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Abstract. We discuss groups acting regularly on the Henson graphs Γn, answering a
question posed by Peter Cameron, and we explore a number of related questions.

Introduction

Peter Cameron’s paper [Ca00] provides a body of material relating to the following
problem, and includes a survey of prior work (notably that of [CJ87]).

Problem. For which pairs (G,Γ) consisting of a countably infinite group G and a ho-
mogeneous structure Γ is there an embedding of G into Aut(Γ) as a regular subgroup?
Equivalently, when can we put a left G-invariant structure on G isomorphic to Γ?

Many interesting open questions are raised as well, among them (on p. 751) the question
whether the generic Kn-free graph (the Henson graph Γn) can be a Cayley graph for an
infinite group when n ≥ 4. An argument of Henson shows that the group acting cannot
be abelian. We show here, using Cameron’s analysis in a fairly direct way, that the free
group of infinite rank has such an action. We then explore further the range of groups to
which the construction applies, and generalizations to broader combinatorial settings.

The existence of a regular action by a free group will be shown in §1. In §2 we extend
Henson’s result from the abelian setting to the class of groups whose center has finite
index; we put this in a more general setting suggested Cameron’s treatment of Henson’s
argument. We tend to think that the same result should apply when there is an abelian
subgroup of finite index, but we could not even handle the infinite dihedral case.

We show in §3 that the free nilpotent group of class 2 of infinite rank acts freely on
the Henson graphs. Thus the gap between positive and negative results is not so very
great. The result is given very generally, not just for Henson graphs but for homogeneous
structures in a finite relational language for which the substructures are closed under free
amalgamation.
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In §4 we look at abelian actions on digraphs of Henson type, as well regular normal
actions in the sense of Cameron, as discussed in §2.

Our initial point of departure was actually [CV06], which deals with Urysohn’s homo-
geneous metric space. In recent years we have been much occupied with an attempted
classification of the metrically homogeneous graphs, that is the graphs which are homoge-
neous when viewed as metric spaces in the graph metric. Examples include the Henson
graphs and integer-valued analogs of Urysohn space, as well as a mixture of the two which
one may call the Urysohn-Henson graph (or space). In §5 we make some comments on the
problem of finding regular actions of groups on metrically homogeneous graphs, a question
also addressed in §9 of [Ca00] with a more restrictive notion of Urysohn-Henson graph.

It is a pleasure to acknowledge that my interest in this matter (and many other matters)
was stimulated by conversations with Professor Vershik at HIM in Fall 2013 regarding
[CV06] and more recent work.

1. Regular actions of free groups

The following result will be generalized in §3. One may omit the proof given here, but
it presents the fundamental idea in its purest form.

Proposition 1. There is a regular action of the free group Fω of infinite rank on the
generic Kn-free graph Γn (Henson graph).

Definition. Let G be a group and S a symmetric subset of G#. The Cayley graph asso-
ciated to (G,S) is the graph with vertex set G and edge set

{(g, h) |h−1g ∈ S}

Note that this graph is left G-invariant, that is G acts as a group of automorphism by left
translation. Loosely speaking, we may also called the induced graph on a set X ⊆ G the
Cayley graph associated to (X,S).

Proof. We need to construct a suitable Cayley graph onG, that is, find a suitable symmetric
subset S of G#. We assume the reader is familiar with the extension properties that
characterize the Henson graphs.

We view Fω as coming together with a fixed sequence of free generators, and Fk then
denotes the corresponding subgroup of Fω of rank k.

The set S is built via finite approximations, by stages. One step of the construction goes
as follows.

Construction. Given S a finite symmetric subset of F#
k ⊆ Fω, and U a finite subset of Fk,

with U Kn−1-free in the induced graph defined by (Fk, S), take any g ∈ Fk+1 \ Fk and
define

S′ = S ∪ (g−1U) ∪ (U−1g)



HENSON GRAPHS AND URYSOHN-HENSON GRAPHS AS CAYLEY GRAPHS 3

Then we claim the following.

S′ ∩ Fk = S(1)

gS′ ∩ Fk = U(2)

The graph associated to (Fk+1, S
′) is Kn-free.(3)

The first two points are clear. The content of these two points is that the Cayley graph
structures induced on Fk by S or by S′ are the same, and that the Cayley graph structure
on Fk+1 associated with S′ satisfies one instance of the required extension property, with
g having only U as its set of neighbors in Fk. This last point can be delicate even for the
random graph, when other groups are considered.

Once we have the third and final point, we can build the desired infinite symmetric
subset of Fω by stages so that the Cayley graph associated with (Fω, S) is Kn-free and
has the full extension property corresponding to the Henson graph Γn, and is therefore
isomorphic to Γn.

So we take up the final point. Suppose there is an n-clique K in the Cayley graph
associated with (Fk+1, S

′). Shifting on the left, we may suppose this n-clique contains the
vertex g. Therefore K ⊆ {g} ∪ gS ∪ U ∪ gU−1g.

What edges may occur between two of the sets gS, U , gU−1g? Edges (gs, u), (gs, gu−1g),
(u1, gu

−1
2 g) would correspond to elements

u−1gs, s−1u−1g, or u−1
1 gu−1

2 g ∈ S′

As none of these can lie in S, we come down to the equations
(gS, U): u−1gs = (g−1u′)±1

(gS, gU−1g): s−1u−1g = (g−1u′)±1

(U , gU−1g): u−1
1 gu−1

2 g = (g−1u′)±1

The last is impossible, and so is the first, since s 6= 1. The second reduces to

s−1u−1 = u′
−1

or u′ = us.
So if K meets U then K is contained in U ∪ {g} and we have a contradiction. Thus K

is contained in {g} ∪ gS ∪ gU−1g; shifting, we may suppose

K ⊆ S ∪ {1} ∪ U−1g

As the induced graph on Fk is Kn-free, K must meet U−1g.
An edge within U−1g would require a relation (g−1u1u

−1
2 g) ∈ S′, with u1 6= u2, and this

is impossible. So K must have the form

{1, u−1g} ∪ S0

with S0 ⊆ S. Consideration of the edges (u−1g, s) for s ∈ S0, as above, gives

uS0 ⊆ U



4 GREGORY CHERLIN

As S0 is a clique it follows that ({u} ∪ uS0) is an (n − 1)-clique in U , and this is a
contradiction. �

2. Constraints: abelian and nearly abelian groups

Henson has given an argument (for the group Z) which shows that no abelian group
can act regularly on a Henson graph Γn with n ≥ 4. Cameron has shown that the same
argument applies to all regular normal actions of arbitrary groups.

Here an action is called regular normal if both left and right translation preserve the
graph structure; or equivalently, if left translation and conjugation preserve the graph
structure.

We extend Henson’s result to the case in which the center of the group has finite index.
The appropriate generalization of that from Cameron’s point of view is a regular action of
a group G in which the action of a subgroup H of finite index is normal. (Note that we
are considering the action of H on all of G.)

Lemma 2.1. Let G be a group with a subgroup H of finite index. Then G has no regular
action on Γn which is H-normal, for any n ≥ 4.

In particular if the center of G has finite index there is no regular action of G on Γn.

Our convention is that the full group G acts on the left side.

Proof. Supposing there is a regular G action on Γ which is H-normal, we identify Γ with
G. By the indivisibility of Γn [EZS89] the graph induced on H contains a copy of Γn. In
particular the graph induced on the neighbors of 1 in H contains a copy of Γn−1.

We follow through the Henson construction [Hen71].
We may take a clique K ∪ {1} of order n− 1 in H.

Claim. There is an h ∈ H adjacent to 1 such that K ∪Kh is Kn−1-free.

Let X = {k−1
2 k1 | k1, k2 ∈ K (distinct)}. As K is a clique, X is contained in the set of

neighbors of 1.
Let ∆1 denote the set of neighbors of 1 in H and let ∆′1 be the union over x ∈ X of

the set of neighbors of x in ∆1. The graph induced on ∆1 contains a copy of Γn−1, while
the graph induced on ∆′1 is a finite union of graphs omitting Kn−2. Therefore ∆1 \∆′1 is
infinite.

An element h ∈ ∆1 \∆′1 will have the property that h is adjacent to 1 while the pairs

(k1, k2h) = k2(k−1
2 k1, h) are nonedges for k1 6= k2. As n ≥ 4, it follows that K ∪ Kh is

Kn−1-free.
This proves the claim.
With h fixed as in our claim, there is then some g ∈ Γ adjacent to K ∪Kh. We claim

that
K ∪ {g, gh−1}

is an n-clique, which will give a contradiction.
We know that K is a clique, and by the choice of g and an application of right H-

invariance, we have K adjacent to both g and gh−1.
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Finally (g, gh−1) = gh−1(h, 1) is an edge, so we have arrived at a contradiction. �

It would be more satisfactory to eliminate abelian subgroups of finite index (or actions
in which a subgroup of finite index acts normally on itself).

Problem 1. Can an infinite abelian group operate regularly on a graph Γn with n ≥ 4? In
particular, is this possible in the case of the infinite dihedral group?

This also suggests the following question.

Problem 2. Can a Kn-free graph with transitive automorphism group contain Γn without
being isomorphic to Γn?

Unfortunately, this seems entirely possible. But if not, then it would follow easily that
no group with an abelian subgroup of finite index can act regularly on Γn for n ≥ 4.

In a more technical vein, it is useful to consider the FC-center in place of the center:
this is the subgroup of elements whose centralizers have finite index, or equivalently the
elements belonging to finite conjugacy classes (FC serves as a mnemonic for the latter).

Problem 3. If the group G has an FC-center of finite index, does it follow that it cannot
act regularly on a Henson graph Γn with n ≥ 4? In particular, can this be proved when G
is equal to its FC-center?

In the next section we will see that under the assumption that the FC-center has infinite
index we can in fact formulate a positive result, so this problem may be to the point in
spite of its technical nature.

3. Nilpotent groups.

Now we aim to generalize Proposition 1 considerably. On the group theoretic side, we
want a result which covers the free nilpotent group of class 2 on infinitely many genera-
tors. We also want to capture a broader range of homogeneous structures: those whose
underlying language is a finite binary relational language, and which are closed under free
amalgamation.

Here the free amalgam of two structures B,C over a substructure A is their relative
disjoint union, both at the level of elements and at the level of relations. Some readers
may think of free amalgamation in terms of the use of a “default” 2-type rather than “no
relation.” For such readers, we should specify that the default 2-type is symmetric.

We do not limit ourselves here to the case of symmetric binary relations, but the oper-
ation of free amalgamation is symmetric.

We know from Cameron’s analysis in [Ca00] that the sets

S(a1, . . . , an) = {x ∈ G | a−1
1 xa−1

2 x · · · · · a−1
n x = 1}

play a special role in the theory of regular actions, at least for n ≤ 3 (also the conjugacy
sets C(a, b) = {x | ax = b} but these do not need to be made as visible).

Our generalization of Proposition 1 is the following.
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Proposition 2. Let G be a countable group, and Γ a homogeneous binary structure whose
finite substructures are closed under free amalgamation. Suppose G satisfies the following
conditions.

• The FC-center N of G has infinite index.
• G is not a finite union of sets of the following types.

– Cosets of subgroups of infinite index;
– Sets S(a, b) (if all relations on Γ are symmetric we may omit the sets S(a, a));
– Sets S(a, b, c).

Then there is a regular action of G on Γ.

The reader who is skipping about will find a discussion of the FC-center at the end of
the last section. We should also take note of Neumann’s Lemma, much used in a variety
of similar contexts: a group cannot be the union of finitely many cosets of subgroups of
infinite index. In cases where the not very comprehensible sets S(a, b) or S(a, b, c) are
each contained in a finite union of cosets of subgroups of infinite index, Neumann’s Lemma
ensures that our hypotheses are satisfied.

The proof will go much as in the original case, but with a good deal more detail required,
and some care taken to avoid the FC-center. We first derive a corollary.

Corollary 3.1. Let G be a countable group and Γ a homogeneous transitive binary structure
whose finite substructures are closed under free amalgamation. Suppose that G satisfies the
following conditions.

• The FC-center N of G has infinite index;
• In the quotient Ḡ/N , the sets S(ā, b̄) and S(ā, b̄, c̄) are all finite.

Then G acts regularly on Γ.

Proof. The sets S(a, b) and S(a, b, c) lie in the preimages of the corresponding sets S(ā, b̄)
and S(ā, b̄, c̄) in Ḡ, so all of the exceptional sets in the sense of the lemma are contained
in finite unions of cosets of subgroups of infinite index. So as noted above, Neumann’s
Lemma applies here. �

Application. We have in particular—against our initial expectations—a class of nilpotent
groups acting regularly on all Henson graphs Γn. Namely, let G be nilpotent of class 2 and
suppose the following conditions are satisfied.

• The FC-center of G is the center Z(G);
• G/Z(G) is infinite and contains no element of order 2 or 3

Then G acts regularly on all Γn.

Proof of Proposition 2. We make the usual construction by finite approximations with
some care taken to avoid elements of the FC-center N as codes for edges.

The term “Cayley graphs”’ should now be replaced by “Cayley structures,” after which
we proceed in the same way as for graphs, with a heavier notation. But for our purposes,
as we deal exclusively with finite approximations, a more appropriate place to begin is
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with the notion of “G-fragment,” defined as follows, incorporating our concerns about the
FC-center N .

A G-fragment consists of a finite structure

(∆, (∆R)R∈L)

with the following properties.

(1) 1 ∈ ∆ = ∆−1 ⊆ G;
(2) ∆R is a subset of ∆ for R ∈ L;
(3) ∆R ∩N = ∅ for R ∈ L.

We write ∆ for both the G-fragment and its underlying set. We associate to a G-fragment
∆ the corresponding G-invariant binary structure on G as follows.

G∆ = (G, (R∆)R∈L);

R∆(x, y) ⇐⇒ x−1y ∈ ∆R

We also consider the induced structure on ∆, which we denote by ∆̄.

∆̄ = G∆ � ∆

We say that a G-fragment ∆ is Γ-admissible if

(4) ∆̄ embeds into Γ.

We will choose a sequence of Γ-admissible G-fragments ∆ whose union gives G a G-
invariant structure isomorphic with Γ.

Claim 1. If ∆ is a Γ-admissible G-fragment, then G∆ embeds into Γ.

Here we make use of the notion of a clique, by which we mean a clique with respect to
the edge relation defined as the union of the relations R in L. As the finite substructures
of Γ are closed under free amalgamation, if G∆ does not embed in Γ then some finite clique
C embeds in G∆, but not in Γ.

Translating, we may suppose that the identity element 1 belongs to C. Then as C is a
clique and all sets ∆R are contained in ∆, it follows that C is contained in ∆, and hence
C embeds into ∆̄, contradicting the Γ-admissibility.

This proves the claim. From the claim it follows that whenever ∆ is an admissible
G-fragment, we can extend ∆ to a larger admissible fragment containing any specified
element of G. This deals with one of the constraints on our construction, namely that the
G-fragments involved should eventually exhaust G.

Next we will state our main claim, an extension property for admissible G-fragments.
First we establish notation for the main construction.

Construction. Let ∆ be a G-fragment, and B = ∆̄ ∪ {b} an extension of the structure ∆̄
by one additional vertex, where B also carries an L-structure. Let h ∈ G be given. We



8 GREGORY CHERLIN

then make the following definitions.

∆′ = ∆ ∪ (h−1∆) ∪ (∆−1h)

∆+
R = {a ∈ ∆ |R(b, a) holds in B} ∆−R = {a ∈ ∆ |R(a, b) holds in B}

∆′R = ∆R ∪ (h−1∆+
R) ∪ ((∆−R)−1h)

The point of course will be to choose the element h properly.

Claim 2. Let ∆ be a Γ-admissible G-fragment and B = ∆̄ ∪ {b} an extension of ∆̄ by one
vertex. Suppose that B embeds into Γ. Then there is an element h such that the extension
(∆′, (∆′R)R∈L) has the following properties.

(2.1) ∆′ is a G-fragment;
(2.2) ∆̄′ � (∆ ∪ {h}) ∼= B over ∆̄;
(2.3) ∆′ is Γ-admissible.

Claim 1, or the remark following, and Claim 2, taken together, are sufficient to build a
G-invariant structure on G which is isomorphic to Γ, by successive finite approximations.
So it suffices to establish the second claim.

What we must show in each case is that the elements h violating one of our conditions
(2.1–2.3) lie in a finite number of exceptional sets, that is cosets of subgroups of infinite
index and subsets S(a, b) or S(a, b, c).

We deal with our three conditions (2.1–2.3) in order.

∆′ is a G-fragment(2.1)

The content of this condition is that ∆′R ∩N = ∅ for all R. It will suffice to have

(h−1∆ ∪∆−1h) ∩N = ∅

The exceptional h for this constraint lie in ∆N , a finite number of cosets of N , as required.

∆̄′ � ∆ ∪ {h} ∼= B over ∆̄(2.2)

All relations present in B have been encoded into ∆̄′, so we concern ourselves with the
converse. We first consider the structure induced by G∆′ on ∆. Suppose a1, a2 ∈ ∆ and a
relation R(a1, a2) holds in G∆′ but not in ∆̄. Then

a−1
1 a2 ∈ ∆′R \∆R ⊆ h−1∆ ∪∆−1h

The set of exceptional h for which this occurs is finite.
Now we must consider the case where a relation R(a, h) or R(h, a) holds in ∆̄′, but the

corresponding relation R(a, b) or R(b, a) does not hold in B.
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If R(a, h) holds then a−1h ∈ ∆′R and thus there are three possibilities.

a−1h ∈ ∆R

a−1h ∈ (∆−R)−1h

a−1h ∈ h−1∆+
R

The first possibility corresponds to finitely many exceptional choices of h. The second
possibility means that a ∈ ∆−R, or in other words that R(a, b) does hold in B. So we are
left with the third possibility.

a−1h = h−1a1

where a1 ∈ ∆. Thus h ∈ S(a, a1). So again h lies in one of a finite number of exceptional
sets.

If R(h, a) holds then similarly we come down to the case h ∈ S(a1, a).
Note: This analysis may be slightly refined when the relations on Γ are symmetric.

Namely, we have a−1h = h−1a1 with a1 ∈ ∆+
R, so R(b, a1) holds in B and therefore R(a1, b)

also holds. Thus we may suppose in this case that a 6= a1; this significantly broadens the
class of groups to which the analysis applies.

Our final condition is the following.

∆̄′ embeds into Γ(2.3)

By our assumptions on Γ, it suffices to check that every clique C in ∆̄′ embeds into Γ. It
will be more convenient to prove directly that every clique C in G∆′ embeds into Γ. Then
we can translate the clique C so as to contain the element 1, and observe that as it is a
clique, the elements of C \ {1} all belong to the union⋃

R

∆′R

and in particular lie in ∆′. Furthermore as ∆′ is a G-fragment we conclude

C ∩N = {1}

Now we must extend our analysis of relations holding in ∆∪ {h} to relations holding in
∆′.

Relations holding between h−1∆ and ∆−1h

Suppose the relation R(h−1a1, a
−1
2 h) holds, that is

a−1
1 ha−1

2 h ∈ ∆′R

We have the following possibilities, with a ∈ ∆.

a−1
1 ha−1

2 h = a

a−1
1 ha−1

2 h = h−1a

a−1
1 ha−1

2 h = a−1h
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In the first two cases h lies in one of the exceptional sets S(a1a, a2) or S(a1, a2, a). In the
last case h lies in a finite set.

So (with h chosen appropriately) our clique C will not meet both h−1∆ and ∆−1h.
This leaves us with two possibilities to analyze.

Case I. C ⊆ ∆ ∪ h−1∆.
We consider edges between ∆ and h−1∆. Suppose (a1, h

−1a2) is such an edge, that is

a−1
1 h−1a2 ∈ ∆′R

Again we write out the possibilities, with a ∈ ∆.

a−1
1 h−1a2 = a

a−1
1 h−1a2 = h−1a

a−1
1 h−1a2 = a−1h

The first and third possibilities involve finitely many exceptional sets. In the second
case we have

(a2a
−1)h = a1

The elements h here lie in a coset of CG(a1). Now if a1 ∈ C∩∆ and a1 6= 1, then a1 /∈ N ,
so CG(a1) has infinite index in G and the relevant h lie in finitely many exceptional sets.
So for appropriate h, since we cannot have C ⊆ ∆ we must have

C ⊆ {1} ∪ h−1∆

Then translating by h we may take C ⊆ ∆ ∪ {h} ∼= B, and we have a contradiction.

Case II. C ⊆ ∆ ∪∆−1h.
We consider the edges within ∆−1h. So suppose

(a−1
1 h)−1(a−1

2 h) = (a1a
−1
2 )h ∈ ∆′R

This gives the following three possibilities with a ∈ ∆.

(a1a
−1
2 )h = a

(a1a
−1
2 )h = h−1a

(a1a
−1
2 )h = a−1h

The second and third equations correspond to finitely many values of h, so we consider
the first possibility. Since the left hand side is in ∆′R, it follows that a /∈ N , and as h is
restricted to a coset of C(a) this is again an exceptional set.

So we may suppose that the clique C contains a unique element a−1h with a ∈ ∆. We
now consider the edges (a1, a

−1h) in C, that is we suppose

a−1
1 a−1h = (aa1)−1h ∈ ∆′R
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The possibilities are as follows, with a2 ∈ ∆.

(aa1)−1h = a2

(aa1)−1h = h−1a2

(aa1)−1h = a−1
2 h

This time the first two equations define exceptional sets, and the last possibility becomes

aa1 = a2

That is, a(C ∩∆) ⊆ ∆. Thus translating by a, the clique aC has as its underlying set

a(C ∩∆) ∪ {h}
which is included in ∆ ∪ {h} and thus embeds into B, a contradiction. �

4. Homogeneous Directed Graphs

We now consider constraints on regular actions of abelian groups on digraphs of Henson
type. Our conclusion is that the situation is much as in the case of graphs of Henson type,
but that a generalization to free amalgamation classes in general binary languages may be
more subtle, in an interesting way.

As in §2, we place this discussion in the more general setting of regular normal actions
introduced by Cameron.

If one restricts attention to Henson digraphs with triangle constraints (i.e., one or both
of the tournaments of order 3 is forbidden, and nothing else) then it seems the analysis in
[Ca00] still applies and one gets such actions, e.g. with Z acting. But our focus here is on
the negative results, which in this context are applicable to uncountably many structures.

Proposition 3. Let H be a countably infinite group and Γ the generic T -free digraph,
where T consists of an antichain of finite tournaments, at least one of which is of order at
least 4. Then there is no regular normal action of H on Γ by isomorphisms.

Proof. We suppose on the contrary we have an H-biinvariant structure isomorphic to Γ on
H.

We take a forbidden tournament T ∈ T of order n ≥ 4 and express it as

T = T0 ∪ {a, b}
with T0 of order n− 2 and a→ b.

Take a copy of T0 in Γ. We will look for elements g, h ∈ H so that T0 ∪ {g, gh−1} is
isomorphic to T over T0 with g, gh−1 corresponding to a, b respectively.

The constraints on g, h are then the following.

• The type of g over T0 is the type of a over T0;
• The type of g over T0h is the type of b over T0; by right invariance we then have

the type of gh−1 over T0 equal to the type of b over T0;
• We require h→ 1, so that by left invariance, g → gh−1.
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So if we find such g, h then T0 ∪{g, gh−1} will be a forbidden tournament and we arrive
at a contradiction.

It is easy to rephrase all of this as a set of conditions on h, namely the first two sets of
requirements on g should be consistent with the constraints of Γ, and the third constraint
should apply.

This gives us the following requirements on h.

• T0 and T0h are disjoint;
• The required structure on T0∪T0h∪{g} does not contain a forbidden tournament;
• h→ 1.

We modify the second condition and aim at the following.

• T0 and T0h are disjoint;
• There are no arcs between T0 and T0h apart from the arcs (th, t) with t ∈ T0;
• h→ 1.

We need to show that such an h exists, and that with such a choice of h, the corresponding
configuration T0 ∪ T0h ∪ {g} contains no forbidden tournament.

The condition that T0 and T0h be disjoint excludes only finitely many values of h.
The other two conditions on h amount to the following, after applying appropriate left
translations by elements of T0.

• (t−1
1 t2, h) is never an arc;

• (h, t−1
1 t2) is an arc if and only if t1 = t2.

This is the description of a digraph structure on T−1
0 T0 ∪ {h} for which any subtourna-

ment with more than two vertices is contained in T−1
0 T0 ⊆ H, and hence embeds into Γ.

Thus the conditions on the element h are consistent, and have infinitely many realizations
in H. Therefore we can meet all three conditions.

Now we return to a consideration of the tournaments embedding into T0 ∪ T0h ∪ {g}.
Those which lie in T0∪{g} or T0h∪{g} embed into Γ since they are proper subtournaments
of T , and T is an antichain.

Any others will be contained in a tournament of order 3 with vertices

{t, th, g}

with t ∈ T0, th→ t, and the orientation of (t, g) and (th, g) determined by the orientations
of (t, a) and (t, b) respectively.

As th → t and a → b, one may see that an oriented 3-cycle (th, t, g) would correspond
to an oriented 3-cycle (t, a, b) in T , and therefore a linearly ordered triple would also
correspond to a linearly ordered triple. (Here we seem to be using some particular statement
about tournaments of order 3.) So this is again a proper subtournament of T , and embeds
in Γ. Thus we have all required conditions. �
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5. Homogeneous Metric Spaces

A number of results and problems concerning regular actions on Urysohn space are
found in [Ca00]. One may consider Urysohn space, particularly the countable rational-
valued version, as a close relative of the random graph; and the countable integer-valued
version is an even closer relative. This last is in fact a metrically homogeneous graph, that
is a graph which is homogeneous when viewed as a metric space in the graph metric.

One noteworthy problem raised in [Ca00] is the following.

Problem 4. Which abelian groups act regularly on integer Urysohn space? In particular,
which elementary abelian groups act regularly on integer Urysohn space?

Cameron and Vershik showed [CV06] that an elementary abelian 3-group cannot act
regularly on integer Urysohn space (or on rational Urysohn space, or any dense subset of
Urysohn space), but that an elementary abelian 2-group can act regularly. The remaining
cases are open.

From our present point of view it is natural to consider Henson variations on integer
valued Urysohn space. In their simplest form, these are defined in essentially the same
way as the Henson graphs, by forbidding Kn where now Kn is a metric space in which
all distances equal 1. It is also natural to consider the case of bounded diameter. So we
have the integer Urysohn space Uδ of diameter δ and the Henson-Urysohn space Uδ,n, the
generic Kn-free graph of diameter δ (viewed as an integer-valued metric space). It turns
out that in the bounded diameter case there is a richer class of Henson variations Uδ,S
where S is any set of (1, d)-spaces, that is spaces in which only the minimal and maximal
distances 1 and δ occur. That is, Uδ,S is the generic S-free integer metric space of diameter
δ.

There is also a conjectured classification of all metrically homogeneous graphs [Ch11],
in which the Henson variations play a considerable role. While that classification has not
been proved complete, it can serve for the present as a catalog of all known examples.

These structures do not have the free amalgamation property required for Proposition
2, but one might expect their behavior to have some similarities with Henson graph case.
So it is natural to ask the following.

Problem 5. Which of the known metrically homogeneous graphs

• are Cayley graphs;
• admit regular Z-actions (or abelian actions, or regular normal actions);
• admit regular nilpotent actions?

And it is also natural to consider actions by elementary abelian p-groups, at least for
p = 2, 3.

Cameron took up the question of regular normal actions on Uδ,n in §9 of [Ca00], with
positive results for n ≤ 3 and negative results for n ≥ 4. In favorable cases (n ≤ 3) a
precise characterization of the groups acting regularly seems still far away.

We will give a modest generalization of the result for n ≥ 4 to the more general class of
Henson-Urysohn graphs Uδ,S where the constraint set S contains some space of order at
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least 4. We expect similar things for the more general class of Henson-type graphs allowing
side conditions on triangles which is delineated in [Ch11], but we have not looked into this.

Proposition 4 (Metrically Homogeneous Henson Graphs). Suppose δ <∞ and S is a set
of finite (1, d)-metric spaces, none of which embeds isometrically into any other. Suppose
in addition S contains some space of order at least 4. Then there is no regular normal
action of a group G on the corresponding graph Uδ,S , namely the generic S-free metrically
homogeneous graph of diameter δ.

Proof. We suppose we have such a regular normal action of H.
We fix S ∈ S with |S| ≥ 4, and we write S = S0 ∪ {a, b}, where we choose the pair a, b

so that d(a, b) = 1 if possible; otherwise, S is a δ-clique.

Claim. There is an element h satisfying

(1) S0, S0h are disjoint;

(2) For s1, s2 ∈ S0, the distance from s1 to s2h is


d(a, b) if s1 = s2;

2 if d(s1, s2) = 1;

δ − 1 if d(s1, s2) = δ.

We express condition (2) in terms of the type of h over S−1
0 S0, as follows.

d(1, h) = d(a, b);

d(s−1
2 s1, h) = 2 if d(s1, s2) = 1;

d(s−1
2 s1, h) = δ − 1 if d(s1, s2) = δ.

Note that if s−1
2 s1 = s−1

3 s4 then d(s1, s2) = d(s3, s4), so these specifications are at
least meaningful. We must check that these conditions respect the triangle inequality in
(S−1

0 S0) ∪ {h}, for triangles containing h.

If S is a δ-clique then all distances d(t, h) are δ or δ− 1, for t ∈ S−1
0 S0, and the claim is

clear. So suppose d(a, b) = 1.
If the triangle in question contains 1 and h, that is, has the form (1, h, s−1

2 s1) with

s1 6= s2, then d(s−1
2 s1, h) = d(s−1

2 s1, 1)± 1, and the triangle inequality is clear.

Now suppose the triangle has the form (h, s−1
2 s1, s

−1
4 s3) with s1 6= s2 and s3 6= s4.

Write t = s−1
2 s1, t′ = s−1

4 s3. If d(s1, s2) = d(s3, s4) then d(h, t) = d(h, t′) and the triangle
inequality holds for (h, t, t′).

So we may may suppose d(s1, s2) = 1 and d(s3, s4) = δ. So d(1, t) = 1 and d(1, t′) = δ.
Therefore d(t, t′) ≥ δ − 1. As d(h, t) = 2 and d(h, t′) = δ − 1 we again have the triangle
inequality.

Since these conditions are consistent, condition (2) has infinitely many solutions, while
condition (1) excludes finitely many solutions. So the desired element h exists and the
claim is proved.
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Next we require an element g satisfying the following.

d(g, s) = d(a, s) for s ∈ S0;

d(g, sh) = d(b, s) for s ∈ S0h.

If this is achieved, then S0 ∪ {g, gh−1} is the desired copy of S, for a contradiction. So
now we need to check the triangle inequality in S0 ∪ (S0h) ∪ {g}, and also the absence
of forbidden (1, δ)-subspaces. But there are no nontrivial (1, δ)-subspaces except those
embedding in S0 ∪{g} and S0h∪{g}, which are isometric to proper subspaces of S. So we
may confine ourselves to the triangle inequality.

Again there are two cases to consider: either S is a δ-clique, or d(a, b) = 1.
If S is a δ-clique then all distances in S0 ∪ (S0h) ∪ {g} are δ or δ − 1, and the claim is

clear. So we suppose d(a, b) = 1.
As S0 ∪ {g} and (S0h) ∪ {g} both embed properly into S, the only triangles of interest

are those of the form

(g, s1, s2h)

with s1, s2 in S0.
If d(s1, s2) ≤ 1 then as d(a, b) = 1 we get d(a, s1) = d(b, s2), hence d(g, a1) = d(g, s2),

and the triangle inequality holds.
If d(s1, s2) = δ then d(s1, s2h) = δ − 1 while d(g, s1) and d(g, s2) are not both equal to

1. Thus we have a triangle of type (δ − 1, δ, δ) or (δ − 1, δ, 1), and the triangle inequality
holds.

This completes the construction: the element g exists, and gives a contradiction. �

The typical known metrically homogeneous graph is obtained as follows.

• Specify the diameter δ
• Forbid some triangles (metric spaces with 3 points) in a fairly complicated way,

depending on 4 auxiliary parameters, three of which control the triangles of odd
perimeter, and one of which controls the triangles of even perimeter;
• Add some Henson constraints

Various numerical constraints must be met for the corresponding metrically homogeneous
graph to exist [Ch11].

It is reasonable to expect that the results of [Hen71, Ca00], will pass to all such examples:
namely everything should depend on whether there is a minimal forbidden (1, d)-space of
order greater than 3, with negative results in that case, and positive results otherwise. But
the constraints on triangles and the associated amalgamation process are quite complicated
in general, so this remains unclear.
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