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In this article we consider representations of SL2 which are interpretable in
finite Morley rank theories, meaning that inside a universe of finite Morley rank
we shall study the following definable objects: a group G isomorphic to SL2,
an abelian group V , and an action of G on V ; V is thus a definable G-module
on which G acts definably. Our goal will be to identify V with a standard G-
module, under an assumption on its Morley rank. (A word on this notion will
be said shortly, after we have stated the results.)

It will be convenient to work with a faithful representation, possibly replacing
SL2 by the quotient PSL2, and we shall write G ' (P)SL2 to cover both cases.
Theorem. In a universe of finite Morley rank, consider the following definable
objects: a field K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rk V ≤ 3 rkK. Then V
bears a structure of K-vector space such that:
• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with charK 6= 2.

The characteristic 0 case essentially reduces to a theorem of Loveys and
Wagner (Fact 1.2 below), or the following consequence of it:
Lemma 1.4. In a universe of finite Morley rank, consider the following defin-
able objects: a field K, a quasi-simple algebraic group G over K, a torsion-free
abelian group V , and a faithful action of G on V for which V is G-minimal.
Then V oG is algebraic.

In earlier versions of this article we relied on the following proposition, which
the reader will now find in an appendix (the notion of unipotence there is not
quite the algebraic one).
Proposition. In a universe of finite Morley rank, consider the following defin-
able objects: a field K of characteristic p, a group G ' (P)SL2(K), an abelian
group V , and a non-trivial action of G on V . Then for v generic in V , C◦G(v)
is toral or unipotent (possibly trivial).
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Our theorem involves the Morley rank of a structure; the reader should bear
in mind that this is an abstract analog of the Zariski dimension, which can be
axiomatized by some natural properties [4]. The Morley rank is however not
necessarily related to any geometry or topology, being a purely model-theoretic
notion. Yet in general if a field K has Morley rank k and V is an algebraic
variety of Zariski-dimension d over K, then its Morley rank is dk. The rank
hypothesis in the Theorem would thus amount, if the configuration were known
to be algebraic, to assuming that dimV ≤ dimG; but of course the possibility
for a field to have a finite Morley rank k > 1 makes algebraic geometry less
general than our context. More precisely, model theorists have constructed
what they call “red fields” [1]: fields of finite Morley rank with a definable
subgroup of the additive group. These exist only in positive characteristic but
horribly complicate matters, as our proof will confirm.

We work in a ranked universe as in [4]. Indeed, the semi-direct product
V oG is a ranked group in the sense of Borovik and Poizat [9, Corollaire 2.14
and Théorème 2.15]. We shall not go too deeply into purely model-theoretic
arguments but will merely use the natural, intuitive properties of Morley rank
as a notion of dimension.

Let us now say a word about the proof of the Theorem. As we have men-
tioned, there is no geometry a priori on V oG, and our efforts will be devoted
to retrieving a suitable vector space structure on V which arises from the action
of G. Model-theoretically speaking, the main tool is Zilber’s so-called Field
Theorem (Fact 1.9 below), which enables one to find an (algebraically closed)
field inside a solvable, non-nilpotent, infinite group of finite Morley rank. A
major difficulty is that the action of an algebraic torus of G will not induce a
vector space structure on all of V . And even if such a good structure exists,
this does not mean that G itself is linear on V . The 2-dimensional case relies
on a theorem by Timmesfeld (Fact 1.1 below); as for dimension 3, we extend
the field action manually and some curious computations will, in the end, prove
linearity of G. Once we have G acting linearly on V , we can apply the classifi-
cation of linear representations given in [3, Théorème 10.3] to adjust the linear
structure so that action becomes algebraic. On the other hand, the detailed
analysis leading to the linearity contains enough information to arrive at the
same conclusion directly.

Now that we have said what the present paper is, let us say what it is not:
it does not relate directly to the classification project for simple groups of finite
Morley rank, although some rudimentary aspects of representation theory have
been used there, via the amalgam method.

We heartily thank Borovik for directing our attention to the final section
of [3], and to the referee for an elegant simplification of our original, at times
clumsy analysis.
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1 Preparatory Remarks
The proof of our Theorem is in §2; for the moment, we gather and make obser-
vations of a more general nature.

In a sense, the starting point of the work was the following characterization
of the natural SL2-module due to Timmesfeld. An action satisfying the second
assumption is usually called quadratic (since unipotent elements act quadrati-
cally).

Fact 1.1 ([12, Chapter I, Theorem 3.4]). Let K be a field and G ' (P)SL2(K).
Let V be a faithful G-module. Suppose the following:

(i). CV (G) = 0

(ii). [U,U, V ] = 1, where U is a maximal algebraic unipotent subgroup of G.

Let 0 6= v ∈ CV (U) and W = 〈vG〉. Then there exists a field action of K on W
such that W is the natural G-module. In particular G ' SL2(K).

We shall say that an algebraic group is simple if it is simple, group-wise
speaking. If the group is perfect, has finite center, and the quotient is simple
infinite, we call it quasi-simple.

We shall use the non-standard notation (+) to denote quasi-direct sum, i.e.
the sum of two subgroups (of a fixed abelian group) which have a finite, possibly
non-trivial, intersection.

In §1.1 we shall apply some model theory to linearize actions on a torsion-free
module; the rest of the paper deals with the positive characteristic setting. In
§1.2 we recast some classical remarks on actions of finite Morley rank, notably
Zilber’s Field Theorem. This leads us to §1.3, where we give a general three-
fields argument for theories of finite Morley rank. Eventually, a closer analysis
of the action of tori will be made in §1.4.

1.1 Algebraicity in characteristic 0
We first deal with actions on torsion-free groups, simply using a general result
of Loveys and Wagner. Let us specialize [7] to our context.

Given a group K acting on a connected group of finite Morley rank H, H is
said to be K-minimal if no non-trivial definable connected proper subgroup of
H is K-invariant.

Fact 1.2 (special case of [7, Theorem 4]). In a universe of finite Morley rank,
consider the following definable objects: an abelian, torsion-free group A, an
infinite group S, and a faithful action of S on A for which A is S-minimal.
Then there is a subgroup A1 ≤ A and a field K such that A1 ' K+ definably,
A ' Kn+, and S embeds into GLn(K) for some n.

The claim that A ' Kn+ is not in the actual statement of [7, Theorem 4],
but obvious from its proof. We shall also need the following result.
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Fact 1.3 ([8, Theorem 1.4(a)]). In a universe of finite Morley rank, consider
the following definable objects: a field K, and a subgroup H ≤ GLn(K) such
that H/Z(H) is infinite and simple. If H is irreducible on Kn, charK = 0 and
some Borel subgroup of H is non-abelian, then H = Z(H) ·E for some algebraic
group E ≤ H.

As a consequence, if Z(H) is finite then H is Zariski-closed.

Lemma 1.4. In a universe of finite Morley rank, consider the following defin-
able objects: a field K, a quasi-simple algebraic group G over K, a torsion-free
abelian group V , and a faithful action of G on V for which V is G-minimal.
Then V oG is algebraic with respect to some K-vector space structure on V .

Proof . By Fact 1.2, there is a field structure L and an L-vector space structure
on V such that G ↪→ GL(V ) definably. By Fact 1.3 the image Ĝ of G in GL(V )
is an algebraic subgroup of GL(V ). By [3] (or [11]) the isomorphism G→ Ĝ is
the composition of an algebraic isomorphism with an isomorphism induced by
a field isomorphism α : K ' L. Using α to identify K with L, we may suppose
that G is an algebraic subgroup of GL(V ), and at the same time we may view
the L-vector space structure on V as a K-vector space structure.

As a consequence, our theorem is virtually trivial in characteristic 0 (in
characteristic p, matters will be more difficult.)

Proof of our Theorem in characteristic 0. Let V and G as in the state-
ment of our main result (see the introduction), and assume that V is torsion-
free. Then by Lemma 1.4, V oG is algebraic; dimK V is 2 or 3, and as irreducible
algebraic representations of (P)SL2 are well-known, the theorem is proved.

Before we move on and for the sake of pure digression, let us also mention a
simplification of an existing result allowed by Lemma 1.4.

Fact 1.5 ([6, Theorem A in char. 0]). Let G be a connected, non-solvable group
of finite Morley rank acting definably and faithfully on a torsion-free connected
abelian group V of Morley rank 2. Then there is an algebraically closed field K
of Morley rank 1 and characteristic 0 such that V ' K2

+, and G is isomorphic
to GL2(K) or SL2(K) in its natural action.

Proof . V is clearly G-minimal. By Fact 1.2, there is an interpretable field
structure K such that G ↪→ GLn(K) with V ' Kn+. Clearly the dimension must
be 2, making the rank of the field 1. So there is a field K of rank 1 such that
V ' K2

+ and G ↪→ GL2(K). But definable subgroups of GL2(K), especially over
a field of rank 1, are known: [10, Theorem 5] together with connectedness and
non-solvability of G this forces either G ' GL(V ) or G ' SL(V ).
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1.2 Nilpotent and solvable actions
We start with an abstract version of a famous theorem of Malcev.

Fact 1.6 ([9, Théorème 3.18]). Let G be a connected, solvable group of finite
Morley rank acting definably and faithfully on a definable, abelian group A. If
a definable subgroup B ≤ A is G- or G′-minimal, then B is centralized by G′.

Lemma 1.7. In a universe of finite Morley rank, consider the following defin-
able objects: a reductive algebraic group G, a nilpotent group V , and an action
of G on V . Let U be a unipotent subgroup of G. Then V o U is nilpotent.

Proof . We may assume that U is a maximal unipotent subgroup. In this case,
and by reductivity of G, U is the commutator subgroup of the Borel subgroup
B = NG(U) [2, top of p. 65]. Now considerH = VoB and write F ◦(H) = VoK
with K ≤ B. The quotient H/F ◦(H) ' B/K is abelian by [4, Theorem 9.21],
so U = B′ ≤ K.

Lemma 1.8. In a universe of finite Morley rank, consider the following de-
finable objects: a field K, a quasi-simple algebraic group G over K, an abelian
group V , and a non-trivial action of G for which V is G-minimal. Then V has
the same characteristic as K.

Proof . Let p denote the characteristic of K. Fix a maximal unipotent subgroup
U of G. By Lemma 1.7, V oU is nilpotent. If p = 0 and V is torsion or if p 6= 0
and pV = V , then Nesin’s structure theorem for nilpotent groups [4, Theorem
6.8] yields [V,U ] = 0. As conjugates of U generate G, the action is trivial, a
contradiction.

Now comes Zilber’s celebrated Field Theorem.

Fact 1.9 ([9, Théorème 3.7]). Let A be a definable abelian group with an infinite
abelian group of automorphisms M definable inside a structure of finite Morley
rank. If A is M -minimal, then there is an infinite definable field K and a
definable K-vector space structure of dimension 1 on A such that M acts K-
linearly, i.e. A ' K+ and M ↪→ K× definably.

The reader should keep in mind that if K is a field of finite Morley rank,
then any infinite subgroup of K× additively generates K. Now another word on
fields of finite Morley rank.

Lemma 1.10. In a universe of finite Morley rank, let A, T be definable, abelian,
infinite groups such that A is T -minimal and the action is faithful. Let K be a
definable group normalizing A and T . Then K centralizes T .

Proof . We let K act on EndA by sϕ(a) := (s(aϕ−1))ϕ. By assumption, K
normalizes the image of T in EndA, which additively generates a definable
algebraically closed field. As there are no definable groups of automorphisms of
a field of finite Morley rank [4, Theorem 8.3], K acts trivially on T .
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1.3 A three fields configuration
The following lemma will appear at a crucial moment in the proof of our main
theorem, when dealing with the Cartan subalgebra of the adjoint representation
of (P)SL2.

Lemma 1.11. In a universe of finite Morley rank, consider the following de-
finable objects: three infinite fields K1,K2,K3, a connected group T acting on
the underlying additive groups, and a map B : K1 ×K2 → K3.

Suppose that for each i = 1, 2, 3, T/CT (Ki) acts on (Ki,+) as an infi-
nite subgroup of K×i . Suppose further that C◦T (K1) is non-trivial in its ac-
tion on (K2,+). If B is bi-additive and globally T -covariant (in the sense that
B(kt1, kt2) = B(k1, k2)t), then either B is identically 0 or gives rise to a definable
isomorphism K1 ' K3.

Proof . For the sake of clarity we shall write k1 ⊗ k2 for B(k1, k2). Moreover,
we shall drop field multiplication operations. Last but not least, the action of t
on ki will be denoted by t · ki; as T/CT (Ki) acts as a subgroup of K×i , one has
t · (kik′i) = (t · ki)k′i, which allows simply writing t · kik′i.

Let T1 = C◦T (K1) and Θ be its image in K×2 ; by assumption, Θ 6= 1. It
follows that Θ additively generates K2.

First suppose that there exist (k1, k2) ∈ K1 ×K2 both non-zero such that
k1 ⊗ k2 = 0. By T1-covariance and right additivity, it follows that k1 ⊗K2 = 0.
Now by T -covariance and left additivity, K1 ⊗K2 = 0: B is identically zero.

We may therefore suppose that for any (k1, k2) ∈ K1 × K2 both non-zero,
k1 ⊗ k2 6= 0. So any k2 ∈ K2 \ {0} induces a function fk2 : K1 → K3 given by

fk2(k1) = (k1 ⊗ k2)/(1⊗ k2)

We claim that this function does not depend on the choice of k2 6= 0. Let
k′2 ∈ K2 be non-zero. As Θ additively generates K2, there are finitely many
ti ∈ T1 such that k′2 =

∑
i ti · k2. Let k1 ∈ K1. Then by T1-covariance,

k1 ⊗ k′2 =
∑
i [ti · (k1 ⊗ k2)] =

∑
i [ti · (1⊗ k2)fk2(k1)]

= fk2(k1)
∑
i [ti · (1⊗ k2)] = fk2(k1)(1⊗ k′2)

Since k′2 6= 0, 1⊗ k′2 6= 0, and dividing one finds fk′2(k1) = fk2(k1), as desired.
So let f : K1 → K3 be this function. Clearly f(k1) = f1(k1) = (k1⊗1)/(1⊗1)

is additive; we now show that it is multiplicative.
As the image of T in K×1 is by assumption non-trivial, it additively generates

K1. It therefore suffices to show that f is multiplicative on (the image of) T .
We shall denote by t̄ the elements induced by t in K×1 and in K×2 ; in context,
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there is no risk of confusion. Let s, t ∈ T . Then

f(s̄t̄) = (s̄t̄⊗ 1)/(1⊗ 1)
= t · (s̄⊗ t̄−1)/(1⊗ 1)
= t ·

[
(s̄⊗ t̄−1)/(1⊗ t̄−1)

] [
(1⊗ t̄−1)/(1⊗ 1)

]
= t ·

[
ft̄−1(s̄)(1⊗ t̄−1)/(1⊗ 1)

]
= f(s̄)

[
t · (1⊗ t̄−1)/(1⊗ 1)

]
= f(s̄)

[
(t̄⊗ 1)/(1⊗ 1)

]
= f(s̄)f(t̄)

So the function f : K1 → K3 is a non-zero definable ring homomorphism between
two infinite definable fields of finite Morley rank. It follows that it is a definable
isomorphism.

1.4 Around tori
We return to abelian-by-abelian situations, trying to capture the behavior of
semi-simple elements. The logician’s approach to this topic relies on the fol-
lowing notion [5]. A good torus is a definable, abelian, divisible group with no
torsion-free definable section; the latter condition being equivalent to: every
definable subgroup is the definable hull of its torsion subgroup. We shall call a
subgroup or an element of a group of finite Morley rank toral if it is contained
in a good torus.

The following theorem of Wagner states that in finite Morley rank, the mul-
tiplicative group of a field of characteristic p is a good torus.

Fact 1.12 ([13, Corollary 9]). Let K be a field of finite Morley rank of charac-
teristic p > 0. Then K× has no torsion-free definable section.

Lemma 1.13. In a universe of finite Morley rank, consider the following de-
finable objects: two infinite, abelian groups K and H, and a faithful action of
K on H for which H is K-minimal. Suppose that H has exponent p and that
K contains a non-trivial q-torus for each q 6= p. Then rkH = rkK.

Proof . By Zilber’s Field Theorem, there is a field structure L such thatH ' L+
and K ↪→ L×. In particular, charL = p. Now L×/K is torsion-free, so by
Wagner’s Theorem, K cannot be proper in L×. Hence rkK = rkL = rkH.

Recall that TorG stands for the set of torsion elements of a group G.

Lemma 1.14. In a universe of finite Morley rank, consider the following de-
finable objects: a field K of characteristic p, a subgroup Θ ≤ K×, a connected
abelian group V , and an action of Θ on V . Then there is θ ∈ Tor Θ such that
CV (Θ) = CV (θ) and [V,Θ] = [V, θ].

Proof . By Wagner’s Theorem (Fact 1.12), Θ = d(Tor Θ). By the descending
chain condition on centralizers, CV (Θ) = CV (Tor Θ) = CV (θ1, . . . , θn) for tor-
sion elements, and we take a generator θ0 of the finite cyclic group 〈θ1, . . . , θn〉:
one has CV (Θ) = CV (θ0), and this holds true of any root of θ0.
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Now the group [V,Tor Θ] is definable and connected (a consequence of Zil-
ber’s indecomposability theorem [4, Theorem 5.26]), so

Σ = {t ∈ Θ : [V, t] ≤ [V,Tor Θ]}

is a definable subgroup of Θ containing Tor Θ. Again, as Θ = d(Tor Θ), it
follows that Σ = Θ, that is [V,Θ] = [V,Tor Θ]. We turn to the lattice of
definable, connected groups {[V, t] : t ∈ Tor Θ}: if t1 is a root of t2, then
[V, t1] ≥ [V, t2]. So by the ascending chain condition, there is θ ∈ Tor Θ such
that [V, θ] = [V,Tor Θ] = [V,Θ]. We may assume that θ is a root of θ0, and we
are done.

And now for a little bit of cohomology.

Fact 1.15. Let A be a connected, abelian group of finite Morley rank of bounded
exponent and α a definable automorphism of finite order coprime to the exponent
of A. Then A = CA(α)⊕ [A,α]. Moreover, if A0 < A is a definable, connected,
α-invariant subgroup, then [A,α] ∩A0 = [A0, α].

Proof . Let adα and Trα be the adjoint and trace maps, that is:

adα(x) = xα − x and Trα(x) = x+ · · ·+ xα
n−1

where n is the order of α. It is easily seen, as A has no n-torsion, that
ker adα ∩ ker Trα = 0. In particular, rkA ≥ rk (ker adα) + rk (ker Trα). More-
over, im adα ≤ ker Trα and im Trα ≤ ker adα. It follows therefore that rkA ≥
rk (ker adα) + rk (ker Trα) ≥ rk (ker adα) + rk (im adα) = rkA, so im adα =
ker Trα. Hence A = ker adα⊕ ker Trα = ker adα⊕ im adα = CA(α)⊕ [A,α].

Let a0 ∈ A0; then a0 ∈ adα(A0) iff Trα(a0) = 0 iff a0 ∈ adα(A).

Lemma 1.16. In a universe of finite Morley rank, consider the following de-
finable objects: a field K of characteristic p, a subgroup T of K×, a connected
abelian p-group A, and an action of T on A. Then A = CA(T ) ⊕ [A, T ]. Let
A0 < A be a definable, connected, T -invariant subgroup. Then CA(T ) covers
CA/A0(T ) and CT (A) = CT (A0, A/A0).

Proof . We may apply Lemma 1.14 and find a torsion element t0 ∈ T such
that CA(T ) = CA(t0) and [A, T ] = [A, t0]. We use Fact 1.15 and deduce that
A = CA(T )⊕ [A, T ].

If x ∈ A maps to an element in CA/A0(t0), then denoting the canonical
projection by π one has π◦adt0(x) = adt0 ◦π(x) = 0. Hence adt0(x) ∈ A0 and by
Fact 1.15 there is x0 ∈ A0 such that adt0(x) = adt0(x0), whence x ∈ x0+ker adt0 ,
and ker adt0 = CA(t0).

Let Θ = CT (A0, A/A0); Θ is definable. Then CA(Θ) covers CA/A0(Θ) =
A/A0; it follows that A = CA(Θ) +A0 ≤ CA(Θ).
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2 Proof of the Theorem
We now attack our main result.

Theorem. In a universe of finite Morley rank, consider the following definable
objects: a field K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rk V ≤ 3 rkK. Then V
bears a structure of K-vector space such that:

• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with charK 6= 2.

Let us begin with something completely different: a piece of notation and
an observation regarding (P)SL2.

Notation 1. Let G ' (P)SL2. Fix a Borel subgroup B of G and let U = B′

be its unipotent radical. Let T be an algebraic torus such that B = U o T . Let
i be the involution in T , and ζ ∈ NG(T ) a 2-element inverting T (the order of
ζ depends on the isomorphism type of G).

Fact 2.1. A definable, connected subgroup of (P)SL2 is toral, has only unipotent
elements, or contains a maximal unipotent subgroup of (P)SL2.

Proof . Let K be a definable, connected subgroup. We may assume that K
is proper; as K is then solvable (see for instance [10, Théorème 4]), up to
conjugacy K ≤ B. Let U1 = U ∩ K; if K is not toral, then U1 6= 1. If
some elements in K are not unipotent, that is if K > U1, then we may split
K = U1 o T1 for some non-trivial, connected toral subgroup; so fixing u ∈ U#

1
one has K ≥ 〈uK〉 ≥ 〈uT1〉 = U , as observed after Fact 1.9.

The time has now come to start the proof.

Notation 2. In a universe of finite Morley rank, consider the following definable
objects: a field K, a group G ' (P)SL2(K), an abelian group V , and a non-
trivial action of G on V for which V is G-minimal. Let k = rkK and assume
rk V ≤ 3k.

First of all one may assume that the action does not satisfy all the as-
sumptions of Fact 1.1, as otherwise rk V = 2k; in particular, the action is not
quadratic or CV (G) 6= 0. As observed after Lemma 1.4, we may suppose that
V is not torsion-free. It is then easily seen that V has prime exponent p, and
K must have characteristic p as well by Lemma 1.8.

Our goal is to show that G ' PSL2 acts on V ' K3 in the usual irreducible
way (in characteristic 6= 2). The proof will involve studying various subgroups
of V , defining a field action piecewise, and eventually proving its linearity. On
our way we shall prove p 6= 2.
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2.1 Structure of the module
A word on terminology: if K is a group acting on a definable, connected, abelian
group V , we shall call V a K-module. In particular, K-submodules are by
definition definable and connected.

Step 3. V has a T -submodule X0 6= 0 such that C◦T (X0) 6= 1.

Proof . Suppose C◦V (T ) = 0; by Lemma 1.16, CV (T ) = 0 as well, whence
CV (G) = 0, so the action is not quadratic. Let V1 ≤ V2 ≤ V be B-submodules,
with V1 and V2/V1 B-minimal. Notice that by Malcev’s Theorem (Fact 1.6),
both V1 and V2/V1 are even T -minimal. Notice further that V2 < V , as otherwise
the action is quadratic, a contradiction.

If rk V1 6= k then by Lemma 1.13, the action of T on V1 can’t have a finite
kernel: T1 = C◦T (V1) must be infinite, and taking C◦V (T1) ≥ V1 we are done. So
we may assume rk V1 = k. Suppose rk V2/V1 6= k. As V2/V1 is T -minimal, the
group T2 = C◦T (V2/V1) is non-trivial by Lemma 1.13. Since T2 is a good torus,
CV2(T2) covers V2/V1 by Lemma 1.16, so C◦V2

(T2) is non-trivial; in particular
C◦V (T2) 6= 1: we are done.

So we may suppose rk V1 = rk V2/V1 = k, and in particular rk V2 = 2k. Let
W2 = (V2∩V ζ2 )◦; clearly rkW2 ≥ k. If (V1∩W2)◦ 6= 0, then by T -minimality of
V1, one has V1 ≤W2. By T -minimality of V2/V1, one finds that W2 is either V1
or V2, a contradiction as neither is ζ-invariant since they are B-invariant and
proper.

Therefore (V1 ∩ W2)◦ = 0, and in particular V2 = V1(+)W2; whence W2
is T -minimal, and ζ-invariant. As ζ inverts T , Lemma 1.10 then forces T to
centralize W2: we are done.

Notation 4. Let Θ = C◦T (X0) and X = CV (Θ). Let M = [V,Θ] and Y =
[X,U ].

By Lemma 1.16, V = M ⊕ X and each is a non-trivial, T · 〈ζ〉-invariant
submodule. By the indecomposability theorem, Y is definable and connected;
it is U -invariant and non-trivial since otherwise X is 〈U, ζ〉 = G-invariant.

Step 5. rkM ≥ 2k and rkX ≤ k.

Proof . We claim that for x generic in X, C◦G(x) is toral. Otherwise, as C◦G(x)
contains Θ ≤ T , it contains either U or Uζ by Fact 2.1; we may assume that
for x generic in X, U centralizes x. Thus U centralizes X. As the latter is
ζ-invariant, it follows that G = 〈U,Uζ〉 centralizes X, a contradiction.

Hence, the centralizer in G of the generic element of X is toral. Let x ∈ X
be generic, and suppose that g ∈ G is such that x ∈ Xg. Then 〈Θ,Θg〉 ≤ C◦G(x)
which is toral, so C◦G(〈Θ,Θg〉) is an algebraic torus, which can be only C◦G(Θ) =
T , and only T g for a similar reason. Hence g ∈ NG(T ) = T · 〈ζ〉 = NG(X). So
X is generically disjoint from its distinct conjugates; it follows that

rkXG = 2k + rkX ≤ rk V = rkM + rkX

Hence rkM ≥ 2k, and then rkX ≤ k.
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Observe that in particular rk V > 2k.

Step 6. T = Θ centralizes X.

Proof .

Claim. [X,T ] ≤ CV (U).

Proof: Suppose on the contrary that C[X,T ](U) < [X,T ]. Let A = A0/C[X,T ](U)
be a T -minimal submodule of [X,T ]/C[X,T ](U) 6= 0. By Lemma 1.16, CA(T ) =
0; so by Zilber’s Field Theorem there is a field structure L1 such thatA ' (L1,+)
and T induces an infinite subgroup of L×1 .

By construction A0 6≤ CV (U); let N be a B-minimal quotient of [A0, U ] 6= 0.
Let x ∈ A0 be such that the map ϕ = π ◦ adx : U → N is non-trivial, where
π : [A0, U ] → N is the canonical projection. By Malcev’s Theorem (Fact 1.6),
U centralizes N , so N is T -minimal and ϕ is a morphism. If there is u ∈ U#

such that ϕ(u) = 0, then since 〈uΘ〉 = U by Zilber’s Field Theorem one finds
kerϕ = U : a contradiction. So ϕ is injective, and rkN ≥ rkU = k. Let
u ∈ U# and s ∈ Θ#. Then us 6= u, and by Θ-covariance and injectivity of
ϕ, ϕ(u)s = ϕ(us) 6= ϕ(u); in particular ϕ(u) /∈ CN (Θ), and CN (Θ) < N . By
T -minimality of N , CN (Θ) is finite, so there is another field structure L3 such
that N ' (L3,+) and Θ induces an infinite subgroup of L×3 .

Since Θ centralizes A (as a section of X) and U centralizes N , we may apply
Lemma 1.11 with B : A×U → N defined by B(a, u) = π([a0, u]), where a0 ∈ A0
lies above a ∈ A = A0/C[X,T ](U). We get L1 ' L3, whence rkA = rkN ≥ k;
in particular rkX = k and A = X is T -minimal. Since ζ normalizes X, Lemma
1.10 implies that T centralizes X, a contradiction. ♦

We now finish the proof of Step 6. [X,T ] is a ζ-invariant submodule of
CV (U). But CV (U) ∩ CV (U)ζ ≤ CV (G) which is finite, hence [X,T ] = 0.

Step 7. Y ≤ M ; V = Y ⊕ X ⊕ Y ζ ; rkX = rk Y = k; U centralizes Y ,
(X + Y )/Y , and V/(X + Y ).

Proof . Fix x0 ∈ X and u0 ∈ U#. Let m ∈ M and x ∈ X be such that
[x0, u0] = m+ x. Since U = uT0 ∪ {0}, we have:

{[x0, u] : u ∈ U} = {[x0, u0]t : t ∈ T} ∪ {0} = {mt + x : t ∈ T} ∪ {0} ⊆M + 〈x〉

But by Zilber’s indecomposability theorem, [x0, U ] is connected, so [x0, U ] ≤M :
hence Y ≤M .

By Lemmas 1.13 and 1.16, the rank of any submodule of M is a multiple of
k: going back to Step 5 one sees that rkM = 2k and rkX = k. Now Y is not
ζ-invariant since it would otherwise be G = 〈U, ζ〉-invariant; on the other hand
M is ζ-invariant, so Y < M . It follows that Y has rank k as well. In particular
Y is T -minimal, and B-minimal, so by Fact 1.6, U centralizes Y . Moreover
Y ∩ Y ζ is finite, whence T -central, so Y ∩ Y ζ ≤ CM (T ) = 0 by Lemma 1.16.
One thus has M = Y ⊕ Y ζ and V = Y ⊕X ⊕ Y ζ .

U centralizes (X + Y )/Y by construction. Since V/(X + Y ) ' Y ζ is T -
minimal, by Fact 1.6 again, U centralizes V/(X + Y ) as well.

11



Step 8. The characteristic is not 2; G ' PSL2 and ζ (now of order 2) inverts
X.

Proof . Suppose p = 2. For any u ∈ U× consider the map ϕ : V → V given
by commutation with u. Since p = 2 one finds imϕ ≤ kerϕ. By Step 7,
imϕ ≤ X+Y ; as U = uT ∪{0} and T centralizes X (Step 6), CX(u) = CX(U).
It follows that imϕ ≤ CX+Y (u) = CX(u) + Y = CX+Y (U). Hence [V,U ] ≤
CV (U), and Fact 1.1 applied to the action of G on V/CV (G) yields rk V = 2k,
a contradiction.

Hence p 6= 2. As T centralizes X, the involution i ∈ T cannot invert X. It
follows that G ' PSL2. In particular ζ has order 2.

Now since Y is T -minimal, imust either invert or centralize it. If i centralizes
Y , then it centralizes M = Y ⊕ Y ζ and X: so i centralizes V , a contradiction.
Hence i inverts Y , and also Y ζ : it follows that i inverts M . So ζ which is
conjugate to i must also invert a module of rank 2k. Let us write M = M+ζ ⊕
M−ζ under the action of ζ. Then Y is disjoint from both, showing that both
have rank k. It follows that ζ must invert X.

Step 9. CV (G) = 0, CX(U) = 0, and CV (U) = Y .

Proof . By Step 8, CV (G) ≤ CV (T ) ∩ CV (ζ) = CX(ζ) = 0. Since ζ inverts X,
it normalizes CX(U) which is G = 〈U, ζ〉-invariant, whence finite, whence by
connectedness in CV (G) = 0. So CX(U) = 0.

We already know that Y ≤ CV (U) (Step 7). If there is x+yζ ∈ CV (U) with
x ∈ X, y ∈ Y , then y 6= 0 as CX(U) = 0. Hence y /∈ X, that is T does not
centralize y: using Zilber’s Field Theorem, Y = yT ∪ {0}. Now U centralizes
x+yζ , so using T , U centralizes x+Y ζ ; U then also centralizes Y ζ ≤ CV (U,Uζ):
a contradiction.

2.2 Linearity
The second part of the proof is of so different a nature that if the reader wishes
to take a break, he may now. We shall start afresh with the following knowledge.

• ζ has order 2 (Step 8)

• Y = C◦V (U) = [X,U ] is B-minimal (Notation 4 and Steps 7 and 9)

• V = Y ⊕X ⊕ Y ζ ; rkX = rk Y = k (Notation 4 and Step 7)

• X = CV (T ) is inverted by ζ (Steps 6 and 8)

We now work towards understanding the scalar action on X.

Step 10. Let x ∈ X, t ∈ T , u ∈ U#. Then there is a unique x′ ∈ X such that
[x′, u] = [x, u]t = [x, t · u]; x′ depends on x and t, but not on u.

12



Proof . Fix u1 ∈ U# and consider the definable morphism from X to Y which
maps x to [x, u1]. This is injective, as the kernel lies in CX(u1) = CX(T, u1) ≤
CX(U) = 0. By equality of ranks, the map is a bijection. Now suppose another
u2 ∈ U# is given, and we have elements x′1, x′2 such that [x′i, ui] = [x, ui]t. Then
there is τ ∈ T such that u2 = uτ1 , and it follows that:

[x′2, u2] = [x, u2]t = [x, uτ1 ]t = [x, u1]τt
= [x, u1]tτ = [x′1, u1]τ = [x′1, uτ1 ] = [x′1, u2]

whence x′1 = x′2, as claimed.

We can finally impose a linear structure on V . This is done piecewise using
the decomposition V = Y ⊕X ⊕Y ζ . By our hypotheses, CY (T ) = (0) and Y is
T -invariant. Let L be the subring of End(Y ) generated by the image of T . As
Y is T -minimal, L is a field (Fact 1.9) and Y ' (L,+)

Notation 11.

• On Y , L acts as a subring of End(Y ).

• On Y ζ , we let k · yζ = (k · y)ζ .

• On X, we let k · x be the unique x′ ∈ X such that [x′, u] = k · [x, u] (Step
10; this does not depend on the choice of u).

We shall check that G acts linearly. We do it piecewise; notice that when we
claim that U acts linearly onX, we mean that the operation induced by elements
of U from X to V is linear, without claiming anything about invariance under
the action.

Step 12. T · 〈ζ〉 acts linearly on V . U acts linearly on Y ⊕X.

Proof . By construction, T is linear on Y and Y ζ . It is linear on X, as it acts
trivially! By construction, ζ is linear on Y ⊕Y ζ . As it inverts X, it is also linear
on X. So T · 〈ζ〉 is linear on V .

As U acts trivially on Y , it is linear on Y . It remains to see that U is linear
on X. Let u ∈ U , x ∈ X, and k ∈ K. By definition of the action on X, one has
[k · x, u] = k · [x, u], and therefore:

k · xu − k · x = k · [x, u] = [k · x, u] = (k · x)u − k · x

Linearity follows.

It remains to prove that U is linear on Y ζ . As T is, and since T acts
transitively on U#, it suffices to exhibit one non-trivial element of U which is
linear on Y ζ .

Notation 13 (Bryant Park element). Let w = ζ (it is an involution, after all).
Let u ∈ U be such that (wu) has order 3.
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Such an element exists (this may be viewed as a special case of the Steinberg
relations). We shall prove that this particular u is linear on Y ζ .

Fuga

Step 14. For any y ∈ Y , there is a unique x ∈ X such that ywu = y + x+ yw.

Proof . A priori, one has
ywu = y1 + x+ yw2

for elements y1, y2 ∈ Y and x ∈ X. But U centralizes Y , (X + Y )/Y , and
V/(X+Y ) by Step 7. So y2 = y. We push further, using the fact that w inverts
X (Step 8).

y(wu)2 = ywu1 + xwu + ywwu

= ywu1 − xu + y

and
y = y(wu)3

= ywuwu1 − xuwu + ywu

whence applying u−1,
y = ywuw1 − xuw + yw

Now Uw centralizes Y w, (X + Y w)/Y w, and V/(X + Y w) (Step 7), so
[y1, u

w] ∈ X + Y w. It follows that y1 is the projection on Y of ywuw1 . On
the other hand, xu ∈ X + Y , so xuw ∈ X + Y w. Taking projections on Y
modulo X + Y w, one has y1 = y.

Step 15. Let y ∈ Y and x ∈ X be as in Step 14. Then [x, u] = 2y.

Proof . By definition,
ywu = y + x+ yw

Let us iterate:
y(wu)2 = ywu + xwu + ywwu

= (y + x+ yw)− xu + y
= 2y + x− xu + yw

and
y(wu)3 = 2ywu + xwu − xuwu + ywwu

= 2(y + x+ yw)− xu − xuwu + y
= 3y + 2x− xu − xuwu + 2yw

As wu has order three, one has:

2y + 2x− xu − xuwu + 2yw = 0

Now u centralizes (Y +X)/Y , so there is y1 ∈ Y such that xu = x+ y1. Let
x1 be associated to y1 by Step 14: one has ywu1 = y1 + x1 + yw1 . Hence

xuwu = xwu + ywu1
= −xu + (y1 + x1 + yw1 )
= −x− y1 + y1 + x1 + yw1
= x1 − x+ yw1
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It follows that

2y + 2x− (x+ y1)− (x1 − x+ yw1 ) + 2yw = 0,

and projecting onto Y modulo X + Y w,

y1 = 2y

so that [x, u] = y1 = 2y.

Notation 16. For y ∈ Y , let x(y) be the element x given by Step 14.

Step 17. The function x(y) is L-linear.

Proof . Let k ∈ L. Then

[x(k · y), u] = 2(k · y) = k · (2y) = k · [x(y), u] = [k · x(y), u]

And we are done.

Step 18. u is linear on Y w.

Proof . Let y ∈ Y and k ∈ L; let y2 = k · y, and x2 = x(y2). Then

(k · yw)u = ywu2 = y2 + x2 + yw2 = k · y + x2 + k · yw

On the other hand,

k · ywu = k · (y + x+ yw) = k · y + k · x+ k · yw

As x is L-linear, both expressions are equal: u is linear on Y w.

It follows that G = 〈T, ζ, u〉 is L-linear on V .

We may now finish the proof. We have a definable embedding of G into
GL(V ) with V 3-dimensional over L. We may view this as a homomorphism
from PSL2(K) into GL(V ), with the image of PSL2(K) acting irreducibly on
V . Let Ĝ be the Zariski closure in GL(V ) of the image of PSL2(K), also acting
irreducibly on V . As V has dimension 3, the group Ĝ will be a simple alge-
braic group, so by Theorem A of [3] (or [11, Theorem 1.3]) the homomorphism
PSL2(K) → Ĝ has the form h ◦ ϕ◦ with ϕ an embedding of K into L and h a
rational homomorphism defined on ϕ PSL2(K). We now return to G and ϕG,
keeping the same notation for ϕ and h.

Since the composition h◦ϕ is definable, ϕ[K] is definable, and is therefore L.
As V with its L-structure is a rational representation of ϕG, V oϕG is algebraic,
and pulling back via ϕ−1, we get a K-structure making V oG algebraic.

We note that in a more general setting, the Zariski closure Ĝ would be
semisimple rather than simple, and there would be several associated maps
hi and ϕi, with the representation V being a tensor product; this is the case
discussed in detail in [3, §10], [11, §6].
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3 Appendix: actions of (P)SL2 and centralizers
In this appendix we give one further result on the structure of a generic stabilizer
in a representation of (P)SL2(K) of finite Morley rank in positive characteristic,
whose proof is a variation on Step 5 of our main argument. Recall that a
connected definable subgroup of a group of finite Morley rank is toral if it is
included in a maximal torus, and p-unipotent if it is a nilpotent p-group of
bounded exponent.

Proposition. In a universe of finite Morley rank, consider the following defin-
able objects: a field K of characteristic p, a group G ' (P)SL2(K), an abelian
group V , and a non-trivial action of G on V . Then for v generic in V , C◦G(v)
is toral or unipotent (possibly trivial).

Proof . We first show that we may assume CV (G) = 0. Assume the result holds
when CV (G) = 0 and let V be as in the statement. Let V0 = CV (G) < V . Since
G is perfect, one has CV/V0(G) = 0, and the action of G on V/V0 is non-trivial.
By assumption, the result holds for V/V0. Now let v ∈ V be generic. Then
v̄ ∈ V/V0 is generic too, and in particular C◦G(v̄) is either toral or unipotent. As
C◦G(v) ≤ C◦G(v̄), we are done.

So from now on we suppose CV (G) = 0. In Notation 1 we had fixed a
maximal unipotent subgroup U ≤ G, B = NG(U) its normalizer, T an algebraic
torus such that B = U o T , and a 2-element ζ inverting T .

Let v ∈ V be generic. C◦G(v) is proper in (P)SL2, hence solvable [10,
Théorème 4]; up to conjugacy, C◦G(v) ≤ B. Assume that C◦G(v) is neither
unipotent nor toral. Then by Fact 2.1, C◦G(v) contains U .

So C◦G(v) = U o Tv for some non-trivial Tv ≤ T . The family {Tv : v ∈
V,U ≤ C◦G(v) ≤ B} of subgroups of T is uniformly definable; as K has positive
characteristic, T ' K× is a good torus, and the family is finite [5, Rigidity II]. It
follows that there is a common T0 ≤ T such that generically, C◦G(v) is conjugate
to U o T0.

Now let V1 = CV (U). Clearly V1 is infinite, taking a B-minimal subgroup of
V and applying Malcev’s Theorem (Fact 1.6). As any two distinct conjugates
of U generate G and CV (G) = 0, V1 must be disjoint from V g1 for g 6∈ B. It
follows that NG(V1) = B and that V1 is disjoint from its distinct conjugates.
One therefore has

rk V G1 = rk V1 + rkG− rkB = rk V1 + rkK.

By assumption, the generic element of V is centralized by a conjugate of
UoT0. Thus V G1 is generic in V . But furthermore, for v generic in V1, C◦G(v) is a
conjugate of UoT0 containing U ; conjugacy is therefore obtained by an element
of NG(U) = B. As B′ = U , U oT0 is normal in B; hence C◦G(v) = U oT0. This
means that T0 centralizes a generic subset X of V1; as X + X = V1 it follows
that V1 = CV (U o T0).

LetW = V1⊕V ζ1 and W̌ = W \(V1∪V ζ1 ). The generic element ofW is in W̌ .
Let v ∈ W̌ . Clearly T0 ≤ C◦G(v). Moreover, if C◦G(v) is not toral, then it must
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meet a unipotent subgroup which can only be either U or Uζ as 1 6= T0 ≤ C◦G(v).
In that case, C◦G(v) contains either U or Uζ by Fact 2.1, against the definition
of W̌ . This means that for v ∈ W̌ , one has T0 ≤ C◦G(v) ≤ T . In particular, W̌G

is not generic in V .
It follows that W < V . As V G1 is generic in V , W cannot be G-invariant.

Therefore T ·〈ζ〉 ≤ NG(W ) < G, and equality follows from maximality of T ·〈ζ〉.
As T · 〈ζ〉 also normalizes V1 ∪ V ζ1 , one sees that NG(W̌ ) = T · 〈ζ〉.

Let w ∈ W̌ . Assume that w ∈ W̌ g for some g ∈ G. Then C◦G(v) is a non-
trivial connected subgroup of T , so CG(C◦G(v)) = T = T g, and g ∈ NG(T ) =
T · 〈ζ〉 = N(W̌ ). This implies that

rk W̌G = rk W̌ + rkG− rk T = 2 rk V1 + 2 rkK = 2 rk V G1 .

But V G1 is already generic in V which is infinite: this is a contradiction.
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