in
a wreath product is determined by specifying, for each r-type in the base
structure, in how many coordinates that type is realized. ||

Our second result in this vein has considerably more content. It is
Proposition 2.4 applied to the case at hand.
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PROPOSITION 6. Ar("*%+1724) > Ar([7]9) + 2.

The lower bounds we considered earlier would normally behave in the
same fashion: log,(2d) =1 +log, d, and hence we can take one more term
n; in the application of Proposition 2. Viewing n+k + 1 as n plus (k+ 1),
with (k 4 1) as the additional term, this means we are adding 2 to our pre-
vious estimate. In such a case, if our estimate for Ar([;]¢) was too low
then the estimate for Ar(["*57'])*) is off by at least the same amount.

Let us now examine what becomes of all of this when we specialize
further by setting k=1. In this case we are just considering (Sym(#n)
Sym(d), n) which we tend to refer to simply as #“. In this case we arrive
at:

ProposiTION 7. (1) [1+log,d] <Ar(n?)<2-[1+log,d];
(2) Ar(n?)=2[1+log,d] for n=2[1+1log, d];
(3) Ar(n?)=2[n/2] for n<2[1+log,d];
(4) Ar((n+2)*")=Ar(n?) + 2.

In (1) we are supposed to write max(2, [1+log, d]) for the lower
bound (we have assumed 7 > 1, more generally n > 2k), which only matters
for d=1. The above relations and the trivial Lemma 5 exhaust the results
proved up to this point for k= 1. Notice that an application of (4), starting
with Ar(2')=2, yields the less trivial relation Ar(4?)>4, which is the
ancient observation that although 32 can be thought of as a homogeneous
graph, 4> cannot.

Let us trace through this example in more detail, from the point of view
of the proof of (4). We take 00 and 01 as pairs in 2 (i.e., 2') with the same
I-type and distinct 2-types. We form the matrix

V)

whose columns are the given pairs. We then extend this matrix by the two
rows 22 and either 23 or 32 which look much like the first two pairs, but
in the context of the proof of Proposition 2.4 play quite a different role. We
assemble these ingredients into the two arrays

NN OO
W N = O
w o OO
NN = O

The rows here represent distinct 4-types in 4> with the same 3-types. This
is the standard example, and in fact the only example available in this
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context: in the graph picture, drawn as a grid, we have two disjoint edges,
parallel in the first case and not parallel in the second.

We will use this example in the next section to illustrate the application
of linear algebra to these problems. Using this technique we will determine
the arity of 2¢ exactly. However the information recorded so far leaves the
matter open, for d fixed, with n in the range 2 <n<2[1+log, d], while
offering two competing lower bounds, one a function of d alone, the other
a function of n alone. For n<[1 +1log, d] the former is the better bound,
and for n>[1+log,d] the latter gives the best information. At n=
[1+1log, d] the bounds agree if this number is even.

5. THE ARITY OF 2¢

We will compute the arity of 29 for all d by reducing the problem to a
simple problem in linear algebra. In the following section we will use the
same technique to get lower bounds on the arity of n? in general. We con-
jecture that the lower bounds obtained are in fact the exact values. This
method could work for k£ > 1 as well, but the systems involved become large
quite rapidly, and it is more promising to look directly for a combinatorial
generalization of the case k= 1.

To illustrate the method, we recall the example given at the end of the
previous section, which demonstrates that Ar 4> > 4. This was

0 0\ /0 O
0 11/0 1
2 2012 2
2 3/ \3 2

The point of this example, as we know, is that there is no element of Sym-
(4) ¢ Sym(2) which takes one matrix to the other, but if any row is omitted
from both matrices then such an element exists. This means that the unor-
dered pair of 4-types realized by the columns of the first matrix is different
from the unordered pair of 4-types realized by the columns of the second
matrix, but that the restrictions of these pairs by omitting the i-th entry
systematically, for any fixed i, agree. This can be said more simply if we
consider how the type of a column may be described. The only information
in a column is the pattern of equalities occurring. That is, each column
imposes an equivalence relation on the index set {1, 2, 3, 4}: two indices
are equivalent if the corresponding entries in the column are equal. With
this definition we have the following key relationship:

Two columns have the same type if and only if they
induce the same equivalence relation on {1, 2, 3, 4}.
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In the case at hand, the first matrix has columns [0, 0, 2, 2] and [0, 1, 2, 3]
corresponding to the equivalence relations:

(1,2)(3,4) and (1)(2)(3)(4).

The second matrix has columns [0, 0,2,3] and [0, 1, 2, 2] corresponding
to the relations

(1,2)(3)(4) and (1)(2)(3, 4).

Here we have four distinct equivalence relations, which we will call £, E,,
E'\, and E’, respectively; so the types involved are certainly distinct. Now
let us consider what happens if we omit, say, the second row in both
matrices. The effect is to drop out the index 2 from the domain of the
equivalence relations. In this case £, and E’ restrict to (1)(3, 4) while E,
and E'| restrict to (1)(3)(4). So we see that this is a very efficient notation
for checking examples. However it is much more than that.

We will now describe the method somewhat more generally for n, d
arbitrary, but still taking k = 1. The problem is best viewed as one of deter-
mining, for a fixed r, the pairs n, d for which (r — 1)-types determine r-types
in n?, and more specifically: for fixed r, to give a list of all minimal pairs
(n, d) for which (r — 1)-types do not determine r-types in n“. For example
for r =4 this list is: (2, 4); (4, 2); (3, 3).

To any r-tuple a in n? we associate the following invariant. Let
I={1, .., r}. Thinking of a as usual as an r x d matrix (a;) with entries in
Q={1, .., n}, then as suggested above we will associate to the j-th column
the equivalence relation E; on [ defined by

Ei(iy, 1) iff a; ;=a;, ;,
and we will attach to a the multiset (set with multiplicities)
é(a):=<{E,,.., E;>. This invariant characterizes the type of a. Further-
more the (r—1)-type of a is characterized by the ordered sequence of
invariants &=¢& I (I—{i}), where the restriction of a multiset of equiv-
alence relations is defined as the multiset consisting of the restrictions of
the given relations. In this notation

d is the number of equivalence relations;
n is a bound on the number of classes of each relation.
So at this stage our problem is:

Problem. For what values of n, d, r are there two distinct multisets &,
&' of total multiplicity d whose elements are equivalence relations on a set
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I of cardinality r, where each relation has at most n classes, such that the
restrictions &;, & of &, &' to I—{i} coincide for all ie I?

We will now reformulate this problem as one of determining the shortest
nonzero vector in the /'-norm in an appropriate integer lattice.

With r fixed, we consider the collection E, of equivalence relations £ on
the set {1, .., r}. Any r-type in n? will correspond exactly to a multiset of
such equivalence relations, with d the cardinality of the multiset and with
n a bound on the number of classes occurring in any of the relations. Let
V, be the rational vector space with basis E,. Its dimension, the number of
relations in E,, is called the rth Bell number and is denoted B,. The
['-norm of a vector is the sum of the absolute values of its coefficients with
respect to the distinguished basis. Each multiset & of relations in E, is
determined by its characteristic function, the vector in V, whose Eth coor-
dinate is the multiplicity of E in &. To an ordered pair of multisets we
associate the difference of their characteristic vectors. We are only inter-
ested in pairs of disjoint multisets; such pairs may be recovered unam-
biguously from their associated vectors. Furthermore when two disjoint
multisets have the same cardinality d, this is half the /'-norm of the
associated vector.

The condition on equality of restrictions of the two multisets is a linear
condition on the associated vectors. Thus these vectors form an integer lat-
tice L, in V, and the restriction to equivalence relations with at most n
classes defines a sublattice L, ,. Our problem is to find the length of the
shortest nonzero vector in each of these lattices, with respect to the
['-norm. We found it useful to gather some data by machine computation
in these lattices for r < 7. This is discussed in some detail in [4], and we
will just say a few words about it here.

The dimension of L, was computed in [4]. It is an alternating sum of
Bell numbers 3/ =3 (—1)" B,_,_,. This is also the number of equivalence
relations on r elements having no singleton equivalence class, and it is
possible to write down a sparse basis for L, with coefficients of moderate
size, parametrized naturally by the set of all such equivalence relations.
Since this basis can be defined combinatorially, it is invariant under the
natural action of Sym(r). We emphasize these points because the dimen-
sions involved are rather large and these properties are therefore computa-
tionally significant; for example when » =7 we are computing in a lattice
of rank 162 inside a space of dimension 877, and we have been led to make
computations out to a radius of d =45 in some cases (making use of a sim-
ple heuristic in such cases to speed up the search for examples). More
details will be found in [4]. The r6le played by such computations in
suggesting general patterns will be indicated in the following section.
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TABLE 1

A Basis for L,

[ 1 -1 0 0 0 0 0 -1 0 01000 ]
[ 1 -1 0 0 0 -1 0 0 00100 ]
[ 1 0 0 -1 0 -1 0 0 00010 ]
[ -3 1 1 1 -1 1 -1 -1 =100 0 1 ]

ExampLE. We illustrate the foregoing with a concrete example, the case
r=4. We begin by choosing an ordering for the basis E, of V,, exhibited
here (reading across the rows):

(D2)3)(4),  (1)(2)(3,4), (D3)2,4), (1)(4)(2,3), (1)(2,3,4),
(2)3)(1,4), (2)(4)(1,3), (2)(1,3,4),  (3)(4)(1,2), (3)(1,2,4),
(4)(1,2,3),  (1,2)(3,4), (L,3)(24), (1,4)(2,3), (1,23,4).

The restriction conditions lead to a system of 20 =4.5 equations in 15
unknowns, but the rank of the system is 11 and there is a four-dimensional
integer lattice L, of solutions. The particular basis we get is exhibited in
Table 1 as row vectors of coefficients with respect to the ordering of E,
given above.

Each of the first three vectors encodes an example (&), &), with &; a pair
of equivalence relations on the set {1, 2, 3, 4}, illustrating Ar(4%)>4.
(Here, &, consists of equivalence relations for which the corresponding
coefficients are positive, and &, consists of equivalence relations for which
the corresponding coefficients are negative.

Therefore & =<(1)(2)(3)(4), (1,2)(3,4)> and & =<(1)(2)(3,4),
(1,2)3)(4)>.

The difference of the first two vectors encodes an example showing that
Ar(3%) >4, and the sum of all four vectors encodes an example showing
that Ar(24) > 4.

For the remainder of this section we deal with one simple case in which
the situation can be analyzed completely: n=2. In this case things are
sufficiently transparent that one could dispense with the linear algebra
entirely.

We will use the notation v=(v,: E€E,) for vectors in V,. With r fixed,
the linear condition saying that the restrictions are equal is the system of
equations:

Vgt v =0 (87)

r
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where E, E’ vary over equivalence relations with at most two classes with
a common restriction; in other words E can be converted into E’ by mov-
ing an element from one class to the other. Here it is convenient to think
of the degenerate relation E with only one class as having a second, empty,
class to which an element can be transferred. By performing » such trans-
fers one converts a given E back into itself by interchanging its two classes,
so from the given equations one gets v;=(—1)"v;. We conclude:

PROPOSITION 1. In 29 (r —1)-types determine r-types for any odd r.

On the other hand for r even it makes sense to speak of the parity
sgn E€ { +1} of an equivalence relation with (at most) two classes, as
the parity of either class, and our system S? then says that for some
constant m:

vp=sgn E-m.

The minimum nonzero solution has m= +1, d=(1/4)2"=2""2 so we

find:

PROPOSITION 2. For r even, (r —1)-types determine r-types in 27 if and
only if d<2"~2

So we may conclude:

THEOREM IV A. Ar(29)=2(1+[log,d]).

The lattice L, , is 1-dimensional for r even, and 0-dimensional for » odd.
Parity considerations and congruences modulo 4 play a key rdle in the
conjectures of the next section.

A combinatorial argument gives a somewhat different interpretation of
the result. If one fixes one point of 2¢ the resulting permutation group is
equivalent to (Sym d, #(d)) with arity 1+ [log, d]. Hence it follows by
Proposition 1.2 that 14 [log, d] <Ar29<2+[log,d]. For a fixed value
of [log, d] our method of computing the arity actually shows that there is
essentially a unique pair of (1+ [log, d])-types available to prove the
lower bound. Hence there is a unique candidate in 2¢ available to
demonstrate Ar(29)>1+[log,d] and one finds that when [log,d] is
even this candidate works, while for [log,d] odd it fails. Our other
approach, via linear algebra, has been more useful to date.

6. THE ARITY OF n?

In dealing with r = Ar(n?) it is easier to analyze the behavior of d as a
function of r and n. This remark is implicit in the discussion of the previous
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section. There is more than one way to set this up, and we prefer the
following definition.

DEerFINITION. For 2<n<r let é(r,n) be the least d (or oo) such that
there is a pair &, &' of disjoint multisets, each consisting of d equivalence
relations on a set of r elements, such that:

(1) nis the maximum number of equivalence classes occurring in the
relations of & U &';

(2) The restrictions of & and &’ to any r — 1 elements coincide.

For the purposes of computations of arity, it makes no difference
whether we take n as an upper bound on the number of equivalence classes
involved, or in the stricter sense of (1). We prefer our definition in part
because it brings out more clearly the difference between n even and n odd
(see the conjectures below).

Computation of ¢ for all relevant r, n is nearly equivalent to the com-
putation of the arity of n? for all n, d, though in fact J is a slightly more
precise invariant. One recovers Ar(n“) as the least r such that 6(+', n') >d
for r<r' <2[1+log,d] and »’' <n. In particular upper bounds on J give
lower bounds on r. In what follows we generally deal with J directly, as the
results are considerably more transparent in this form. The analysis of the
case n=2 in the previous section may be expressed as follows:

ProrosiTION 1.

2r=2 r even
o, 2)= {oo ¥ odd.

In this section we will prove a number of upper bounds on J, and hence
implicitly we have corresponding lower bounds on Ar(n¢). In most cases
we believe these lower bounds are sharp (except where they overlap).

To prove an upper bound for J one exhibits a suitable example.
Obviously the business of getting matching lower bounds should be con-
siderably more subtle.

Since most of the results of this section are conjectured to be sharp, we
express them as conjectured formulas for J, and prove the corresponding
inequalities.

Conjecture A. 5(r+2,n+2)=2-94(r, n).

Here we have to make an exception for r odd, n=2. One might
anticipate other sporadic exceptions for small values of r and n but our
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machine computations suggest there are no other exceptions. (The only
value that seems to have a sporadic character is 6(3, 3) and the values
arising by shifting it using Conjecture A.) The corresponding inequality
or+2, n+2)<2-6(r, n) is straightforward. Starting from a pair of multi-
sets &, &' of equivalence relations on r elements serving to demonstrate
d(r, n) < d one extends them to multisets £, &' of equivalence relations on
7+ 2 elements by adjoining two new elements @ and b and letting & consist
of the relations of & extended by singleton classes [«] and [b] together
with the relations of &’ extended by a single class [a, b], while &” is defined
dually. The same argument yields &(r, +r,, n; +n,) <2(ry, ny) 6(r,, n,),
which in general is a weaker estimate.

The effect of Conjecture A would be to reduce the computation of ¢ to
certain values for n <4, specifically:

Conjecture A'. (1) 8(r,n)=2""225(r —n+2, 2) for r, n even.
(2) O(r,n)=2""325(r —n+3, 3) for n odd.
(3) 6(r,n)=20"25(r —n+4, 4) for r odd, n even.

In particular formula (1) would combine with Proposition 1 to give
6(r,n)=2"""2=1 for r, n even. The formulas corresponding to other
values of r and n are similar, hence this upper bound on ¢ is conjecturally
the main factor in determining the arity of n?, Qualitatively, the result is
simply that the arity of n? should be approximately (log,d)+n/2+1
within the range n<2[1+log,d]. A better approximation formula is:
r=2[log,d+n/4+1/2]. This matches our conjecture within the given
range exactly, when d is a power of 2.

The final conjectures corresponding to formulas (2) and (3) of Conjec-
ture A’ are a bit more elaborate. In Conjecture B we will consider only the
values of d(r, 3), and of J(r, 4) with r odd. One can of course combine parts
(2) and (3) of Conjecture A’ with Conjecture B.

Conjecture B.

3(2r—3_1) for V>50dd

or—=1_or—4_3 for r>=6even, r#8
(l) (5(;’,3)— 3 for r=4

108 for r=38

(2) 8(r,4)=2""2—1  for r>sodd

The value (3, 3) =3 seems exceptional. Our formula for d(r, 3), r=5
odd, fails badly for r=3, and the real value is higher. There is another
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family of examples showing that &(r, 3) <3(6”*~") for r=0 mod 4 which
gives better bounds than 2" ' —2"~*—3 when r =4 and r = 8. We present
this family generally below, rather than just the two sporadic examples.
Saracino, in a recent manuscript that is too long for inclusion here,
proved that &(r, 3)=>3(2""*—1) for r>5 odd. The argument involves
careful counting and a division into three cases. We will now describe the
various examples which establish the upper bounds on ¢ given in Conjec-
ture B. We omit the examples for the two sporadic bounds discussed above.

EXAMPLE. d(r,3)<3(2"7*—1) for r =5 odd.

We fix a set X with r elements and we fix two of the elements, say ¢ and
a'. We consider equivalence relations on X with two or three classes in
which a and &' lie in distinct classes. To such a relation we associate the
pair (m, m') consisting of the cardinalities of the classes containing ¢ and
a' respectively. We let & consist of the equivalence relations E with a and
a' in distinct classes, such that either E has two classes and m<r—3 is
even, or else E has three classes, and satisfies: m=1 and m’ is even, or
m'=1 and m>3 is odd. We define &’ dually. For r>5 odd these two
collections are disjoint and nonempty. Furthermore they have the same
restrictions to any r— 1 elements, again because r is odd. The number of
relations in & U &' with two classes is 2" ~2 —2 and the number with three
classes is 2-(2"~?—2). Thus each of the two collections has 3(2"*—1)
members.

EXAMPLE. d(r,4)<2"72—1 for r odd.

We take a set X consisting of a distinguished element * and two sets
A, A’ of even cardinality r,r, with r, +r,=r— 1. Any partition of 4 or A’
into two sets has a well-defined parity, the parity of either class. Let &, be
the set of partitions of X into at most four pieces arising from partitions of
A and A’ into at most two classes each, with * adjoined to one of the non-
empty classes. Let &, be the set of partitions of X into exactly four pieces
in which * represents a singleton class, and either 4 or A’ constitutes a
single class. We will divide &, U &, into two sets satisfying our conditions.

In & we place those elements of &, arising from partitions of 4 and A’
of equal parity, with * put in a class with a subset of A, together with the
elements of &, arising from partitions of 4 and 4’ of unequal parity, with
* put in a class with a subset of A’. The remaining elements of &, are put
in &' . We also put into & the elements of & which involve a nontrivial
partition of 4 of odd parity or a nontrivial partition of A" of even parity,
with the remainder going into &’ . One checks the condition on restrictions
(and eventually one sees the need for the elements of &, as a result). The
cardinality of & U &, is 2" T2 —2=2""'—2 and the stated formula follows.
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EXAMPLE. d(r,3)<2"~'—2""*_3 for r even, r>4.

We take a set X of r elements partitioned into a three-element set / and
its complement J. We consider partitions of X into three (possibly empty)
classes A, B, C, in which AnI# & and either A=1 or AnJ+# ),
B=I—A, and C=J— A. We take & to be those partitions for which |A4]|
is even, and &’ to be those for which |A4| is odd. It is straightforward to
check that |&|=|&'|=2"""'—2""*-3.

In checking the restriction condition, we distinguish the cases where the
omitted element x is in / from those where it is in J. In each case, we define
a map o from & U &’ into itself which it is easy to check is a bijection
between & and &’ . Given a partition E into classes 4, B, C, the partition
o(E) into classes A', B', C’' is completely determined by specifying A'. In
the former case, we take

Au{x} if xeB

4= A—{x} if xe A4 andeither |B|=1orboth B=gfand 4 #1
Cu{x} if xeAandeither A=17orboth |B|=2and C# &
Bu {x} if xed,|Bl=2and C=.

In the latter case, we take

A—{x} if xeAandeither [AnJ|>2o0r A=T1u {x}
A'=<{Bu{x} if A—TI={x}
Au{x} if xeC

We are grateful to James Schmerl for providing this example in a private
communication.

EXAMPLE. d(r, 3) <1(6727") for r =0 mod 4.

We take a set X of cardinality r divided into r/2 disjoint pairs. We con-
sider the partitions of X into at most three classes such that no dis-
tinguished pair belongs to any class. The number of such partitions is
6"~ ! since after fixing one pair we can distinguish the three classes of the
partition (one of which may be empty) and each of the remaining pairs can
then be distributed among the classes in six ways. For r/2 even it remains
to be seen that these partitions can be divided into two classes which agree
when restricted to any subset omitting one element.
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Call the class of partitions under consideration &,. For each element
x € X there is an involution without fixed point z, acting naturally on &, as
follows: for each E €&, there is a unique element E’ €&, agreeing with E
modulo x but distinct from E. It is easy to see that if x, ye X are paired
then these involutions generate a copy of Sym(3) and that all of them
together generate the product of r/2 copies of Sym(3) acting transitively on
é.. We note that the third involution in each copy of Sym(3) acts by
interchanging the locations of x and its mate. Let G= {1,: x€ X) be the
resulting group. There is a natural map G—Z,, the composite
G ~Sym(3)""? - 7%*— 7, where the last map is the parity map on bit
strings; an element of G will be called even or odd depending on its image
under this map. All that needs to be checked now is that the stabilizer of
a point consists of even elements of G, so that &, inherits a notion of parity.
More exactly, we may say that two elements of & have the same parity
if some even ge G takes one clement to the other. The involutions i,
interchange the two parity classes in &..

In computing the stabilizer of an element of &, one may work with any
element one prefers; a partition into two classes is a convenient choice. In
any case one finds that the stabilizer is a certain diagonal copy of Sym(3),
and as r/2 is even it consists entirely of even elements of G.

This completes the verification of our upper bounds for 6. As we have
indicated, these conjectures are based on what seem to be the natural
generalizations of the examples found computationally. While it would not
be surprising to discover that another infinite series of examples requires
a revision of the conjectures, we do think it very likely that a conjecture of
at least the same general character will prove correct.

Table II shows what the arities of #n¥ would look like if all conjectures
in this section were correct.

The following result shows that from one point of view these estimates
are reasonably sharp:

Fact. 6(r,n)=2""".

We sketch the argument. One shows that in an example &, &' witnessing
that J(r, n) <d, one has at least one relation £ with at most n— 1 classes.
After picking representatives a,, ..., a, for all the classes, with k <n—1, one
sees that for any subset 4 of the remaining r — k elements, there is at least
one relation occurring in & U &’ for which exactly the elements of A are
displaced, relative to their original positions (in E) with respect to the class
representatives. This yields the bound 2d= |6 U &'|=2""%=2""""!, as
claimed.

We may phrase this also as follows:

TueoreM IV D. Ar(n?)<[log,d] +n.
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TABLE 11

Conjectured Arities of n¢

ndl 23456789 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
2 2224444444 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
3 244444455 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 € 6 6 6 6 6 6
4 444445666 6 6 6 6 6 6 6 6 6 6 6 €6 6 6 6 6 6 6 6 6 €6 & 8 8 8 8
5 4466666 6 6 6 66 6 6 7 77 777777777778 88 88
6 6666666 6 6 6 77 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7 666 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 1010101010
9 8 8 8 8 8 8 8 8 101010101010 1010 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
11 10 10 10 10 10
12 121212 12 12

This is also interesting for the small, fixed values of n we have been con-
sidering, and shows that at least to a first approximation, our constructions
are reasonably efficient.

7. REMARKS ON EQUIVALENCE RELATIONS

The following example was given as Case 2 in the introduction. Let
be an index set consisting of pairs (x, d) with d a natural number and x
a finite multiset of natural numbers; write || =), i, summing with mul-
tiplicities. Let % be the set of actions of Sym(|x|) ¢ Sym(d) on the set &, of
all partitions of a |x|-element set of type x. Then the arities of all these
actions are uniformly bounded if and only if:

(1) d is bounded
(2) For some uniform bound K:

(2.1) & contains at most K elements greater than 1;

(2.2) If m is the multiplicity of 1 in x then: inf(m, sup k) < K;
contains at most one element greater than K; and if max(m, supx) > K then
the multiplicity of any element of x other than 1 is one.

Here we exclude the case in which x contains only the element 1
(repeatedly) as in this case &, contains a single element. Accordingly, it is
clear that to bound the arity of (Sym(|x|)? Sym(d), &) we must bound d
and bound Ar(Sym(|x|), &.). We must show the latter condition is equiv-
alent to (2) above. For brevity we will write r, for Ar(Sym(|x|), &.). We
will also write r). for the arity of the representation obtained by fixing one
point in &,.. Then r, and r). differ by at most 1.
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Suppose first that we have a bound on r,.. In this case we use the follow-
ing five relations, which will be checked at the end:

Forx' cw,r.=r.. (2)

If i = {k, [} with k #1, or = {1%, I},

k+1 (4)

th =A
enr, r<[ K

D=2+ [log, inf(k, 1)].

k—1
Ifx={k,k} and k' = {2} then r, > 4 sy, (and then (4) applies). (5)

I+ 2k
If i = {k, k, I} or {1’ k. k} with k> 1 then r, 2[2(;_ 1)] . (6)
If k> 1 and x = {k, .., k} with multiplicity 2/, -

thenr, > Ar(2(l))=1+[log, [].

Now using (3 —5) and a bound on r, we may find K, so that x contains
at most one element greater than K,,, of multiplicity one, and so that either
sup x < K, or the multiplicity of 1 in x is at most K,,. Using (3) and (7) we
bound the number of elements of x below K, and greater than one. Using
(6) we may find K> K, so that if max(m, sup x) > K (where m is the multi-
plicity of 1 in x) then the elements of x in the interval [2, K, ] are distinct.
All of this together yields (2) for this value of K.

Now suppose that we have K and « satisfying (2). We have to obtain a
bound on r,.. If max(m, sup ) < K this is immediate, as |x| is also bounded
in this case. So assume max(m, sup ) > K and hence all elements of x
greater than 1 occur exactly once. Let k' be the set of elements of x greater
than 1, together with the multiplicity of 1 in x (at most one element occurs
twice in x’). Put the following ordering on x': first the elements of x above
1 occur, in increasing order, and the multiplicity of 1 is placed at the end.
Let &’. be the set of ordered partitions of type x’, where the set in the i-th
place has size given by the i-th entry of x'. The actions of Sym(|x|) on &,
and on &, are equivalent; let E e &, correspond to the partition in which
the classes of E which are not singletons occur first, in order of increasing
size, and the set of all elements lying in singleton classes is placed at the
end. On the other hand, if s is the length of a sequence in & (namely, the
cardinality of the multiset k') then &, is just the set of realizations of a
certain s-type in [!f/] (in the notation of §3). It follows easily that
Ar(&7) < Ar(['¥']), which is bounded.
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Finally we should check points (3 —7) used above.
Forxk'cx,r.=r,.. (3)

Let X={1, .., [|'} and fix a relation E’ on the complement of X of type
K —k'. Let Q be the set of extensions of £’ by a relation of type k" on X.
We identify Sym(X) with the pointwise stabilizer in Sym(|x|) of the com-
plement of X. Then Sym(X) acts on Q and this action is equivalent to the
action of Sym(X) on &.. On the other hand, for any r, two r-sequences in
Q are in the same orbit under the full symmetric group Sym(|x|) if and
only if they lie in the same orbit under Sym(X). This gives the desired
inequality.
Points (4) and (5) may be checked easily by the reader.

1+ 2k
Ife={k k, 1} or {1’ k, k} withk>1thenr,\,>{ * ]

20k—1)]" (6)

This is essentially an old observation of Lachlan (he took / infinite and
noted that the arity is then infinite). Let an n-band be a sequence of rela-
tions E; of type x indexed by i€ Z/nZ such that the classes of size k in two
of these relations E; and E, intersect if and only if i=;j+1, and such that
for all i each class of E; of size k meets exactly one class of E,_ , of size k,
and meets it in exactly one point. (For n =3 we must add: no point belongs
to a class of size k in all three equivalence relations.) In an n-band the
classes of size k will have exactly 2(k — 1)n elements. There are two orbits
of n-bands under the action of the symmetric groups: Mobius n-bands such
that the sequence of intersecting classes of size k forms a loop of length 2n,
and ordinary n-bands for which there are two loops of length n. It is not
difficult to construct representatives of these two orbits provided that
2(k —1)n <1+ 2k, which happens for n=[[+2k/2(k —1)]. These n-bands
demonstrate that the arity is at least n.

Ifk>1and « = {k, ...k} with multiplicity 2/,
then 7, = Ar(2(1)) =1 + [log, /]. (7)

We partition {1, .., |x|} into / disjoint sets X, of cardinality 2k and we
take two equivalence relations E,, E, which partition each of the sets X,
into two sets of size k, so that the relations induced by E, and E, on each
X, are distinct. We then consider the set Q of relations which agree with
either £, or E, on each of the sets X;. Q is invariant under the stabilizer
of E,, E, and this action is equivalent to (Sym(/), 2(1)).

Note added in proof. Saracino has recently confirmed Conjecture B, part (1).
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