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Introduction

In his 1968 paper [Ax] on the elementary theory of finite fields Ax

isolated the following condition on a fileld K:

{*) Every absolutely irreducible affine variety defined over K has

K-rational points,

Let us call K regularly closed (or RC-field) if K satisfies (*).

(In §0 we will give reasons for this terminology.)

In a remarkable tour de force Ax proved three basic results:

(1) A field K 1s pseudo-finite, i.e., an infinite model of the theory of

finite fieids,_if and only if K is a perfect RC-field with G(K) = 2.
(See §0 for the notations used.) (The proof combines ultra products, Weil's
thecrem on the Riemann hypothesis for curves over finite fields, and finally

Cebotarev's density theorem to handle ¢har(K) = 0.)

(11) The elementary theory Th{X) of a perfect RC-field K with

GéK) = 2 is completely determined by the isomorphism type of Abs(X), the

algebraic closure in K of the prime field. (This in turn is determined by

the set of £(T) € Z[T] having a zero in K, so it is an elementary invariant.)

(I11) A field L 4s isomorphic to Abs{XK) for some perfect RC~field K

with G(K) =« 2 1ff L is algebraic over its prime field and G(L) {s pro-

cyelic (i.e., topologically generated by one element).
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2

(IX) and (III) 1lead to a decision procedure for the theory of perfect
RC-fields K with G(K) = 2 (they form an elementary class), and combining
this with (I) Ax could give a decision procedure for the theory of finite
fields, ansvering a problem posed by Tarski. (Actually, Ax's results are

much more precise, see [Ax 1)

We emphasizé here that (I) represents the most interesting, number
theoretic part of AX'Sresults, and that later work by Jarden demonstrates
that (II) and (III) are largely independent of (I). (To be more precise,
Ax's treatment of (IX1) in the characteristic 0 case stiil depended on
Cebotarev's theorem, i.e. (I1I) wag linked to (1), but Jarden showed that

Hilbert's irreducibility theorem already suffices for (I11)),

Later developments (by Jarden, Kiehne, Fried, Wheeler, Ersov and others)
have concentrated on generalizing (parts of) (IT) and (II1) and the resulting
decision procedures to other classes of RC-fields. Mostly the RC-fields were
atill supposed to he perfect, and restrictions were put on thelr absolute

Galois groups. 1In this paper we study the model theoretic properties of

RC~fields without such reatrictions. In particular we obtain, what seem

to us, satisfactory generalizations of (II) and (I1I) to arbitrary RC-fields.
Before explaining these and other results, let us sketch the post-Ax develop-

ments, initiated by Jarden, which inspired our work.

Let X be a countable hilbertian field (e.g. K = @), and let e €N,

Then for almost all (bi""’oé) € G(X)® - almost all in the sense of the

Haar measure on the compact group G(K) - itg fixed field, Fix (ci,...,cé),
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is RC and has absolute Galoisggroup free (as a profinite group) on

O1s+++0gs ¢f.[J1 ], [J2]. (For e = 1 this profinite group is « Z, and
according to (I) it means that for almost all o ¢ G(Q) d1ts fixed field is

pseudo~-finite, a surprising result at the time).

Fields K such that G(K) = ;e’ the free profinite group on e
generators, are called e-free. In [J-K] Jarden and Kiehne generalize, for
fixed e, properties (II) and (III) to perfect e~free RC-fields (for (II) we
still have Abs(K) as the only elementary invariant, in (III) one replaces
rank (G(L) =1 by rank (G(L)) = e), and derive the decidability of their
theory. These generalizations required new techniques, since Ax's argu-
ments depend on the commutativity of the absclute Galois group involved.
Besides the use of Jarden's probabilistic result mentioned above, there are
three key ideas in their proof. The first, relatively easy one, is the cobser~

vation:

(a) A profinite group is = ?e iff its finite homomorphic images are

exactly the finite groups of rank <e, Using this and Galois theory one

can write down sentences about a field K expressing that G{K) &« Fé'

Their second, most crucial tool, is:

(b) The "Embedding Lemma" which (for perfect RC-fields) replaces the con-

ventional back and forth method for constructing isomorphisms between fields

by a dual method for comstructing isomorphisms between profinite groups.

Finally, they depend on:
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{e) A lift%gg_property of finite groups discovered by Gaschiytz allows to

carry out this dualized back and forth method in the case G(K) = (F Y.

In our generalizations of (II) and (III) to arbitrary RC-fields
we use Jarden's probabilistic result, in (3.5), (4.3) and (6.2), and

‘also develop as tools natural versions of (a), (b), and (c) for arbitrary

RC~fields.

Concerning (a): we construct a language to express certain properties
of profinite groups by so called cosentences, e.g., G = F can be expressed

by a countable 1ist of cosentences about G, The underlying (co)model theory

of this language is not a tonventional firstworder one. Let us stress here
that it ig entirely natural and has been usei implicitly by earlier workers
in the model theory of fields, 1In many ways it has properties dual to model
theory for fields, e.g. the role of embeddings between fields corresponds to
those of epimorphisms between profinite groups. (The cruaxial example which
led us to the fdea of a comodel theory is Iwasawa's theorem characterizing
?A as the unique profinite gropp with a countable basis, a certain 1ifting
property ("wr~cohomogeneity") and all finite groups as homomorphic images; we
realized that {itg proof was the exact dual of Cantor's proof that a countable
w~-homogeneous locally finite 4lgebrs is uniquely determined by the finite

algebras embeddable in it.)

The "comodel theory" of G(K) 1s interpretable in the 1st order

theory of K (K any field) and our comodel theory 1s maximal with this property

ef. (2.9)., Sections 1 and 2 are devoted to thig comodel theory—sgee [ch-vdD-M] for
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abrief sketch~~, and can be read independently of the rest of the paper.

We expect further applications to the model theory of fields.

Section 3 generalizes the Embedding Lemma to not necessarily perfect
RC-fields (e.g. separably closed fields are RC, by {L,’. 76 ], but not perfect,

unless algebraically closed). Tamagawa gave us essential help in this part,

To generalize (II) to RC-fields we combine the generalized Embedding
Lemma with the main result of comodel theory, and obtain a complete list of
elementary invariants for arbitrary RC-fields, cf. (3.4). To get all possi-
bilities for these invariants for RC-figlds we need the notion of projective
profinite group, The first clue to this is in Ax"s paper [Ax ]. He proved
that if X 15 a perfect RC-field, then G(K) 1is of cohomological dimension <1.
The profinite groups with this property sre exactly the projective profinite
groupe as follows from [ G ]l. Conversely, all projective groups occur as
G(K), K a (perfect) RC-field, see [Lu-vdD ].

Here we improve this last remark and obtain the natural generalizatiom
of (III) to arbitrary RC—fieldé.

The most important elementary invariant of an RC-field 1s the cothedrz
of its absolute Galois group, If the absolute Galois group has the so called

Iwasawa property cf. (2.10 ), we call the field an Iwasawa field. Iwasawa

fields form an elementary class and include the e-free fields (by Gaschutz),
the u~free fields studied in [J3 ] (by Ivesawa's theorem referred to above),
and many more, by results of Mel'nikov on the structure of normal subgroups of

free profinite groups [ M J. In §4 we generalize most results of Jarden-
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Kiehne to Iwasawa RC-fields, and reduce the decision problem feor this class
to a decision problem on finite groups. (Lubotsky and Haran, and Er¥ov in
the mean time gave a solution to this problem.) An accidental by product of
all this is an example of a decidable field which is a finite extension of an

undecidable field, see 4,4,

The properties of the Pprojective cover of a finite group are the key to

the other decidability and undecidability results (there are also connections
with work of Wheeler though he never mentions Projective covers). 1In §5 we
study the projective cover and use it in §6 to prove decidability of the theory
of RC-fields with absolute Galois group of rank =e, for any given e ¢MN.
(Again we reduce it firgt to a decision problem on finite groups.) In §7 we
use projective covers to interpret the (undecidable) theory of graphs in the
cotheory of projective profinite groups. The undecidability of the theory of

RC-fields 1s an immediate consequence,

We also attend to questions of model completeness and quantifier elimina~

tion (in appropriate languages), see (4.2) .

In the last section, §8, we make some remarks on comodel theory, a

subject which seems deserving further development,

We feel that with this paper the main questions about the model theory of
RC~fields have been answered. Duret [Du ] showed that stable RC-fields are

separably closed. In another paper [D-M] van den Dries and Macintyre will

R A
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discuss the (dismal) gituation concerning prime model extensions (even

for pseudo-finite fields). As an indication of the abundance of RC-~-fields,
let us mention here that algebraic extensions of RC-~fields are RC, see
[J1], [T], that there exist two decidable wu~free RC~fields algebraic over
Q@ with intersection @, and that there is even a descending sequence of

such fields with intersection @, see [vdD-S].

We gratefully acknowledge our debt to the work of the authors
quoted above. During our research we got valuable stimulus from Denef,
Lubotsky, McKenna, Poizat and Sabbagh, whom we heartily thank. During
the last few months of writing, we got essential help from Zoe Chatzidakis,
who helped us reconstruct forgotten proofs, and advanced the general theory
considerably. Our greatest debt is to Tauneo Tamagawa, who worked out the
relevant inseparable descent for us, thereby opening the imperfect case to

our methods.

A final remark on the organization of the paper: for the reader's
convenience we included a section 0 stating the definitions of the main
notions and establishing standard notations used later on in the paper

without further comment.
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§0. Conventions and Notations

(0.0) @=N-={0,1,2,3,...} ; &k, l,mn stand for members of o .,

(0.1) Profinite Groups. General reference: [R].

A profinite group ig a topological group which is Hausdorff, totally
disconnected and compact; equivalently: a topological group which is the

projective limit of discrete finite groups.

Unless we indicate otherwise the letters Iy 6, H, J wil1 always stand
for profinite groups. We write G-+ H to indicate a continuous group
homomorphism of ¢ 1into H. The category of profinite groups has these maps
&8s morphisms from ¢ to H. It is important that epis 1in this category
are the surjective group homomorphisms, bxr [Do]. In §2 we will also
deal with the category PROFIN which has the same objects but only the

a8 morphisms,

In(e) is the class of finite groups F for which there is an epi
G * F. The profinite completion F of g group F 18 defined as the pro-

finite group 1im FJN » N ranging over the normal subgroups of finite index
-

of F; in particular ﬁe 1s the profinite completion of the free group Fe on

Fy -

€ generators, F1 =~ 2, Equivalently, ﬁe is the free profinite group on e

generators, cf. [R]. However, abusing this notation in accordance with establish-

ed habits we write fm to denote the restricted free profinite group on ?ﬁo

generators, cof, [Lu«vdn,(z.ﬁ) ], (which is not the profinite completion of ﬁb
the free group on ®). The rank of G, rk(G), is the minfmum cardinality of

subgets of @ generating a denge subgroup. (For finite groups this is the

minimum cardinality of a generating set.)

B
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(0.2) Fields and Galois Groups. General references: [L] and [R].

K, L will always denote fields. An absclute number of X 4{s an

element of K algebraic over the prime field; Abs(K) 1s the subfield of
K consisting of the absclute numbers of K. X ;E are the separable ,

8
respectively the algebraic closure of K. An embedding K~ L is called

regular if L is a regular extension of its image, cf. [L ].

An absclutely irreducible {(affine) variety defined over K 1is the set

of zeros in K= of an absolutely prime ideal of KIXI,...,XHI, i.e. a prine

ideal generating a2 prime ideal in ‘k[xl,...,xn}.

Following [E] we call K regularly closed (or RC) if each absolutely

irreducible variety defined over K has a point with coordinates in K;
see (3.2) for equivalent definitions. These fields have also been called
pseudo-algebraically closed (PAC) by various authors, but in view of [Wh] this

may cause confusion.

It is well known (but not trivial) that the class of RC-fields is
elementary, in fact, a field K 1s RC 1ff each absolutely irreducible
f(X,Y) € XK[X,Y] has infinitely many zeros in Kz.

For a normal extension L of K we denote by G{(L/K) the (Galois)
group of automorphisms of 1 fixing K <(pointwise), equipped with the Krull
topology. (A typical neighborhood of the identity is the set of automorphisms
fixing pointwise a given finite subset of L.) It is a profinite group; if
L =X we call it the absolute Galois group of X and write G(K). Similarly we
write Ga(K) for G(KB/K), and the restriction may G{(K) - GB{K) is an isomor-
phism of profinite groups, sc in general there is no harm in identifying the

two groups (but see §1).

L A T B b b o 0 0 e
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If L/K is algebraic, then the degree [L:K) is taken as a super-

natural number [R}, which equals dika 1ff this dimension ig finite,
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§1. Galois theory and interpretability.

(1.1) For any field K, let Ks be the separable algebraic closure of X
and let GB(K) be the profinite group of all automorphisms of Ks over K.

A good reference for profinite groups and Galois theory is ([R].

Under the Galois duality, given by L Gs(L)’ the following objects

are in 1-1 correspondence:

(a) fields L with K¢ 1L c K. » and closed subgroups of 6, (K);

(b) L as above, but alsc normal over K, and tlosed normal subgroups of
Gy (K);

(¢} L as in (a), with [L:K] = m < w, and open subgroups of Gs(K) of index

m;

(d) L as in (b), with [L:K] = m < w, and open normal subgroups of GS(K)
of index m.

(1.2) Coding finite extensions of K in K.

As is well-known, m-dimensional algebras A over K, i.e., m-
dimensional K-linear spaces A equipped with a K-bilinear map A X A -+ A,
can be parametrized by - s a8 follows. Select a basis bl,...,bm of A, and

define ¢ X (structure constants) in K by

1
m

bb = Z ¢,  b.
i3 k=1 Hk 'k

Now, for each m, we fix the basis bl,...,bm of K% by

bi - (0,0--,1,0,.0.'0)

+
ith place.

R T ——
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3
Th t -
en a poin (cijk? 1,9,ks = ¢ 1n K®  uniquely determines an algebra

A 2; m-dimensiocnal over K.

Lemma 1: The 2‘ such that A Z ig associative form the set of zeros in Km

of a system of polynomial equations over Z.

Proof: Trivial, =

Lemma 2: The ¢ such that A ¢ is a field form a first-order definable set
3
in K%,

Proof: Elementary.
]

Whenever A 2' is a field with unit IA o) We construe K as embedded
in AC via kb k.l -
Ac

Lemma 3: The o such that A ¢ is a field separable over K form a firge-
3
order definable subset of K" .

Proof: Elementary.
]

Lemma 4: The 2 such that A2 4s a field normal over K form a first-

order definsble subset of K™ .

Proof: Elementary, e.g. via the splitting field criterion, noting that one

need consider only polynomials of degree = m,
"

Lemma S: The ¢ such that A ¢ is a fleld Galois over K form a first-
3
order definable subset of K° .

LA A e 1 e —



Proof: By lemmas 3 and 4.

.
) > -+ 3
Now we come to the key point, comparing A ¢ and AT when ¢ ¢ K®
3
and d € K® ., We are interested in embeddings of A¢ in Ad (and in particulaz
in automorphisms of A € over K). Such an embedding can exist only if m < n,
and will then be given by a K-linear transformation T: K" » Kn, satisfying
certain compatibility conditions vis-a—vis ¢ and 4. Precisely, T is

given by an n x m matrix ?'(tgk) with entries in K, and

T(bi bj) = T(bi) T(b ): 1= i, J=m

3

That T should be 1-1 can now be expressed by requiring rank {tgk) = m,

Clearly T(bj_bj) = T(bi) T(bj), 1=4, j = m, translates into a con-

2 S - o
junction of m.n polynomial equations @ (c,d,t) in the variables c,d,t

with coefficients in Z. This proves:

Lemma &: The (“5,21’) such that A :, ad are fields over K and A o is

3 n3

K-embeddable in A d form a first-order definable subset of K- x K .
Of most importance to us 1s thé case m= n of the above. Recalling
that composition of linear maps K™ o K2 corresponds to multiplication of

their matrices, we easily deduce:

Lemma 7: For each finite group G, the ¢ such that A'c 1s a field and
3
Aut(a Z[K) # G form a first-order definsble subset of K" .

I R B TR R e e o o
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More generally:

- -+ -3
Lemma 8: For each finite group G, the (c,d) such that A o and A d
are fields (over K) so that Aut(a 3[A 2} = G, form a first-order gefinable
3

subset of K® x K° .

Important note. In each lemma in the subsection, the definition of the

appropriate first-order defimable set is independent of K, and can be effectively

constructed from m.n,G.

§2. The Cologic for Profinite Groups.

(2.1) Let PROFIN be the category of profinite groups with the epig, i.e., the
continuous surjective group homomorphisms, as morphisms., We will develop a
model theory for PROFIN.

First we define auxiliary first-order structures dual to profinite
groups. The basie 1dea is simple. A profinite group is an inverse limit of
finite groups. There is a standard method [ C-X ] for making a (category-
theoretic) diagram of first-order structures into a first-order structure.

Modified to the present situation this leads to the following.

Definition: An inverse system (of groups) is a structure <S8, =5, C, P>

where
(i) = is a preorder on 5; 1t has the unqiue largest element:
(11) C 18 a subset of 52;
(1i1) P 18 a subset of 83;
(iv) [Let & be the equivalence relation on § induced by =,
[a] the equivalence class of a €8 in S/v, and <€ the

induced partial order on S/~.1 4 is directed downwards;

A A N R e
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(v) pcU [a]3, and on each [g] P 41s the graph of a binary
a

operation making [a] into a group [kF;

(vi) Cc Ulel x [g] and on {qa] x [B] € 1s the graph of a
a=f

morphism " of {la] onte [pl;

(vii) Toq ™ 1[a]' and if & =g = y, then "“Y =7, on _,

By~ af

Let LO be the first-order language for such structures. Clearly the

class of inverse systems is finitely axiomatizable in Lo.

Now, for reasons to appear later, we adjoin to L0 unary predicatey.

Rn (n € ) to get a language [,

Definitdon: A stratified inverse system (of groups) is a structure

<8,=, C, F, R, (n € w)», where

(1) <85,%5,C, P> 1s an inverse system of groups;

(11) R, = { ¢ : [a]l has cardinal = n}.

Clearly the class of stratified inverse systems is [-axiomatizable.

Next we add a more stringent condition.

Definition: A complete system (of groups) is a stratified inverse system such

that if ¥ € R, (n € @) and N 1s & normal subgroup of Iv}, then there is a

5, unique up to a, with ¥ =86 and N = ker « It must also satisfy

¥5
the following sentence: Rh(x) A Rn(y) -+ 3z R 2{2) AzZSx $ z =y,
u 4

T A



Note that the class of complete gystems is l-axiomatizable,
Finally,
Definition: A stratified inverse system is ranked if S = U R i.e.,
n

if each [a] is& finite.

Clearly ranked 4is [ ~axiomatizable. Let CRS be the category

2 &0
of complete ranked systems, with the lL-embeddings as morphisms., We now

establish the duality between PROFIN and CRS.

(2.2) let G be a profinite group. We construct an object S(G) of
CRS, thus S(G) ie <S,$,C,P.Rn(n € w)>, where the ingredisnts are defined
&8s follows. § = U G/N, where N ranges over all open normal
subgroups of @, (G)N‘ is thz Bet G/N)., It is technically important to

note that G‘r.ll\?1 1 G/N2 = ¢ unless NJ. = NZ'
Define = on § by: gN=ZhMeNCM,
Define C by:
C(gN,hM) » Nc M and gM = hM,
Define P by:
Pg)¥y18N)185N;) = Ny = N = N; and g g N = 8N
Define Rn by:
gN € Rn «-G/N  has cardinality < m.

Clearly P describes multiplication in each G/N, and C the canonical

maps G/N-+ G/M for Nc M,

L e e s e e e — < L
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Evidently S(G) 1is a complete ranked system,

S _on morphisms. Let ¢ : G+ H be a morphism in PROFIN (recall ¢ 1is

surjective). We must define $(¢) as an embedding of S(H) into $(6).
This is described by: S{(e)(hN) = gw_l(N), where N 1s open normal in

H, h € H and g € ¢ sgatisfies o(g) = h,
Clearly S(9) 1is well-defined, 1-1 and respects <. Note that

S(@) (hN) = "L (aN).).

The basic point 18 that S(p) restricted to the subset H/N of
S(H) gives the isomorphism H/N = G/wwl(N) induced by ¢@. This easily

implies that S(¢) 1s an L-embedding.

S 1s & contravariant functor from PROFIN into (RS,

(This is immediate from S(¢)(hN) = @Fl (hN} .)

The functor G. Let § = <S,$,C,P,Rn(n € w)> be a complete ranked system,

We construct a profinite group G(S). Let I be S/ » partially ordered by
the converse of <, Let G1 = f[o)], where 1 = [a] € I, and for |

i=[a] 4[B] ~3, de. 12 § 4n I, let Pij‘Gi“’Gj be "e o Then

<Gi’pij’i>3 is a projective system of finite groups.
Let G(S) be the projective limit

(identified as a closed subgroup of I 6.
i

P AT o
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G_on maps. Let f : s1 -+ 52 be an L-embedding of complete ranked systems.

We want to define a morphism G(f) : G(sl) - G{gz) in PROFIN.
Fote that f respects = » 80 for ¢ 4n SJ. the image of [q]
is included in [£(a)]. But since f respects the Rﬂ, f  restricts to

a bijection of [a] onto [f(a)]. Since f respects P, 1t induces an
isomorphism [afJ = [[£(a)].

Faor a =B in 31 we have a diagram

@] =

2\ l’fcwf(s)l"as
EEI « g

G(s

which commutes because f respects €. Hence these diagrams snduce a morphism

6B & G(S)) + 6(S)) = Ln RT.

Functoriality of G, A simple computation shows that G 4is 4 contravariant

functor from CRS into PROFIN.

The Natural Isomorphisms. We compare first (for ¢ & profinite group) ¢

and G(S(G)). We have g commutative diagram

G ——>G/M = pq

\ Inatura}.l "

G/N = N

for Mc ¥ open normal in G, These diagrams induce an obvious isomorphism

6

¢! G2 G(S(G)) = LiodMY, and the family <GG>G € PRoFIN 18 & natural

T M YT W
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isomorphism between the functors 1 and GS.

PROFIN

Next we compare S and S(G(3)), S a complete ranked system. This
is the first place where completeness 1s used. let S = <S,E,C,P,Rn(n € wi>.

We define

Let o € S and consider [JoJ. Let N, be the kernel of the
natural G{(S) -»Td]. Na is open normal in G(8). \;rs(a) should be an

element of G(S) ,Na . Which one?

Clearly the one corresponding to a € la} under the canonical

isomorphism G(S)/N o = [].

So s;rs is certainly a set map from S to S(G{S)). One checks
eagily that ‘VS 1s an S~embedding. To get \ys surjective one needs the
completeness condition. We leave this as a simple exercise. Hence <\y3> gives
a natural isomorphism between the functors ICRS and &G,
It is readily checked, and important, that, for profinite &, the maps
S(eG): SGS(G)> 85(G) and

v :5(G) -+ SGS(G)

5{(G)

are mutually inverse.

(2.3) We now use the preceding duality to get a model theory.

N BT v e mm
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Co-ultraproducts, Let (G1)1€I be a family of profinite groups, Let D

be an ultrafilter on I, Form the Llestructure

by S(Gi)/D.
1€1

This structure is a complete stratified inverse system but ig not necessarily

ranked. There is however, & natural notion of ranked part.

Definition: Let L= <S,s,c,P,Rn(n € w)> be a stratified inverse system,
We define i{ts ranked part So as the substructure of S with universe
50 (Rr).

n

So So is a ranked stratified inverse system, in particular

Hcé(Gi)/D, defined as (ﬂS(Gi)/D)O, is in CRS.

Now we look for a %of Theorem. This involves working with a fragment
of the logic L. The set of bounded L-formulas is defined as the smallest
set of [-formulas containing the atomic formulas, closed under connectivés,

and closed under

- 8 3v(Rh(v) Ad) (new v a variable).

Lemma 9, Let 8 be a stratified inverse system and é(vl,...,vn) a
bounded L-formula, Gyreveya € | Sol. Then

Ske(yseeiia) « Shelay,nna).

B e ——
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Proof: By induction on the complexity of & .

An immédiate consequence of lemma 9 and +0f'Theorem is:

Lemma 10: For each bounded [-~formula @(vl,...,vn), and all

a -
fl,...,fneHS(Gi) with flln,...,fnlD in ns(ci)/n.

[»)
by S(Gi)m E @(flln,...,fnln)

L€: s(ci) E cr:(fl(i),...,fn(i))} € D.

This prompts the following definitions.

Definitions:

(a) A b-elementary map of [-structures is an embedding between [-structures
preserving bounded [~formulas,

(b) The co-ultraproduct
HOGiID is defined as G(HOS(Gi)/D).

When all Gy =G we write EI/D, and call this the co-ultra-

power,

The diagonal A : S(G) *-S(G}I/D sends S(G) into the ranked part
I 1
of S(G) /D and so induces G(4) : G /D + G(S(G)), and identifying G(S(G))

with C via BG’ this gives the codiagonal map

v: &l

A Wi A

A Y e
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By the last lemma, 2 ig b-elementary from S$(G) to the ranked

part of S(e)I/p, Therefore, from a heuristic point of view, V geems a

good example of a coelementary map. So

Definition: Anept ¢ : G+ H 4s coelementary if S(¢) isg b~elementary,

Lemma 11: If {Gi’ ¢1j) is an inverse system of profinite groups such
iz3

such that all wij are coelementary, then each induced map

Py lim Gi - Gi is coelementary.

Proof: It 1s easy to prove by induction on the complexity of bounded

L-formulas that if (g » £..) 18 a direct system of L-structures and all

i 1y
f13 are b-elementary, then each induced embedding fi : Si - {EE Si is
b-elementary.

Now dualize. L

Functoriality of co~ultraproduct. The preceding constructions act on

morphisms as follows. Let ®, Gi‘* 3 (1 € I) be morphisms in PROFIN.

These induce S(¢1) : S(Hi) -+ S(Gi), whence
s(wi)/D : HS(Hi)/D -»ns(ci)lb >

and the latter clearly restricts to an embedding of the respective ranked

parts. Applying the functor ¢ to this, one gets

G( S(p,)/D) : n°ciln N n°ui/z> ]

T W KR T e e
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We denote this morphism (in PROFIN) by HP¢1/D. In the special case when

each ¢4 is ¢ : G~ H, we get a morphism written as $I/D .

This makes OI/D a functor PROFIN"- PROFIN, and V gives a
natural transformation from of/D to the identity, dual to the situation

for I/D and 4 in firsgt-order logic.

(2.4) Coformulas and Cosatisfaction.

We are taking here a utilitarian approach to setting up a cologic for
profinite groups. We are of course aware that most of what we do can be
done for profinite algebras. We belleve that a more abstract category-
theoretic approach fo coformulas_and cosatisfaction is possible and desirable,

but we leave that for another occasion.
Definition: A coformula (for profinite groups) is a bounded lyformula

For an L-structure S we have the usual notion of Lg , L extended
by constants for S. S 1s then construed as an ststructure. We have the

obvious notion of bounded Ls—formulas.

Definition: ( ¢ profinite) A coformula over 6 1s a bounded LS(G)_
formula. A cosentence (resp. cosentence over C) is a coformula (resp.

coformula over G) which i8 a sentence.

Definition: Let @(vl,...,vn) be a coformula over €, and let

YyseeaYy € 8(G). G cosatisfies @(Yl,...,yn) (written G-gfb(vl,...,yn))

1£E S(6) b #Cryaeeasy )

o A e

B A
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The reader should observe that the "coelements" in thig theory

are cosets,

Definition: The cotheory of G (written Coth(G)) 1s the set of all
cosentences ¢ guch that G 3, ¢ £ H (G 1s coequivalent with H)

if Coth{(G) = Coth(H) .

Note that our previous definition of coelementary morphism can now be ex-

pressed as follows:

An epl oy : G+ H 1g coelementary 1ff for all coformulas @(vl,...,vn)

and all open cosets Yprerers v, of B (d.e., cosets of open normal subgroups
1 n

of H) we have

B alyyanensy ) =G o @(cp‘lcvl).....cp“lwn)).

{2.5) Co-types and Cosaturation., The definitions here are slightly less

routine,

Definition: A set I of coformulag over G d1s ranked if for every
variable v occurring free in some mewber of I there is an n € & such

that the coformula Rn(v) is in Z ,

Definition: Let ¥ be a set of coformulas over G, with Vv as its set of
free variables. A function f : V- open cosets of ¢ is said to realize
Z 1in 6 1if for every @(vi,....vn) in X we have ¢ « ¢(f(v1),...,f(vn)).

Z 18 realized in ¢ 1f some f realizes a.
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Definition: A V-type over G 1is a ranked set ¥ of coformulas such
that V i1ncludes the set of free variables of I and-every finite subset

of Z is realized in G.

Finally,

Definition: (i) G 1s k-cosaturated if every V-type over G of cardinal =< g

is realized in G.

(i1} G 18 cosaturated If G 1is k-cosaturated where k is

the cardinal of the set of open cosets of G.

The explanation of the last clause is that the cardinal of S5{(G) is
the cardinal of the set of open cosets of G (and 1f G 1 s dinfinite is

the cardinal of the set of norm-l open subgroups of G).

Isomorphism of Cosaturated G. We come now to a theorem which 1is the dual

of a basic theorem in model theory [ C~K ], and is of theoretical importance

for the model theory of fields.

Lemma 12: Suppose « 1s infinite and Gl,G2 are x-cosaturated. Consider

a diagram in PROFIN

1 2
! l ® l &
B, — Hy

where 1) each Hi has «<x open normal subgroups

A e e

A 8 ¥,
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i1) for all coformulas @(vl,...,vn) and all open cosets
YyseeesY, of H,

-1 - - -
S 18 (e8] ) = 6, -l@(ezl(epcvln.....ezlw%))).

(If this condition holds we wrire

= ©
(61,6)) = 2(2,,8,).)

1
. G L
Suppose one has g commuting diagram 1 \‘
8
1 J
where Jl has <k normal open subgroups. G l 1
2
:V 6 E et
32 2
Then there 1s a commuting diagram DR )
H
2

and o' : Jl:x J, so that the following commutes:

G G

l\ﬁ} ¢’ cﬁj/z
n =5 ]
v ¢ \H
" T2
- . o
and such that (Gl’ﬁl) = w,(Gz,ﬁz).

Proof: Let V be a set of variables and f a bijection of V onto

the set of open cosets of Ji.

Let Z be the get of all coformulas {over Gl in the free varisbles

~1 -1
V) é(e1 (yi),...,al (y&), vi,....vn) where Yl,...,y are open cosets

k
-1 -] -1 -1
of Hl and GH' 4 (& (yi),...,e (Yi)’ " (f(vf....,ni (f(vn))).

(We are looking at the "cotypd' of Ji over H}. in Gl.) Z 18 of course

ranked, and realized in Gl'

Now let Z@ be the set of all coformulas

e
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é(ezl(w(vl))----.egl(w(vk)), Vyseee»¥,) Such that

-1 -1 @
@(el (Yl),...,Bl (Yk)’vl""’vh) is in  Z. ¥ 4185 ranked.

We claim I® 45 a V-type over C,.
Let 2, be a finite subset of 3, Zy involves only free variables

in a finite subset Voo For v in Vgs select n(v) so that Rn(v)(v)

is in Z. Then

1 IV AR M A Az

vhere ¥V consists of the variables of Vg- So by (11)
¢ 13 vim Rn(v)("} A /X\Z(g) . So 2 1sa V-type over G&,. ¥  has
2
cardinal <k, hence is realized in Gy» say by g: V + set of open cosets of

G2|

What does g give us? Precisely, an [-structure embedding

d:s( Jl}‘» S(GZ) 8o that the following commutes:

S(Gl) S(Gz)
d
S{nl) I
s(J;) 5(8,)
5(o,) T .
S(Hl} . 5(32) A(y) = g(v), If f(v) =y ¢ S(Jl).)

Now we apply the functor G to the above and take account of the
natural isomorphism between GS and the identity. We get a commuting

diagram:

R, i e s e
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G, 5 * Gs(c)) G5(Gy) &=~ G,

T - °

A = 3 GS(J)) 65(6,) o,
J

L

H — )  GS(H,) ——y GS(H,) — > u

1 6, 1 s ™ 2 1 2

1 2

Note that the bottom line represents ¢ : HL{“: Hz, by naturality.

S0 our problem is solved by taking J2 as GS(JI), ﬂz as
G(d)e 8, , p  as 671, GS((D—I) © GS{p.), and ¢' ag O_ .
G, 2 H, 1 3
_ 0 n -
That (Gl,ﬁl} = @‘(GZ’HZ) holds amotdnts to the follow

ing. We know by construction that for any coformula @(vl,...,vn) and open

cogets LS ERRETR A of Ji:
6 A2 (1), een ey )) = 6. dBa(ry atr.))
1 120Gy Yn 2 Yy2eee00dly ),

and we want to replace the last condition by

G, o @(uglw'(yi),...,ﬂgl(w'(Yh))}

tee: 6 126@N T, .80 My ).

From the definitions of Ty and @' {1t follows easily that S((w')"lﬂz) =d.

(Write SG(d) = *S(G )d&;%J y * and use the remark at the end of (2.2).)
27 1

This proves the lemma.

ey

T A T R e T
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We can now formulate the main theorem.

Theorem 13. Let Gl and G2 be cosaturated, with the same number of

open normal subgroups. Suppose we have a diagram in PROFIN

o | | e
H = - H
1 P 2

where Hi has fewer open subgroups then Gi and (61'91.} «z;(Gz,ez).‘

Then there exists ¢' : G 5 G_ such that

1 2
(P'
G1 ] G2
¢ n
Hl $ H2

commutes. ( ¢ can be lifted to an isomorphism G = Gz.)

Proof: Use the lemma to construct ¢' by a back and forth projective limit

argument,

In first ordey logic one has the basic result [ -k ] relating
saturation to universality and homogeneity. The dual will be quite
evident to anyone who has mastered the preceding proof. Nevertheless it

1s convenient to set dbir the appropriate definitions and note the main

result. .

A R R T
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Definition. The cocardinal of G ig the cardinal of S§(G).

Definition. G 41s «k-couniversal of for every H =2 ¢ of cocardinal

<k there is a coelementary G-—»> H,

Pefinition. G 1is g-cohomogeneous if every diagram

G
H, —»> H

2 1

with Hz of coeardinal « , the vertical maps coelementary, and such that
there exists a coelementary G —»> Hy, can be completed to a commuting diagram

by a coelementary G —»- Hz.

Now one easily gets the following addendum to Theorem 13.

Theorem 13A: { = HO). G is k—cosaturated 1ff G is k-couniversal

and k~cohomogeneous.

(2.6) lLowenheim-Skolem Phenomena

We shall need two duals of basic theorems.

Theorem 14: If for aome n G has infinitely many open subgroups of index

n, then for each K= cocardinal of G there exists coelementary H=—3> G

with k= cocardinal of H.
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Before we prove this, let us note that each open subgroup of index n of a
Profinite group G contains an open normal subgroup of index ¢n!. This
implies that if ¢ is infinite, then the number of open subgroups equals

the number of normal open subgroups. It also shows that, under the hypothesis
of the theorem, there exists n such that G has infinitely many normal

open subgroups of index n,

Proof: our hypothesis implies that for some n the Rn of S(6) is in~

finite. So by upward Lowenheim-Skolem and reduction there is g b-elementary.

£ :8(6) +S, Sin CBS, S of cardinal K. Applying G we obtain coelementary
G(f) : G(8) » G8(C) =~ G,

and G(S) has exactly K open subgroups.

For the downward version we first define cocountable as: has only

countably manvy open subgroups.

Theorem 15: For any G there is cocountable H and a coelementary G -+ H.

Proof: As above we get 1H having ¢ }{0 open subgroups, whence H is

cocountable,

In passing, we see that the dual of firite is having only finitely

many open subgroups of each index. Groups with this property are called small.

We shall come back to them in(a.10).

i i
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We add a word of clarification concerning the notions cocountable
=gountable

and separable. Evidently tocountable implieg separable. However, the

converse failsg., An example is the unrestricted profinite ¢completion
——— i R

¢ i R ] of F + This is of course separable, since F is

countable, It ig g good exercise (after reading Proposition 23) to

show that @ has cocardinag] 2

.
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(2.7) Isomorphic coelementary liftings

In first-order model theory, using the methods of Jomsson-Morley-
Vaught [ C~-K ] one proves that elementary equivalent structures have

isomorphic elementary extemsions. Dualizing appropriately, one easily proves:

Theorem 16: G =° H 1ff there are coelementary epi's G1 -+ G and

B - H with G

1 e

(2.8) From fields to groups

Let K be 2 field. A basic fact 1s that the cotheory of G(K) 1is

interpretable in K. Precisely,

-~

Lemma 17: There is a recursive map from cosentences to sentences of

field theory so that for each cosentence ¢ : G(K) & o K S .

Proof: Clear from section 1. Related is:

Lemms 18: (a) If K 18 «x-saturated, G(K) i1s x-cosaturated.

(b If KA L, then the restriction G(L) = G(K) i1is coelementary.

Proof: Clear from the definitions and section 1.

Lemma 19: 1Let D be an ultrafilter on the index set I and lett Kys
L 1 '

1 € I, be fields. Then GGUKiID) is canonically isomorphic to HOG(Kii/D-
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Proof: This is clear from the following well-known observations:

(A) A finite Galois extension of HKi’/D of dimension n can be naturally
identified with some H‘Li/D, vhere Ly 1s a Calois extension of Kys
which is for almost all 1 € I of dimension n over Ry-

(B} 1In the above G{IL i/D ] HKj_/D)- is naturally isomorphic to

nc(t.iixi)/n.

{2.9) The Maximality Theorem

Here we offer a foundational theorem expreesing that as far as model

theory of fields is concerned our comodel theory is optimal.

Theorem 20: Let F be a class of objects, and -I* a relation between

profinite groups and elements H of F patisfying:
* %
i) (6 =H and ¢ o H)=H+ p;

*
11) for every . there exists H » & sentence of field theory, such that

* v
for all flelds K: KFp wGK 4 u .

Then we have for any fields R) and K,: if G(Kl) =° G(K,), then for

all p: G(Ry) F &Gk Ap .

Proof: Suppose Kl, 5, and L give a counterexample, so G(K) G(K ),
Kl [ ;:. and K f' ‘Ku }, say. A limit argument as in Lemma 12 will give
elementary extensions Kl of Kl and K2 of Kz such that G(K ) = G{K ).
So G(K) 'r " G(K) 'I K. But K "‘}4 and K }‘1(_;. ), hence

G(R1) 4’11 and not G(K ) -f H , contradiction.

This theorem, with lemma 17 shows that our comodeltheory is the maximal one
iInterpretable in field theory

LT R R
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(2.10) Coelementary classes

Before turning to RC-fields in the next sectlon, we consider several

special classes C of profinite groups. C will be respectively:

(a) the class of projective groups;
(b) the class of profinite groups satisfying Iwasawa's condition;
(c)} the class of profinite groups isomorphic to a fixed small G;

(d) the class of profinite groups of rank <e for a fixed e €N,

It turns out that each of these classes is coelementary, f.e. is the
class of profinite groups cosatisfying a fixed set 2 of cosentences.
From lemma 17 it follows that the class of fields K with G(K) 42 1is

elementary.

Projective Profinite Groups

A profinite group G is called projective if every diagram

G

+ where B + A 1s an epi between profinite groups, can be
B » A

completed by a G-+ B to a commutative diagram.

Proposition 2}. The class of projective profinite groups is coelementary.

Proof: A projective limit argument, cf. [G, p.157], shows that ¢ {is
projective iff in the above diagrams one only considers finite groups A,B.

It is no loss of generality to restrict further to the case that G~ A 1is

Ay i
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an epl, in fact a canonical map G 3 G/M, M open normal in G.
So to show that ¢ is projective it suffices to complete diagrams
fﬁ ) with M open normal in G, B finite,

G/M

B 3

It is clear that for given n € N we have the equivalence:

each diagram (*) with #(B) < n can be completed

for each open M 9 G and each epl @ : B+ G/M with #(B) =n there is
open N g G, NC M and an embedding G/N » B such that the composition

G/N~>B 3 G/M 1s the canonical nap.

We leave 1t to the reader to check that the second half of the
equivalence can be said (or cosaid) by a cosentence Pr(n). Hence G is

projective iff G = Pr(n), for all n €.

The Iwasawa Property

Recall that Im(G) 1s the class of finite groups isomorphic with
some G/M, M open normsl in G. In [1, 82 ] Iwasawa isolated a condi-

tion which turns out to be the dusl of w~homogeneity (in Jonsson's sense) .

Definition: A profinite group G has the Iwasawa property (IP) if
every diagram

G

+ » where both mape are epis and B ¢ Im(G), can be completed by
B -+ A

an epl G+ B to a commuting diagram. It is easlly verified that ¢ thas

N I W,

B
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IP 1iff for each isomorphism G/M1 g G/Mﬁ, Mi and M_ open normal in

2

G, and for each open normal Nl < Ml there exists open normal N2 C M2

such that a 1ifts to an isomorphism G/N1 I~ G/Nz.

This leads immediately to:

Proposition 22. The class of profinite groups with IP is coelementary.

Bearing in mind our remark about IP and o-homogeneity, one

expects:

Proposition 23. Suppose G1 and G2 are cocountable, with IP, and

Im(Gl) = Im(Gz). Then any isomorphism GJ_/H1 & Gzlﬂ s Ml open normal

in G1 and Mé open normal in Gz, 1ifts to an isomorphism G1 - GZ'

Proof: See Iwasawa [I, §2 ], or dualize the back and forth argument.

Corcllary 24. The isomorphism-type of a cocountable G with IP is

determined by Im{(G).

Proof: Take Mi = G1 and M2 - Gz in the proposition.

Corollary 25. The cotheory of any G with IP 4s determined by Im(G).

Proof: Immediate from corollary 24 and Theorem 15.

00 bt o s — < L

LT R ———
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When we deal later with RC-fields K with G(K) having Ir,
the following considerations will be important. Let yg Bay that G
G

has IPK if every diagram ¥ where both maps are epls ,
B o+ A

B has less than x open subgroups, and for which there exists an epi

G +B can be completed to a commuting diagram by an epi G-+ B,

Lemma 26 (a): 1f ¢ is r-cosaturated and has IP, then ¢ has IP:'

(b)  Suppose G1 and G2 have IP: » kK infinite, and Im(Gl) = Im(Gz).

Suppose one has epis Gl -+ Hl’ G2 -+ Hz, and an igsomorphism

¢ = Hi o HZ. Suppose Hl is of cocardinal <K « Then
[+
G ;) 2 (6,,0,).

Proof (a): (Sketch) Dualize, and usge [M] to

get a back and forth system "over S(a)".

Examples: Jafden-Kiehne [J~K] and Jarden {J3] consider only perfect
RC-fields K with G(K) = Fe and G(K) = Fé. That Fe has IP ig
proved in [J-K] using a result of Gaschutz. Thar ﬁm has IP is

due to Iwasawa, [I, §2]. Note that these profinite groups are also

Projective,

A rich source of Projective profinite groups with IP 4s due to

Mel 'nikov {Ml: he showed that all closed normal subgroups of free pro-

finite groups of rank >1 are among them. Closed normal subgroups of free

profinite groups of rank >1.  have moreover the remarkable property that,

while

H
i
{
i
i
:
H
4
g
¥

N I
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often not free themselves, all their proper open subgroups are free

(as profinite groups), see [M ] and [Lu~vd D 1.

In (7.2) we give an example of a projective profinite group {of
finite rank) which does not have IP. Finite simple groups are examples

of profinite groups with IP which are not projective.

Axiomatizing small G

Recall from (2.6) that 'small' (having only finitely many open sub-
groups of each index) is the dual of finite. Reinforcing this‘analcgy are
the following facts, proved by Schuppar in [$ ], for small G and arbitrary
H:

1. Each epli G~ G 4is an iso.

2. Im(G) 2 Im(¥) 4ff there exists an epi G =~ H.

3. Im(G) = Im(H) 1ff G =~ H ({mmediate from 1. and 2.).

Proposition 27; Let G be small. The class of all H= G 1s coelementary.

Proof: Immediate from fact 3. above.

Profinite groups of finite rank

=

Proposition 28: Let e ¢IN. The class of profinite groups of rank Ze

is coelementary.

Proof: An easy projective limit argument shows:

tk{G) < e » each A € Im(G) can be generated by Ze elements,
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Remarks: (1) It is well knowm that finitely generated profinite groups

are small.

(i1) ‘The class of profinite groups of rank = ig not coelementary,

for e 2 1. Thig is an instructive exercise,

(2.11) See 40 (5).

§3. The Embedding Lemma and elementary invariants for RC Fields.

(3.1) The main novelty of this section is a systematic development of the

model theory of RC fields which are not necessarily perfect., With the exception

of ErSov [ E2 ] and Wheeler [\Wh 1, previous work was restricted to the
perfect case. Wheeler's definition of PAC-fields allows imperfect fields K

bat only those with [K : Kp] = p, char(K) = p>0. 1In writing our paper in

its present generality we had access to ErZov's paper, which has no proofs
and is apparently done under special hypothesis (namely Iwasawa Galois groups).
It is mainly because of the kind assistance of Tamagawa that we have been able

to proceed with perfect (or Imperfect?) generality,

(3.2) Recall that a field K is regularly closed iff

(a) each absolutely prime ideal of KiX], X = (xl,...,xn), has a Kerational

Zero.,

It 18 routine to show that condition (a) is equivalent to each of the follow-

Ing:

(b) for each domain A which is finitely generated as K-algebra and regular
gver K there ig & K-algebra morphism A -+ K;

B B L o B
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(2.11) The following will be needed later in lemmas 31 and 36.

Lemma 28a: Let Mi’MZ be open normal subgroups of Gl,G2 and ¢ an
isomorphism GZIM2 o Glfﬂl (inducing an isomorphism
s{g) : S(Glfnl) N S(G2/M2)' Suppose for all coformulas ¢ and all

COBEES (.,sse3a. Of M, 4in G, we have:
1 n 1 1
6 Yv¥lagseevray) = G, = \!’(5(¢)(a1).---,3(¢)(an)}-

Then for all coformulas W(vl,...,vn} and all Bi""'Bn in

S(Gllﬂl} {which is a substructure of S(Gl}):

G TV (RyseeeiBy) = Gy TV(SQIBD,...,50)B )

Proof: The point is that each B¢ S(GllMl} ig definable in S(Gl/Mi)
from fini4ely many cosets Gyseseaqy of Ml by a coformuls

e(v, Gi""’ak) and that then S(¢)(B) will then be definable by the coformula

8(v, S(d)(al),...,5(¢)(an)) in S(G,/M,).

Let the nmatural map Gllb‘.{1 -+ [B] have kernel {a }(cosets

Y.

1 k-1

of MI in Gl), and let ak be a coset of M, mapped onto £ by

61/M1 -+ [B]. Then P is the unique element of S(Gllul) such that

a =B, L (ﬁk) =B , and T iseeesl are exactly the elements

k K k-1

of S(Gllnl) mapped by “akﬁ to the identity element of [B]. (Note:

all this takes place inside S(Gllnl) which is crucial.)
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(¢) K is existentially closed in each regular field extension.
(The basic fact one needs {s that &8 prime ideal of K[X] 4is ab~
solutely prime 1iff K[X}1/1 18 regular over K, ef. IL,p, 711).

Condition (c) suggests Robinson's Test, Later we refine it to get

model completeness vesults.,

(3.3) Our initisl model-theoretic analysis of RC fields will use the
technique of isomorphisms of saturated models. As usual, we require a lemma

to give us the main step in a back and forth argument. For perfect RC fields,
this lemma is the Embedding Lemma of Jarden-Kiehne [ J-x 1. To extend
this to the general case we need some preliminary definitions and will

quote a result of Tamagawa.

If A is a domain of characteristic p > 0, we define AP as {its
subdomain of pth powers. (If A 1is a field, so is AP) Suppose A has

fraction field L. We call a family (a.)) of elements of A p-independent

i1 €1
in A 1if it is p-independent in L. See [Bo,p.133] for the basic material, and

[ L] for the following fact which we will use:

A domain A containing a field K is regular over K 41ff

(1) K is relatively algebraically closed in A;

(11) K has p-basis remaining p-independent in A (if char(kK) = p>0).

Tamagawa proved the following on request from us.

Suppose X {8 RC of characteristic p>0. Let A be a domain

finitely generated as K-algebra and regular over K. Let S C A be finite of




42

cardinality =# (p~basis of K) and p-independent in A. Then there exists

a K-algebra morphism £ : A~ K such that the family (f(s))s € is

p-independent in K.

See [T ] for a proof. Now we transcribe Tamagawa's result to the x-sat-

urated case.

Lemma 29: Suppose K 18 RC of characteristic p > 0 and «k-gsaturated,
K > 0° Let A be a domain generated as FKw-algebra by <K elements and
regular over K. Let S € A be p-independent fn A, and of cardinality
=# (p~basis of X) in case [K : Kp] < «, Then there is a K-algebra morphism

f : A= K such that the family (f(s))s ¢ is p-independent in K.

S

Proof: Trivial, using Tamagawa's result quoted above.

Now we can generalize the Embedding Lemma of Jarden-Kiehne [J-K 1. It’s
importance is that it reduces fileld-theoretic embedding problems to group-

theoretic lifting ("co-embedding") problems.

Lemma 30: Let E/L, F/M be two regular field extensions of characteristic

p. Suppose

(a) F 18 RC;
+
() ¥ is #(E) -saturated;
(¢) if p>0 and [F : Fp] < =, then [E : Ep] = [F : Fp] :

{(d) &, 41is an isomorphism T =M with cbo(L) - M;

0
(e) #:G(F) - G(E)is an epl such that
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G(E) $——mme  G(F)

l l
G(L) ——

9

commutes, where <I>0 is the isomorphism induced by 4’9, and the vertical

maps are restrictions.

Then @0 extends to an embedding & : E - F such that &(E) ¢ F,
$((¢0)(x)) = o(2(x)) for all o € GF and x ¢ 'E, and F 4s regular over

its subfield ¢(E).
Proof: (following [J~K ] as much as possible).

Without loss of generality we may assume that L =M and that @Q

and éo are the identity. As E and ¥ are regular over L we may also

assume that not only E and F are linearly disjoint over L but also ¥
and F over f (in a common extension of E, ;). Hence the map
x®ybxy: E 91.“ F+HE isan embedding. It follows that every O € G(F/F)
can be uniquely extended to o€ G(%'—I;IEF) with gx = ($)(x) 4if x € E’—

= O(x) 1f x € ;, since (¢9)(x) = x for x € L. The map OM T defines
an injective morphism G(;/F) i G(AE;/EF) which restricts to an injective
morphism G(F /F) = G(ESFEIEF}. This last map has left inverse the natural

restriction G(EBFB/EF) -+ G(Fsli‘).

Let D = fixed field of the image of G(F_/F) 1n G(EF_/EF). So we
have an isomorphism G(Est/D) = G(Fs/F) given by restriction. It follows

that DA F‘a = F and DFB = Est' (1)
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We claim that D/F 1s regular. (2)

D/F 1is certainly separable because D/EF and EF/F are eepzrable, Also

F 1s relatively algebraically clesed in D; otherwise there is f ¢ (ff"’\F) 1o,
but then f i1s separable algebraic over F, so f € F, ND=F, and we have

a contradiction. The claim is proved. Now E = ESEP {put p‘m =1 1if

p = 0), so by (1) we get Eec Dp ¥, hence:
. -t e -} —tr
FeF =P F=d® [F]=FP ] 3)

g0

+
Take a subset DG of D of cardinal <k= #(E) such that E C Dop

-n —o
(= {x* |x € Dg,n € w}) and Ec "FEDOP 1.

Let S be a p-basis of E., Because F(Dy)/E 1is separable (D/EF
and EF/E are separable), the set S is still p~independent in F{DD].
F[DO}IF is regular by (2), so we may conclude from (b) and lemma 23 :
there is an F-algebra morphism V¥: F[BO} + F puch that (w(ls))B €s is

p-independent in F. Now F(Do) ¢D and ¥ are linearly disjoint over F
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by (2), s0 ¥ can be éxtended to an ?lalgebra morphism $': ?TDOE *-?,
which uniquely extends to an ?;algebra morphism ‘F[Dop““] *-?, also denoted

by $ .

Our definftions imply that

V(ox) = oy(x) (4)

for every o € G(%YF) and each x ¢ F U Do, hence for each x ¢ ¥, Let
¢ :E+F be the restriction of $: Then @(E) c F, $((40) (x)) = o(dx)

for all 0 € G(F/F) and x ¢ %.

It remains to show that F is regular over &(E). F/¢(E) 1s separable

because (@(s})s i a p-basis of &(E) which 1s p-dndependent in F.

€S
Now let x € E and &(x) ¢ F, l.e. #(x) € ¢(F) N F. Then $((30) (x) =

o{#x) = dx for all o ¢ 6(F/F), 1.e. (40) (x) ='x for all o ¢ G(¥/F),

—

hence by (e): 1T(x) = x for all ¢ G(E/E), which implies x € E¥ We

—li
have proved that éff) NF = (@E)p N F which together with the separability
of F/%(E) implies that #(E) 1is algebraically closed in F, whence F/$(E)

is regular,
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{3.4) Elementary equivalence of RC fields

Recall from Lemma 12 that if Gi : Gi -+ Hi are epis (i = 1,2) and
o
¢ s Hy ~H,), then we write (cl,el) -3 m(GZ’ez) (and say that (Gl,Gl) and
(Gz,ez) are coelementary equivalent over ¢) 1f for all open cosets

Yyseeea¥y of Hy and coformulas W(vl,...,vn) we have:
G, AV () e es 0y D) = 6 AU BT @ (1)) e e 65 (0 (YD)
1 1 Yl pemes¥y Yn 2 2 (PYl seeestsy ‘pYn .

The following lemma will be useful later on. Its straightforward proof

is left to the reader,

Lemma 31: Let Gi, Gi' Hi (1 = 1,2) be as above, and let N be a collection
of open normal subgroups of Hl which is cofinal in the smense that each open

0
normal subgroup of Hy includes one from N. Then (Gl,el) £ w(cz,ez) iff

for all coformulas W(vl....,vn), N €N and cosets Yyreeesty of N we

have:

-1 -1 . -1 -1
G, -W(GI 71""'81 Yn) G, -Hf(ﬂz ‘Wr'"'ez an) .

A regular embedding f : K+ L of fields, together with an extension
of f to an embedding K~+1 (also denoted by £} induces an epi

-~

f : 6(L) -+ G(K).
Two special cases we often deal with are:

(1) £ 1is en isomorphism K=T mapping K onto L. Then obviously f is

an isomorphism of G{L) onto G(X).

R L
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(2) L ig a regular extension of K, f 43 the inclusion Kcal;: then
we take for K the algebraic closure of X inside T, and let f
also stand for the inclustion fchif. f 1s then the restriction

G(L) - 6(x).

For the next lemma, recall that x is a regular extension of

Abs(R),

Lemma 32: Suppose K = L. Let 1,3 be the inclusions Abs(K)e» K ang

Abs(L)c,L inducing epis 1 : G(K) + G(Abs(K)) and 3 * G(L) -+ G(Abs(L)).

Then there is an isomorphism £ : Ags(L} = AEE(K) mapping

Abs(L) onto Abs(K) such that (6(K),1) @ ;(ca.),;).

* %
Proof: Take an isomorphism f of an elementary extension L of 1 onto

* *
an elementary extension K of X. Extend f to an isomorphism also denoted
* ok i
by £, of 1L onto K ., According to our convention above we take
~ ~ ~k ko
Abs(L) € L c 1, and similarly for K. Let f = f [Abs(L). Clearly f maps

A?;s(L) onto Ags(x) and Abe(L) onto Abs(K). We now have the commuting

diagram

* i R *
G(x) ax 7 GL)

| i l

C(K) G(L)

1) . I

G(AbsK) py =  G(AbsL)
£

* *
where G(K') - G(K) and G(L ) - G(L) are coelementary. The result is now
immediate,

T YW R 30 600 v, 50 o

A A,

P
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This lemma gives a necessary condition for elementary equivalence
of two fields., It 1is remarkable that, modulo one obvious elementary
invariant, this condition 1s also sufficient in the case of RC-fields. The
one extraz Invariant we need is the depree of imperfectness (of X) whieh
is defined as the supernatural number [K:KF] ¢ {l,p,pz,...,p”} if

char(K) » p> 0 and as 1 if char(K) = 0,

The following result generalizes to RC-fields Erdov's theorem [El1]
that two separably closed fields are elementarily equivalent iff they have

the same characteristic and the same degree of imperfectness.

Froposition 33: Suppose K,L are RC-fields. Let 1i,j be as in the previous
lemma. Then K 2 L 1ff and only if K and L have the same degree of im-
perfectness and there is an isomorphism f : Abs(L) - Abs(K) mapping Abs(L)

onto Abs(K) such that (G(K),i) % f(G(L),S).

Proof: The previous lemma gives one direction. For the converse we assume
that K and L have the same degree of imperfectness and that f thas the
stated property. We can assume without loss of generality that K,L are
mlwsaturated, and so that G(K) and G(L) are miwcosaturated. We prove
Kz L by constructing s Karp morphism ("back and forth system") consisting

of triples (g,M,N) with the following property (*):

{(*) X,L are rdgular extensions of their courtable subfields M,N respectively
and g 18 an isomorphism N-M mapping N onto M such that, with

:Iu,jN the inclusions M4k, Ncal:

©w®,L) ¢ .(ew),1y .
B

T AR R

R B T
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Note that (f, Abs(K), Abs(L)) satisfies (%),
To conclude the Proof we need only show that 1if (8,M,N) satisfies
(*) and A 15 a countable subset of L, then there 15 a triple (31’M1’N1)

satisfying (*) with M, o M, N,ON, ¢ extending g and A c N,
1 1 1 1

For Nl we take any countable elementary subfield of L containing

N and A. Then LlNl is regular. Consider

“G(L)

i —

b

G(N,) L 3

om e
g

— G(K)

By lemma 12 (or rather its proof) there 1s an epl o : G(K) - G(Ni) making
the diagram commute and such that for all coformulas @(vl,...,vk) and

open cosets Yi,...,yk of G(Nl}:

e "@(;ﬁwl)"“’;ﬁwk” "o 267y ey )

Now we apply the generalized Embedding Lemma (lemma 30) and get

&n extension of g to an embedding B * El +X restricting o g regular
embedding Ni ™ K, such that, putting Ml - gi(Nl) we have: ¢ = By © iHI.

Now it follows from (1) that <31’M1'Ni) satisfies (%),
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The following is similar, and we omit the proof.

Theorem 34: Suppos¢ K CL, K and L gare RC-fields.

Then K L L Iif and only if

(1) L 4ig a regular extension of K;

(1) K and 1L have the same degree of imperfectmess;

(i11) the restriction map G(L) -+ G(K) 41s coelementary.

The following special case seems particularly interesting. Denef
pointed out that for perfect K and L {t is concealed in Theorem 3.2 of

[J-K].

Corollary 35: Suppose the RC-field I is a repular extension of the RC-

~

field K and £ : 6(L) -+ G{(K) 4is an isomorphism. Then K <4 L if and only

if K and L have the same degree of imperfectness.

We know a short alternative proof of this bypassing the Embedding Lemma

and using projectivity of G(K) and G(L), but will not give it here.

The existence of an isomorphism f as in proposition 33 is a global
condition. We now prove it equivalent to a set of local conditioms, more
precisely we want elementary invariants such that if K and 1 agree on

these invariants then an isomorphism £ as in proposition 33 exists.

For that we need a slight elaboration of the interpretation of Galois

theory in field theory of §1.
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For each finite Galois extension of a prime field P we fix a monic
irreducible polynomial q(X) € P[X] such that the extension is generated over
P by a root of q (hence by any of its roots); we write this extension as Pq‘
Let [Pq:P] =n (= deg q). We then fix a sequence of polynomials rl(x),...,rn(x),
all of degree < n, in P[X], such that r1(6),...,rn(5) are the n distinct
roots of q(X) in Pq, where & i1s one of the roots of q. (This does not depend
on the choice of &.) In the following q and TiseensT will always be used in

this sense.

Let K be any field > P, For a finite Calois extension F over K we
identify, as usual the members of G(F|K) with the cosets of G(F) in G(K).
(Note that G(F) 1is an open normal subgroup of G(K)). Here ¢ G(F) 1is identified

with O|F for © € g(K).

Consider now the special case F = K.Pq. Given a root § of q(X) in lg
we have F = K(5) and a member o of G(F|K) 1s determined by the unique poly-
nomial ri(X) aucﬁ that o(8§) = ri(a). So we now have a 1-1 map from the
cosets of G(F) 4n G(X) 1into {rl,...,rn} t o G(F) corresponds to r, where
c(8) = ri{é). (This correspondence depends on the choice of 5.) Now let

@(vl,...,vk) be any coformula and r be any finite sequence (ri,...,ri ),
k
1= 1j = n. From these data we can construct a sentence @qGE) in the language

of fields such that for each field K ® P we have:

q;* -
KF q(r)
there 1s a root § of q(X) in K such that G(K) = @(Nl,...,ﬂk), where

Nl""’Nk are the cosets of G(K(§)) 4n G(K) corresponding to automorphisms

vae 8 = ) S, 5) = 8).
TTTRILY of K{(5) over K with Oi(G) ril( ) Gi( ) = r (8)
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(Note that we can take ‘Fq(;) =% 4f k= 0.)

Now we can state and prove:

Lemma 36: Let K2P, LOP and let %,{ be the natural inclusions

Abs(K) <K, Abs(L)=+>L. Then the following are equivalent:

(1) There is an isomorphism f : Abs(L) = Abs(K) mapping Abs(lL) onto Abs(K)

such that (G(K), 1) 2~ (6(L), 1).
£

(2) Xk @Q(E) e LF @Q(E},' for all &, q, r as above.

Proof: (1) = (2) follows in a straightforward way from the definitions.
(2) = (1): the construction of f comes from a projective limit argument.

First some preliminaries.

The finite Galois extensions ?q of P occur both as subfields of ?(‘ and

of Z To distinguish we write Pq K if Pq occurs in the first role and
»

P if it occurs in the second role. An isomorphism u: P = P Induces
q,L q,K q,L
5 -1

an isomorphism o -+ ¢ of G(Pq g/P) oento G(l"'q LIP)  given by o = pou™. 1f
* ?

W
i+ maps KNP . onto LN ?q,L' then o+ o maps G(Pq,K'Pq,Kn K) onto

qs

c(p 4 nL . N G(R-P K) = G(P N y

( q,Lf a,L ) ow G( q,Kl ) ( QoKqu,K N X) by restriction, hence we

obtain an isomorphism of G(K. Pq KII() onto G(]’..‘I’q L[L) which we also denote by
» >

o+ .

After these preliminaries we can define for each finite Galois extensaion

(o

P_|P: the (finite) set M(q) consists of all automorphisms u:P, o - P
q q,K q,L

" B
mapping Pq,K fl K onto Pq,L 1 L such that G(K) o (Y reresty) = G(L) o @(Yls---ﬂ'k)

for all coformulas é(vl,...,vk) and TyseeesTy € G(K-PQ'KIK). (Here the Yy

and Y‘; are identified as usual with open cosets in G(K) and G(L).) We order

the q's by putting ' 9y > 4, if qu o qu (inside P). Then the q's are
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directed upwards, and if 9 = 4,5, restriction defines g map H(ql) *—H(qz).
(This depends on a general comodel theoretic lemma, the formulation and proof of
which we leave to the reader), So the M(q)'s form & projective system of finite

sets, and if each M(q) ¥ P, then 1im M(q) ¢ ¢. An element of 1im M(q)

determines an isomorphism of Abs(R) onto Abs(L) sending Abs(K) onto Abs(L).

Writing f for the inverge isomorphism ¢ follows easily from lemma 31 that
(6(x), 1) Sgcc(L), 3.

S0 we are reduced to showing M(q) ¢ @, q given. For a coformula
= @(vi,...,vk} we let M{(q,$) consist of all Mo Pq,K -+ Pq,L mapping
P K NK onto P

L N L such that
{2 L
G(K) 4@(71,...,3'1(} « G(L) -'@(Yl,...,vk)

for all YyseeesTy € GK Pq K{K). So the intersection of all M{q,®) equals

»
M(q). Now each M(q,¥) is finite, hence to show that M(q) # @ 1t suffices to
show that M(q, ¢1) n...n M(q,%;) # 9 for any coformulas @1,...,§£ . Let
@i - @i(vl....,vk), 1=1,..., . Let rl,...,rn be the sequence of polynomials

asgociated to g, where n = deg q = {Pq: Pl. Fix a root 6 of q(X) in RK.

Suppose [K(6):K) = g < n, and write Gi,...,da for the m distinet automorphismg

of K(8) over K. For simplicity of notation we assume
01(6} = rl(é),...,ch(ﬁ) = rm(ﬁ). (In general we have

01(5} - ri (5),...,om(6) - ri (5), but thia would force us leter on into awkward
1 m

subsubindices.) Construct a coformula W(Vl,.-.,Vﬁ) such that for each ¢:
G w(Yl"°"Yﬁ) - y},...,yﬁ are the m cosets of an open normal subgroup of

index m in 6. Hence we have G(K) o W(cl,...,cﬁ).

iy T R



Let I be the set of all sequences 1 = (il,...,ik} with
1= il S Myeeegl = ik <m, and for 1 <3 = ¢ let A(3), be the set of all
i=(4 ,...,ik) €I with G(K) 4 @ (O, seess0; ), and let B(J) = INA(D).
11 i
Then we define the coformula @ (vl....,v ) as the conjunction of W(v eV )

with the ¢ coformulas

& (v ,...,v @ (v ,...,v Y ,i=1,...,8
’Ei}j) 34 1e3(3) 1y

* *
Then G(K) o 2 {01""’°h)’ by construction of ¢ , hence

*

KE & (rl,...,rm) by definition. The hypothesis (2) of the lemma implies that

", 03

* -
LE @q(rl,...,rm). By definition of @q(rl,...,rm) this gives the existence of a

root ¢ of q(X) in T such that:

{a) L(¢) has exactly m automorphisms Tyseses T, Over 1 given by

Tl(a) - rl(s),...,Tm(a) = rm(s). (This comes from V .)

(b) G(L)-fqaj(wcil,...,-c ) forall §=1,...,4 and 1-(11,...,1k) € A(D),

"
and G(L) =+ (¢

3 11"""‘1k) for all 4 =1,..., and 1= (1,...,4) € B(D.

Define : Pq,K'+ Pq,L by u(8) me ., From (a) we get

n
p(%l'K N K Pq,L NL and 7T, =0, . Together with (b) this implies
k€ Mg,%) N ... N M(q,%,), and the nonemptiness of the last set was what we were

out to prove.
-

The following corollary gives a complete list of elementary invariants for

RC~fields.
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Corcllary 37: Let K, L bpe two RC-fields, Then K =1L 4ff:

(8) X apd 1L %P);

(b) K and 1L have the game degree of imperfectness;

(¢) K and 1 satisfy the same Sentencesg @q&'), where ¢ = ¢(vl,...,vk)

ranges over the éoformulas, q {with associated sequence r

1,...,rn)

over the polynomisls in P[X] defining the finite Galois extensions of

P, and ¥ over the finite sequences (ri secesTy ).
k

Proof: Combine Proposition 33 and the Previous lemma,
]
Clearly condition (c) 1s the most significant one. 1t is quite possible
that {(c) 1in its Present formulation is not optimal, In the next section we give
an improvement for Ivasawa RC-fields. In §6 we give a gimilar improvement

for RC-fields with small absolute Galois group.

o o i

Wy
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(3.5) Galois theoretic constraints on RC-field extensions

Corollary 37 says roughly that the elementary theory of an RC-field K
is completely determined by the characteristic of K, its degree of imperfectness

and the cotheory of G(K) with suitably distinguished image G(Abs(K)).

Therefore it is natural to comsider the following problem. Let F bhe

a field alpebraic over its prime field, G a profinite group and #: G = G(F)

an epi.

When does there exist ap RC-field extension K _of F with Abs(K) =F

N ¢ — G(K)
and an isomorphism 6 - G(K) such that the diagram \\\ ‘// commutes?
L regtriction

G(F)

The answer is given in the following proposition, which improves a result

in [Lu-vdD].

Proposition 38: An RC-field extemsion K as required exists if and only if

G 1s projective. In that case K can be taken to have any degree of imperfectness

compatible with char(F).

Remark. Compatibility with char(F) means of course that if char(F) = 0, then
the degree of imperfectness of K 1s 1, while if char(F) = p > 0, then K

can have any degree of imperfectness pn, n=0,1,2,.00," .

First a lemma.

Lenma 39: There exists a countable RC-field extemsion L of ¥ such that

Abs(L) = F and G(L) = F, . L can be taken to have any degree of imperfectmess

compatible with char(¥).
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Proof: Take a purely transcendental extension F' of F of transcendence

degree %’%0' Sc F' is a countable hilbertian field. Therefore we have, by
[J1], [J32]}, for each e € p: Fix (51""'05) is an e-free RC-field for
almost all (01....,05) € GB(F‘)e. In particular, given any finite Galois
extension F(5)[F and any e > rk G(F(8)|F) we can take Op»re-+50, 1n

Gs(F'} such that Fix (cz,...,oé) is e-free and RC, and the oi[F(a) generate
G(F(56)|F). Note that then Fix(ai,...,oé) is linearly disjoint from F(5)

over F and, as a separable extension of F', hag degree of imperfectness pm,

if char(F) = p > 0.

Now G(Fix(ﬂi,...,cé)) e Fe’ Im(Fe) = all finite groups of rank = e,

and Fe has IP, see [J-K].

Therefore the compactness theorem, followed by an applisation of the
downward Skolem-Lowenheim theorem, gives the existence of a sountable RC-field

extension L of F such that:
(1) L is linearly disjoint over ¥ from each finite Galois extension of F;
(2) Im(G(L)) = all finite groups, G(L) has 1IP;
(3) L bas degree of imperfectness ﬁo » 1f char(F) = p » 0.
Now (1) implies that Abs(L) = F, (2) gives that G(L) = ;m » by
Corollary 24, and (3) dimplies that replacing L by a suitable purely inseparable

extension, we get an RC-field of the right degree 4f imperfectness, without

changing Abs(L) or G(L).
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Proof of Proposition 38: That G(K) is projective if K 1is RC, goes

back to Ax and Gruenberg, see [Lu-vdD, p. 44)]. Suppose now that G 1is
projective. Take a field L as in the previous lemma. Let x be an infinite
cardinal such that G has cocardimality «¢ . Take a g-saturated elementary
extensfon L" of L. G (L ) (= G(L }) 1s then «-cosaturated and Coth(G {L ) =
Coth(F ). Using Theorem 13A it follows that there exists an epl G (L ) -+ G.
Now G (L } has IP by lemma 26, so there is even an epi ¢ : GS(L )+G
such that

¢ (L) —————m>3 G

8
restricti;:\\E‘ ‘{/’/;

G(F)

%
commutes., As G 1is projective, there exists k : ¢ -+ Gs(L ) splitting © .

*
Let KC Ls be the fixed field of k(G).

Then we have a commuting diagram

G(R) =6 oK) = KG) -0

restriction\\\’ h///

G(F)

*
We still have that Abs{K) = F, since the restriction map G3<L )+ G(F) maps

*
G (K) onto G(F). Finally, K|L is separable algebraic, hence has the same

degree of imperfectness as L.
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§4. The case of Iwasaws RC-fields

(4.1) The classification of Iwasawa RC-fields turns out to be easier and more
satisfactory then the general case. Recall that an Iwasawa field is a field

whose absolute Galois group has IP, gee (2.10).

Theorem 40, Let K, L be Iwasawa RC-fields. Then K = L if and only if

(1) Abs(R) = Abs(L),

(11) K end L have the same depree of imperfectness.

(111) 1™ (6(R)) = Im(G(L)).

Note: This theorem, for perfect X and L, was obtained independently and by
different methods, by Fried-Haran-Jarden [F~H-J], who write Frobening for Iwasawa.

There is also overlap with results announced by Ersov in [E2] and elaboratad in [E3].

Proof: Necessity is clear.
Sufficientlx. We shall apply proposition 33. Without loss of

generality, assume that K and L are Hl—saturated; 80 G(K) and G(L)

have IFﬂl » by lemmas 18 and 26. Take any isomorphiem £ ; A'gs(L) = A'l;'s(K)

mapping Abs(L) onto Abs(X), and consider the diagram

G(K) G(L)

N

G(Abs (X)) “'—:—b G{Abs(L))
£

Use (111) and apply Lemma 26(b) to get (G(X),;) : ;(G(L), 3). Now use

>

1) and apply proposition 33 to get K =L,
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Note that proposition 38 takes care of constraints between the elementary

invariants.

(4.2) Quantifier elimination and model completeness for Iwasawa RC-fields

We have a very satisfactory quantifier elimination for perfect Iwasawa
RC-fields, in a language which we will call the "Galois formaliem". For imperfect

Iwasawa RC-fields we only have a model completeness result.

pefinition: The Galois formalism is the language of rings {0,1,4,.,~}
expanded by an n—ary predicate Sn' for each n 2 2, and a O-place predicate

IG, for each isomorphism type G of finite groups.

Definition: PpIRC 1is the theory of perfect Iﬁasawa RC-fields in the Galais
formalism, where the new predicates are defined as follows: a perfect Iwasawa
RC-field K has the unique expansion K to a model of pIRC by putting:

n-1 :
K E Sn(cl,...,cn)*“-§3x(xn + ¢yx + .ot - 0), and K F XG « K has a

Galois extension L with G(LIR) of isomorphism type G.

So 1f K€L mnd K, L have expansions K, L to models of pIRC,
then Kc L 4f and only 4f K is algebraically closed in L and Im(G(K)) =

Im{G(L)).

Theorem 41, pIRC admits quantifier elimination.

Proof: By Shoenfield's criterion [ sh 1 it suffices to prove the following:

Suppose f : L =M is an isomorph}sm between countable fields and L, M are

relatively aslgebraically closed in extension fields E, F respectively, which
are perfect Iwasawa RC and such that InG(E) = ImG(F)}, E is countable and F
is }{l-saturated. Then f extends to an isomorphism of E onto a relatively

algebraically closed subfield of F.
»
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To prove this we involve the embedding lemms, and as we are in the
perfect case the Jarden-Kiehne version suffices here. We first extend f to

an isomorphism, also denoted f, on T onto ‘ﬁ, 80 we have a diagram

G(E) G(F)

£ 1«

6Ly ¢ o

According to the embedding lemma we only have to find an epi
G(F) + G(E) which makes the diagram commutative. There certainly is an
epl G(F) -+ G(E), because G(F) is ?1l—couniversal, (lesmas 18 and Theorem 13A)
and G(E) is cocountable and G(E) = G(F) (corollary 25). Since G(F) has

IP%* (lemma 26), we may conclude that an epl as required exigts.
1 n

We now extend the Galois formslism by m-ary predicates Qm,
(m 21, p a prime) and let IRC be the theory of Iwasawa RC-fields in this
extended Galois formalism with the same defining axioms for the Sn and }G
as before and with K = Qm’p(cl,...,cm) # the underlying field K of K is
characteristic p and °1""’°m are p-independent in K. For

m € {1,2,,..} U {=} and p a prime we let

IRCm p L] IRC U {33.1,...,XQO’p(xl.---,xm) A —'(Bxlgut-'xm,xmlqw‘ll,p(xl,...,xml))}

»

if m d4s finite, IRC, , = IRC U {3x),...,x, Qk’p(xl,...,xk)lk =1,2,...}.
So IR,Cm is the theory of Iwasawa RC-fields with degree of imperfectness

4
p". We now generalize Ersov's model completeness theorem for separably élosed

fields in [E1l].
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Proposition 42. IRCm'p is model complete.

Proof: Suppose K and L are models of IRCm,p with underlying fields
K, L. Then KC | means that L 48 a regular extension of K, K and L
have the same degree of imperfectness, and ImG(K) = ImG(L). Then K<L L
follows immediately from theorem 34 and a minor extension of Corollary 25.

Remark. Wood indicated in [Wo] a 'weak' theory T, ° which has as model
)
completion the theory i; p of separably closed fields of degree of imperfect-
»

ness pm (in the language of rings with the Qm p's and the above defiring

*

axioms). But T is not universal, and, stronger even, im o does not
] L]

admit quantifier elimination. Therefore, neither does IRC .
m

(4.3) A reduction of the decision problem for Iwasawa RC-fields

Theorem 43. The decision problem for the theory of Iwasawa RC~fields is
Turing-reducible to the problem of deciding, for any given finite groups
Al""’Am’ Bl,...,Bn, whether there is a projective G with IP such that

Ay

€ Im(G) for 1 =1,...,m, B_1 £ In(G) for $=1,...,n.

Remarks. (1) We did not solve the decision problem for finite groups mentioned

in the theorem. However, Lubotzky and Haran recently did, see [L~H]. Hence

the theory of Iwasawa RC~fields is decidable.

(2) 1In the proof of the theorem we shall freely use that one can effectively

carry out certsin algorithms in, and effectively decide certain questions om,

finite extensions of prime fields. This kind of effective algebra is by now well
established, and the reader will find enough detail in [vd W,P . 79], [Ra, p. 352],

[vdD, fact 4].
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Proof of the theorem: As the theory of Iwasawa RC-fields 4s recursively

axiomatized, its set LC of logical consequences 1s recursively enumerable
(r.e. for short). So it suffices to show that the set LC of sentences
vhich are not true in some Iwasaws RC~field is r.e. relative to the decision
problem for finite groups mentioned in the theorem. We shall do this by means

of the elementary invariants provided by theorem 40.

Take a sentence ¢ € iE; 80 there is an Iwasawa RC~field K with
KF "l1¢. Now, by theorem 40, the complete theory Th(K) is axiomatized by
the sentences saying what the characteristic and degree of imperfectness of K
are, which monic polynomials in Z[T] have and which do not have a root in K,
and which finite groups do, and which do not oeccur as Galois groups over K.
(0f course, the last part only refers to the isomorphism types of the finite

groups.)

So ¢ € ic means that & is a logical consequences of a finite subset
of puch an axfomatization. Roughly then, to obtain the relative r.e. ness of
ifﬁ we need only decide, relative to the finite groups problem, whether a given
finite set of sentences of a special kind, 1is true in some Iwasawa RC-field.

More precisely:

Let a finite Galois extension Pq of a prime field P be given
(meaning: the characteristic P of P and the defining polynomial q(X) of
Pq are given, see (3.4)). Let also a subfield F of Pq be specified, say
by a polynomial r(X) ¢ P[X] with F = P(r(5)), 6 a root of q(X). (Of course,
r(X) determines F only up to isomorphism inside Pq; but that is good enough,

we note that one can determine effectively G(quF} a8 a permutation group on
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the roots of q{x).) Let also a supernatural number d be given, where
o«
d=1 4f p=0, and d € {l,p,pz,...,p } 4f p> 0. Finally, let finite

groups A, ,,...34 , B

1 n 1""’Bn be given.

We want to decide, relative to the decision problem for finite groups
mentioned in the theorem, whether there is an Iwasawa RC-field K> P with
ENP g F, which has degree of imperfectness d and Ai € m(G(K)) for

i=1,...,m, Bj ¢ Im{(G(R)) for J = 1,...,n.

The following claim clearly provides such a relativized decision method,

Claim. Such a K exists if and only if there is projective G with IP and
with G(Pq!F) € In(G), A, € Tm(G) for 1 =1,...,m, and B, § In(G) for

= 1l,...,n.

One direction i8 obvious: i4if such a K exists, then G = G(K) has the
required properties. Conversely, let G be projective with IP and

G(qur) € In(G), Ay €Im(G) for i=1,...,m and Bj f In(G) for 3 =1,...,n.

We now use an argument similar to the proof of proposition 38: take an
infinite cardinal « such that G has cocardinality <x and take an RC-field
L* 2P with Abs(L*) = ¥, such that L* has degree of imperfectness d, and
G(L*) is x—cosaturated and has the same cotheory as ; . Now we may consider
Pq as a subfield of L:, which gives us a surjective restriction map
Gs(L*} -+ G(quF). By the assumptions on G there is also an epi 7: &~ G(quF).
Proceeding as in the proof of proposition 38 we get an epi 6: GB(L*) + G such

*
that no = vestriction : Gs(L )+ G(Pq]F). As G is projective, there is a
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* *
splitting k : ¢ *-GS(L ) of 6. Taking KcC L, as the fixed field of
k(G), the usual arguments show that K N Pq =¥, K is RC, K has degree of

imperfectness d, and G(K) = G. So K satisfies all requirements.

(4.4) The preceding results, together with some work of Melnikov [ ¥ 71,

give the following outlandish:

Example:  There is an undecidable field K such that all proper finite

extansions L of K are isomorphic, and decidable.

Construction: Let f be a nonrecursive function from the set of finite simple

nonabelian groups to . By Melnikov, there is a closed normal subgroup N
of F& such that for any S £(8) 4s the largest k such that Sk is a
continuous image of N. By interpretability, any field K with G(R) =N

1s undecidable.

Let K, be any . RC-field with G(Ry) = F » and Abs(Ry) = Q. Any
extension L af K, has Abs(L) Y. Let K be the algebraic extension of
KO vith G(K) ~ N. Then K is undecidable.

By [ M ], 1f M 1s 5 proper open subgroup of N, M = F, - Suppose

L 18 the fixed field of M. Then 1L is RC s G(L) = F, » and Abs(L) =

So by Theorem 40, and L 1s decidable!

Finally, to make all these L isomorphic, we should choose K more
*
carefully. Replace K by a countable recurgively saturated K = K, and one
*
easily provea that all proper finite extensions of K are isomorphic and

decidable.
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§5. Projective Covers

(5.1 The material in this section is essentiasl for the decidability and
undecidability results of Sections 6, 7. It seems to us interesting beyond

our present setting.

We developed (as did Ersov independently in [E-F]) some properties of
projective covers of profinite groups. After the appearance of [Ch-vdD-M]
Tony Hager pointed out to us that the basic existence and uniqueness {of
projective covers of profinite groups) is due to Banaschewski [B  ]. As our
proofs turned out to the simpler than those in [B ] and [E-F] we give here a
new and selfcontained treatment. Subsections (5.1) and (5.2) are sufficient
for the undecidability result of §7, subsection (5.3) is included for its own
interest, and subsection (5.4) is only needed for the decidability result in

§6.

Definition: An essentizl epl 1s ¢: G -+ H such that there is no proper

closed subgroup G, of G with ¢(GO) = H,

Lemma 45: Suppose ¢: G+ H 1s an essential epi and V: T+ H 41s an epi

with I' projective. Then there is anepi y: T -+ G with = ¢y .

Proof: Each ¥: T+ G sguch that V¥ = ¢Y is obviously surjective.

Definition: A projective cover of H 1is an essential epi G ™ H wauch that

G 1is projective,
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If G*H 1s a projective cover of H we often write P(H) for ¢ and

also call P(H) the projective cover of H. This is justified by the follow-

ing.

Lemma 46: (Banaschewski) Every profinite group H has a projective cover

unique up to isomorphism.

Proof: Let F be a free profinite group and ¢: F ~» H an epi. By Zorn's
lemma there is a minimal closed subgroup P of F such that $(P) = H.

Now P is projective by [G] » hence ¢[P : P~ H 45 a projective cover.

Suppose ¢1 : PI -+ H and ¢y ¢ P2 =+ H are projective covers of H.
By the previous lemma there is an epi w: Pl -+ P2 such that $ont = ¢1.

Because P, is projective, m has a splitting 6 : P2 »rPl, il.e. ng = 1p .
- 2

Then ¢19 = ¢2“9 = ¢2, 80 ¢1(9(P2)) = ¢2(P2) = H, 8o 9(P2) = P1 because

¢, 1s an essential epi. Hence 6 : p_ = P, 18 an isomorphism such that

1 2

4,0 =4,

(5.2) More Specific Results

Lemma 47: rk(P(H)) = rk(H).

Proof: Clearly, rk(H) = rk(P(H)). If ¢: P(H) - H 1s a projective cover,

and X generates B topologically, then there is a subset Y of P(H) which
¢ maps 1-1 onto X. Y generates topologically a closged subgroup of P(H)
which ¢ maps onto H, and by minimality this closed subgroup muet equal P{H).

Hence rk(P(H)) = rk(H).
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The next lemma leads to a decidability result.

Lemma 48: A finite group ' 48 in TIm(P(H)) Iiff there isa 4 1n Im(H)

and an essential epl r-~a,

Proof: Sufficiency: Suppose 4 d4s in Im(H) and '+ 4 {3 an essential
epi. Because P(H) 4s projective there is 6; p(a) * P(T) making the

diagram

6
P(H) ————7 p()

" (m : P(I') - T the projective cover of T )

~

commutative. a6(P(H)) must be all of I . (Otherwise it maps onto a

proper subgroup of I, contradiction.) Hence T ¢ Im(P(H)).

Necessity: Suppose ¢: P(H) =T 4s an epi, T a finite group. Let
p : P(H) = H be the projective cover of H, so p(ker(¢)) 418 a closed normal

subgroup of H, hence p induces a commutative diagram

Py
P(H) e T’

Pl 8 { 6 iz an epl.)
H ——Datural ., pio(yers) =

We need only show that & 4is an essential epi (take 4 = H/p(ker¢)). Let Yl

be any subgroup of T with G(Tl) = A, We first show that ker¢.¢'l(ri) = P(H).

Let h € H, so h mod p(kerg) = 8¢(x) for some x € ¢~1(Tl), .d.e.

h mod p(ker$) = p(x) mod - p(keré), so h € p(ker¢.¢-l(pl)), and we have
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proved that p(ker¢w¢”l(rl)) =H. As p is essential this gives ker¢ .¢”1(F1) =

P(H). Applying ¢ to this gives r,=rT,

(5.3) Applications and examplesg

The first application combines projective covers and smallness.

Corollary 49: Suppose G is a finitely generated profinite group with

projective cover w: P -+ G. Then each epl P -G 1s a projective cover of G.
Proof: Given an epi P: PG there is by lemma 45 an epi y: P+ P with

P =y . By lemma 47, P is finitely generated, hence small, therefore

Y is an isomorphism, cf. (2.10),

The next result is eomewhat stronger.

Corollary 50: Suppose G 1is finitely generated and has projective cover

mi:P=+G., Let 6: H-+ & be an epl. Then each epi P+ H 4s a projective

cover of H, and 1f there 1s such an epi, there 1s one which makes the

P
dlagram / J " commutative,
G

H _Qm.,
Proof: Let p : P~ H be any epl. Then &p : P+ G 4is an epl, hence a
projective cover by the previous corollary. So there is an automorphism
of P such that Spit = 7, Then Pt completes the diagram above. Moreover,
as Op 15 a projective cover, p must be an essential epi, s0 p 18 a pro-

Jective cover of H.
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Projective covers of finite groups satisfy a weak form of the Iwasawa

property:

Corollary 51: Let G be a finite group with projective cover P. Then

|

where both maps are epi's, B € Im(P) and G € Im(A), can be completed by an

each diagram

B

ep! P+ B to a commuting diagram.

Proof: Note that G € Im{A) implies, by the previous corcllary, that the epi

P+ A is & projective cover. Now apply again corollary 50.

Corollary 52: The prolective cover of a finite simple group has 1IP.

Proof: Let P be the projective cover of a finite simple group S. Lemma 48
implies that for each A € Im(F) we have either A =1 or 5 € Im(A). Now

apply the previous corollary.

Remark. In [L-H] this last result has been generalized to: the projective

cover of a f.g. G with IP has 1IP.
The following result is related to the decision procedure in §6.

Corollary 33: There ig an algorithm which, given any finite groups
Al""'Am' Bl""’Bn’ decides whether there is a projective profidite group

¥ such that A

" € Im(P) for i=1,...,m and Bj £ Im(P) for j=1,...,n.
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Proof: Let G be any profinite group. Then epis G - Ai’ i=1,...,m,

induced a morphism G A]_x...;xm.m with image of a subgroup A of
A.lx...xAm which is mapped onto Ai by each projection Alx...xAﬁ* Ai‘ Now,
given finite groups Al,....ﬁh, we list the (finitely many) subgroups A of

A.lx...:mm vhigh are mgpped onto Ai by each projection A x ... xAm -+ A

1 1’
Clearly, for any G we have AI""'Am € Im(G) 4if and only if there is such
a subgroup A with A € Im(G). This reduces our decision problem to the case

m=13,

So let finite groups A, Bl,...,Bn be given. If there is a projective

profinite group P with A € Im(P), B, f Im(P) for § = l,...,n, then, because

]
an epl P > A factors as P ~* P(A) * A (both maps being epis, P{A) + A

8 projective cover), we must hcée B3 £ Im(P(A)), $=1,...,n. S0 a necessary

and sufficient condition for the existence of such a P 1g that

Bj f Im(P(4)), 1 = 1,...,n, which, according to lemma 48, is equivalent to: there
is no 8 € Im(A) with ap essential epi onto any Ej. Whé;her this last condition
holds, can obviously be verified in a finite number of steps.

Corollary 54: If P is the projective cover of G, then the primes dividing

the supernatural order of P are exactly those which divide the supernatural

order of G,

Proof: Let X be the class of fipite groups with orders divisible only by
primes diﬁiding the supernatural order of G, So € is a pro-X -group, and there
is an epl from X-projective group onto G, see [G, p. 158]. But each X~projective
group 1s piojective, by [G, Theorem 1]. Hence the projective cover of € is a

pro-X~- group.
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Example: the projective cover of a finitely generated pro-nilpotent group.

Let G be a pro-nilpotent group of rank e, so G~ 11 G , where
pel

I 1s the set of primes dividing the supernatural order of G, and G? is the
p-Sylow subgroup of G. Let rk(Gp) - ep, go 1 =< ep = e. Take for such
p €I an epi Fp(ep) - Gp, where Fp(ep) is the free pro-p group on e

generators. We claim that the induced map N Fle)—+ 11 6 =6 1is a
pel P P per

projective cover of G.

Notice first that by the corollary above and lemma 45 the projective
cover of Gp is a pro-p group of rank ep, hence isomorphic to ;p(ep)
(because projective pro-p groups are free pro~p groups, cf. [G 1). By corollary
40 1t follows that each epi gp(ep) - Gp is a projective cover. By Galois
cohomology P%Igp(ep) is of cohomological dimension 1, hence projective, by
[G ], and it 1s easy to see that the map n ; (e ) -G 41s essential. Our

pET
claim is proved.

(5.4) Relativized profinite groups

For our decision method in Section 6 we need a generalization of the
algorithm of corollary 53. The best way to state this generalization is to

consider profinite groups over a fixed profinite group.

Fix a profinite group I . A profinite group over T 4s by definition

an epd G-~T where G is profinite. The profinite groups over I' form a

categorv: a morphism of Gy +T into G2 + T 418 determined by a morphism

G
G, + G, such that the diagram 1 lf commutes.

1 2
\\\\\\’ :

T o T N0 X0 5 e
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(It follows that such a morphiem 4g an epi in the category of profinite
groups over I {f agnd only 1if G1 -~ 62 ie an epi.) ¥or simplicity of

notation, let us write ¢ for a profinite 8roup over T of the form G=-+1T,

We define an essential epi Gl =+ G2 to be an epi Gl =+ Gz such that

there is no proper closed subgroup M of Gl such that the composition

H~ Gl -+ G2 is an epi.

It is easy to show that each G = (G+F) has a projective cover:

take any projective cover m: P~ G of € and let P be the composition

g

) JA G-+ F. Then P, together with the morphism P I G "is a projective
cover of E.

i1
Moreover, {if PI T&-r G and P -2> ’52 are two projective coversg of ?f,

2
Hf"l such that “19 = "2. (Uniqueness,

then there 1s an isomorphism ©: '52 =

same proof as in (5.1).)

Suppose now that T is finite, Call H = (H=+T) finfite if H is

finite and define Im(E) = the class of all finite ?f for which there exists

an egi E -+ ?i.

The analogue of lemms 48 holds, and is proved in the game way.

Lemva 55: Let T be finite, and P®) projective cover of . Then =
finite ¥ belongs to Im(P(®)) 1f and only if there i T € Im((?) and an

essential ept ¥ o 7,

B P ——
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Corollary 56, There is an algorithm which, given any e € N, any finite

group ' and any finite groups Al""’Am’ Bl""'Bn over I, decides whether
there is a proiective profinite group §'- (P—+T) over T with
£ In(P) for 1=1,...,n.

rk(P) < e, such that A, € Imfg) for 1= 1,...,m, B

i h |

The proof is similar to the proof of corollary 53. The algorithm above is

crucial for the decision procedure In the next section,
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§6 DECIDABILITY

{6.1) Elementary invariants for RC-fielgs of finite corank

A field K is called of corank e if G(K) has rank e, We
shall prove that the theory of RC-fields of corank < e is decidable.
First, we improve corollary 37 for those RC-fields which have small
absolute Galoig group.

Let us fix for the loment a prime fielg P and a finjte
Galois extension Pq of P. (The Notations are those Preceding lemma
36). Recall that we associated to the Polynomial 9(X) a sequence
of polynomialsg Fl+ « « 4 rh, where n = deg q(x). (rltf), v e oy
Tn (6) are the n roots of a(X) if & is one of them.) Let us write
S8q for the symmetric group on ry, . ., ., Yn. Given a fielq g 2 P
and a Galois extension F of g containing a root of q(X) we define
a morphism
M GEFIK)— 5, by
T w) () = 5 ff el td) = ).

(W just describes how each & permutes the roots of q{X); note

that the image of Mg is isomorphic to G(Pq.K[K).)

simplicity). Given such an E and a morphism e: E-—-—-——a\sq we can
construct a sentence ej(e,E) such that for each field K O p the

following holds:

KF 8, (e,E) &> There is a Galois extension F of K contain-

3

ing a root £ of g(X), and an isomorphism

LR

T R 4
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E &% G(F|K) such that the diagram

E 2= G

ei\\g g
Sq commutes.
Now we can formulate the following variation on lemma 36.
Lemma 57
Let K» P, L. P and let i,j be the natural inclusions
Abs (K)&—>» K, Abs (L)%&—>» L. Assume that G(K)} or G(L) is small.
Then the following are equivalent:
l . . . P o’ .
(1) There exists an isomorphism £: Abs (L)Z= Abs (K) mapping
Abs (L) onto Abs (K) such that (G(K),1) =~"’—-='.f (G(L) 35
(2) K E 91 (e;E) &= L E 92 (e,E), for all q, E, e as
above,
Proof (1) ==*(2) is just a consequence of lemma 36, and the fact
that one can take each Eﬁ(e,E) of the form §§(rl, + s a1 Yl
(This fact can be established by a tedious but straightfor-
ward argument, which we leave to the reader.)
Now assume (2). By a projective limit argument we shall
. oy P N
construct an isomorphism f: Abs (L) Z== Abs (K) mapping Abs (L) onto

Abs (K), together with an isomorphism ¢ @ G(K) £5 G(L), such that

G{K)-——-?—--)G(L)

- Ll

i 3

the diagram

G(Abs K)-——3G(Abs L)
£

commutes. This statement clearly implies (1). 1In the construction
of £ and é we will freely use the notations Pq,K, Pq,L- dJ‘ intro-

duced in the proof of lemma 36.

B e T T ———,
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For each finite Galois extension F of K and each g with
F 2 K.Pq,x we define M(F,q) as the set of all triples (F', ¢, px)
such that F' is a finite Galois extension of L with F' D L.Pq, L,
4; is an isémorphism G(F|K) £= G(F'|L) andg rc is an isomorphism
Pg,X 2z Pq,L mapping K A Pq,k onto L. Ny Pg,L. with the pProperty
that the diagram

G(F|K);L->G(F' |L)

G(K.Pq,KIK)-—-._.) G(L.Pg,1|L)

& &M

commutes,

Claim 1  M(F,q) 2= g

To prove this, choose a root & of q(X) in F and an isomor-
Phism p: g == G(F|K), where E isg the representative of the isomor-
Phism type of G(F|K). Then there is a unique morphism e; E-—-»-}Sq

such that ﬂ;or = @+ 8o we have X }= 81 (e,E), hence 1, f: 61 (e,E).

This means that there is a Galois extension F' of L, a root {' of
g9(X) in F' and an isomorphism p': g & G(F'|L) such that T, BP’ = e
Now we put ¢== P"P-’ (so ? is an isomorphism of G(F|K) onto
G(F'|L)), and define P+ Pq,x =3 pg,p by pér=8" , ang a
Straightforward computation gives (F',cﬁ,r} € M(F,q).

Claim 2 In(G(K)) = Im(G(L))
If E € Im(G(K)), say E o= G(F|K), then M(F,q) # g (for q
such that Pg = P, say) immediately gives E € Im(G(L)), so

Im(G(K)) < Im(G(L)), and by symmetry, we get equality,

-

S A T e

o,

e

P
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Claim 3 M{F,q) is finite,

From claim 2, the hypothesis, and Schuppar's result on small
profinite groups in [S}, we get that G(K) and G(L} are both small,
and claim 3 follows immediately.

Now we put (F3,4q1) > (Fp,q92) if F} D Fz and Pq; D Pgz. It
is easy to see that the (F,q)‘'s (with F a finite Galois extension of
K containing a root of q(X)) are directed upwards, and that if
(F1,91) > (F2,92), then there is a canonical map M(F1.,91)—3M(F3,93).
Lo the M(F,q)'s form a projective system of finite non-empty sets
(by the claims above), &ngflM(F,q)q& g. Now an element of
%ig M(F,q) determines first of all an isomorphism ¢ : G(R) =5 G(L)
{(by claim 2 and smallness), and secondly an isomorphism

pos Abs(K) £=5 Abs(L) mapping Abs(K) onto Abs(L) such that the

dizgram

cix—456(0)
i ;
G(Abs K)=——3G(Abs L)
6 3 M

7
commutes. Now just take f = o n

Corollary 58 Let KD P, L D P be two RC-fields and assume that

G(K) or G(L) is small. Then K=3 L if and only if K and L have the

same degree of imperfectness, and for all q, E, e as above:

K F 93 (e,E)é=p L E Ba(e,E).

Proof Combine Proposition 33 and the previous lemma. ]

For our decision procedure in (6.2) we shall need the some-

what technical lemma 59 below. 1In the following Galois extensions

P R 1 A

S o

B
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of a field K are always taken inside a fixed algebraic closure

ﬁ'of K.

Definition

Given a Galois extension Pqg of a prime field P, representa-
tives E, El' * s ey En' and morphisms ez E“'—"“"" Sqf ei: Ei—.—ﬁé Sq;
i=1,..., n, all with the same image in Sq, we let

Qi (e,EIel,Elg * * *7 ©ns Ep) be a sentence of fielqd theory such

that for each field K D P we have:

K F ei(e:E’El;Elg e & o} enl En)

—

there is a root & of q(X}) (in ﬁ} and a Galois extension F of K con-

-

taining 4§ and an isomorphism E ~¢ G(F|K) such that the diagram

E ==z G(F|K)
e ﬂ";
Sq
commutes, and such that, for each i = 1, « . ., n, there is no

Galois extension F;|K containing § with an isomorphism E; 22 G(F4{ |K)

making

Ei 22 G(Fi|K)

commutative,

Remark Note that Bgfe,r::) AT Bi(ei,El)/\ . . .A'ﬂei(en, En)

implies 9’_(e,E[e1, Eit « v o5 ep, En}, for fields = p. Note also

R A T TR KK i

i
I
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that we have an effective method which, given q(X), e : E~+ § and the
- q
ei H Ei -+ Sq (t=1,...,n) as above, constructs the sentence

eq(e, E|e1. El;'";en' En).

lemma 59. Suppose K 2P and Kk 7, where T 1s a conjunction

{(e(1), E(1)) A ... A 8 (e(k), E(k)) A =6 (e(k+l), E(k+l)) A ... AT

q{k) q{k+l)
(e(k+f), E(k+¢)). Then there is a sentence o = 8 (e,Ele ,E ;...je ,E)
q i1 n n

Bq(l)

g
q(kt+é)
as defined above, such that Kk o and o -+ T holds in all fields 2 P.

Proof(4): Let Pq be the splitting field of the 4q(i), 3 =1,...,k+¢{ , with
q irreducible over P, and consider l?‘q and the Pq( j) as subfields of X.
Choose for each j = 1,...,k a Galois extension F{j)'h{, and isomorphism

E(§) = G(F(1)|K) and a root &6(1) of q{1)(X) such that the diagram

E() = G(F(I| K

e(j)\}ﬁﬁ(j) commutes.

Sa(s)

Choose for ¥ any finite Galois extension of K containing
¥(1),...,F(k), and take a root 5 of q(X), an isomorphism E = G(F|R)

and a morphism e : E - Sq making the diagram

E = G(F[K)

\i /"6 commitative,

S
q



Then K = Gq(e,E) and it 1ig easy to see that the implication
Sq(e.E) - (Bq(l)(e(l). E(1)) A .. A eq(k)(e(k), E(k))) tholds in all

fields > P,

(11) By (1) we can agsume without logs of generality that k = 1. More-

over, 1f & i1g a root of q(1), then 9(2),...,q(841) gplit in P(5),

Fow look for example at the condition eq(z)(e(2), E(2)). Select
a root §(2) of q(2) 1in P(8). Suppose 1L is a Galois extension

of K containing 6(2). We have

6(L(8) |K)
restriction restriction
G(x(8) |x) G(X(5) |K)
Jv "5(2) 1 "
Sq(2) Sq
and we want to fill in Sq 3 Sq(z} to make this commute.
Let m = degree {(q(1)),
n = degree (q(2)).
Let r{l),...,rilz and r{z),...,rn(z) be the polynomials corresponding

to q(l), q(2) respectively. Now 6(2) can be written as R(5) for some

R € P[x]. Now we define a Sq=+ Sq(z) by:
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famy (@ GO =R @) 1r 1P 6) - Rz (6)). Ve leave

to the reader the verification that a i1s well-defined, independent of

R, and works.

¥ow suppose we have a commuting

LK)

w) /5(2)

Sq(2)

E(2)

Using the preceding paragraph this readily gives

6(L(8) |K)

<]
R

s
q
*
where - ge gcovers e{2), i.e.
*
E'W ——— E(2)
e* e(2)
a

commutes. Note that o depends only on & and R, and is uniquely determined

by them. Call such an ¢ suitable.

x K
Suppose conversely we have E , e and suitable s with commuting

diagrams as above. Then it is simple to get a commuting

T e,
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E(2) o G(L|K)

e(2) "5(2)

S2(2)

* %
This shows that there 1s some E, & guen that
* %
[ 8 Gq(l)(e sE )
and

* %
eq(l)(e yE ) =+ 7Bq(2)(E(2),E(2))

holds in al1 extensions of p,

S50 now without loss of Benerality we cap assume

9(1) = q(2) =+-ea q(4+l) = q,

(i1%) Finally we must consider the relation between n5 and w

X for

different roots 5,8' of 9. Suppose 1 1g a Galois extension of K

containing § (equivalently, 8'). Then Mg Mgt are best represented

via
G(L|K)

Ifestriction

ﬁ5 G(Pfé),_?) "5'
/ "
~
S s
q q

(We do not bother to make our notation reflect 1L).



Now it can be easily checked that if v € G(P(5) |P) and

&' = y{&8) then
SNCEE NN ROLR
& 5] & &
for all o € G(P(5)[P). And of course, since q is irreducible over
P, there is a y with §' = y(8). BSo et and g are conjugate.

So now suppose there is no L2 Galois over K, containing &,

with commuting

E(2)

i

G(L,|K)

e(2) Ve

Let e(2)'(g) = ﬂﬁ(ﬁ)“le(z)(g)wé(v), for g € E(2). Then by the pre-

ceding analysis there is no LZ with commuting

E(2) = 6(L,|K)
e \ / TT5!

S

q

We write e(2)' = e(2)Y, in an obvious notation, and call e(2)Y a

conjugate of e(2). So now at last we see that

1) Kkeéﬂnju”ﬁﬁjuhuddﬂﬂﬁn

where {e(2),...,e(r)}
- leiz=g=t+1, yvec@E®IM} :
(11) 1f o 1is the above Sq, then o =T holds in all fields 2 P.

This completes the proof. o

84
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(6.2) Theorem 60: The theory of RC-fields of corank < e 14g decidable,

for each e €N.

Remarks:

(1) In contrast, in section 7 we shall see that the theory of RC-fields
of finite corank is undecidable. Let us algo note that the statement of
Theorem 60 remains trye if we prescribe the characteristic, and any
degree of imperfectness compatible with the characteristic, (This is
clear from the proof,)

(2) We shall follow the pattern of the proof of Theorem 43, Again,

we tacitly assume that certain algebraic objects (such as a finite

Galois extension of a prime field) are effectively presented (say, by
giving the characteristic of the prime field P, the defining polynomial
q(X) € P[X], with 1ts associated sequence rl,....rn), and that certain
algebraic operations in and on such objects are given by effective
constructions. It would be painful to spell out exactly what is needed

in this respect, and the proof makes 1t cleay anyway,

Proof: Let é €N be given. We only have to show that the set of
sentences which are false in some RC~field of corank =< e is recursively
enumerable. Now, the complete theory of an RC~field K of corank < e
is, besides by the axioms for RC-fields, axiomatized by the sentences
saying what the characteristic and degree of imperfectness of K are,
and by the sentences eq(e.E) and veq(e,E) which hold in K. (By
Corollary 58.) By Lemma 59 every finite set of sentences of the forms
eq(e,E), 76q(e,E) can be replaced by one sentence of the form
eq(e.E}elnﬁl;...;en.En).

Now, by the same argument as in the proof of Theorem 43, we are

led to consider a situation of the following type: A finite Galois
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extension Pq of a prime field P, of characteristic p, 1is given,

and a supernatural number d, where d=1 {f p =20, and

d € {1,p,p2,...,p“} if p > 0. Further morphisms e:E - Sq,

eI:E1 + Sq, i=l,...,n, are given, sll with the same image T < Sq. {*)

It suffices to produce an algorithm which from such data (%)

computes an answer to the question whether or not there i1s an RC-field

K D P of degree of imperfectness d, satisfying eq(e,Eiel,El;...;en,En). (X&)

Now, if such a K exists, then, for L = K Pq and a suitable
root & of q(X) we have T = G(R(8) |R) = G(PqIL), and in view of the
nature of these isomorphisms we see that the embedding ﬂB:G(quL) -+ Sq
has image T. Let us denote the epis E -+ T, Ei -+ ' induced by

e, e by E, Ei (i=l,...,0).

Claim: A field K as described in (**) exists, if and only if there

is a subfield L of Pq such that ﬂa:G(quL) -+ Sq has image I, for

a suitable root & of q(X), and there is a projective profinite group

T over T with E € Im(G) and %; £ In(@), for i=1,...,n.

If the claim is true, we have an algorithm as required in {(**)1 by
checking the subgroups of G(Pq[?) given as a permutation group on the
roots of q we can decide whether a field L exists, and by Corollary 56
we can decide effectively whether € exists.

One direction of the claimed equivalence is easy: if K exists,
just take L = Pq N X and © = the epi (G(X) -~ I'), induced by a suit-
able uﬁ:G(F!K) -+ Sq as described in the definition of
eq(e,EIel,El;. .eseL,E ).

Now for the other direction: let w, map G(quL) onto T C S,

where & 1s a root of q(X) and L a subfield of Pq. let G = (G =T)
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be a projective profinite group over I with E ¢ In(3), %‘1 £ In(S)
for i=1,...,n. Just as in the proof of Theorem 43 we £ind an RC-field
K2 Pq. of degree of imperfectness d, with X n Pq * L, such that

for some isomorphism € & G(K) we have a commuting diagram

6 = ¢
T

From the properties of € 1t is clear that K F Gq(e,EIel,El;...;en,En).

-



88

§7. Undecidability

(7.1) We shall prove that the cotheory of projective profinite groups
is undecidable. This will give the undecidability of the theory of

RC-fields, via interpretability. This was proved independently by Ersov.

L Y

(7.2) We first give an example to show that there are projective pro-

finite groups which do not have the Iwasawa property.

Example: Let q be an odd prime and Dq the dihedral group generated

by a,p with relations a2= 1, Bq= 1, a_lﬁa = 5-1.

Dq has 2q elements and cannot be written non-trivially as a direct product.
Let H = Dq x Ez GF2 the group of 2 elements). Idenfi{fy Dg

and ¥, as subgroups of H. Let Nl and N2 be respectively Dgq and

2
<P> xin. Both are normal in H with quotient isomerphic teo Fz. How-
ever there is no normal subgroup M, of H with M; ¢ N, and H/M = Dq,
whereas Hz =F, C Nz and H/M?_ =~ Dq.

We claim that the projective cover FP(H) does not have IP. For,

consider
P(B)

P
~

H

natural

N

H/M, patural, H/N, = B/N,

Suppose thls can be completed by an epl y:P(H) —+ H/M2 to a commutative
diagram. Let K = kernel (y). Then the induced epi P(H)/K - H/p(K) is
essential, see the proof of the 2nd part of Lemma 48. But

P(H)/K = II/M2 = Dq, and the only essential epi's with domain Dq are
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isomorphisms. %o H/p(K) = Dq. On the other hand, K ¢ p-l{Nl),

g0 p(K) ¢ N contradiction.

1|
Our undecidability proof will be an elaboration of the above.

{7.3) Coding graphs

A graph is simply & get together with an irreflexive symmetric
binary relation on fr. 4 basic undecidability resylt [ELTT) says that
the theory of graphs is Trecursively inseparable from the set of gentences
refutable in some finite graph,

We give a construction G -+ () which to any profinite ¢
assigns a graph TI'(G) (whose underlying set may be empty). We show
that every graph is isomorphic to a I'(G), € projective. (6} will
be interpretable in the cotheory of ¢, whence our undecidability
regults,

Fix distinct odd primes p, q. The underlying set of r{c) is
the set of open normal N with G/N = Dp, Dote that for such N there
is unique open normal M D N with G/M e;wé, and we indicate this M
in the following as N', We define a relation R on TI'(6) thus:
R(Nl,Nz) 1ff ¥, ¥ N, and there exists normal open M > Ni N Né with
G/M = Fz. such that there 1g open mormal N C M with ¢/N o Dq.

Evidently, (I'(G),R) 1s & graph, possibly empty. By T(G) we

normally understand the graph. The proof of the next 2 lemmas is clear.
Lemma 61: There is a single cosentence expressing that T(G) ¢ g.

Lemma 62: 1If r(c) + £, then the 1st order theory of TI(G) is

interpretable in the cotheory of @.
Now & nice use of Projective covers,

Lemma 63: T(G) T(r(c)).

R A A -



90

Proof: The essential point is that Fz, Dp and Dgq have no nontrivial
essential epis from them.

Let p:P(G) =G be the projective cover, and H open normal in
P(G), with P(G)/H = one of 82, Dp, Dgq. Sime the induced epi
P(G)/H - G/p(H) 15 essential (see the proof part of the 2Znd part of
Lemma 48), we have G/p(H) = P(G)/H. Hence H = p_l(p(H)) {since
G/N = P(G)/pul(ﬂ) for each open normal N in G).

So T(¢) and T(P(G)) are naturally isomorphic as sets, via
N - p“:l (N), and it 1is easy to see that this map is also an isomorphism
of T(G) and r(P(G)) asg graphs.o We define TI(G) also for a
(discrete) group G: 1in the definition of I'(G) we simply replace
"normal open subgroup" by "normal subgroup of finite index". Now the
subgroups of finite index of a group G are in a natural 1-1 corres-
pondence with the open subgroups of its profinite completion
3 = lim ¢/N, N ranging over the normal subgroup‘s of finite index. (See

[Lu=vd D, p. 28].) This gives:

Lemma 64: T{G) = TI'(G).

Now we face the construction problem. Given a graph T, we

must construct a group G with T(G) =T,

Stage 1: Fix distinct odd primes p and ¢. Let V be a vector
space over E‘z, the field of 2 elements. Let H and I be families
of (linear) subspaces of V of codimension 1. We define & vector
space A over E‘p by taking (aH)HEH as a basis, and a vector space
B over Fq by taking (bI)IEI as basis. We define an action of the
additive group V on the additive group A® B by:

a.;;-a.a 1f veEH .b‘I’-b 1f vetl

I

~a; if vd H -by 1f vd L.
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It is easy to check that these formulas uniquely determine for each
v € V an automorphism x v x° of A ®B,

Let G be the semidirect product (A @ B) w V corresponding to
this action.

Let us note here that ¢ 4g residually finite. As we do not
need this fact, we leave the (easy) proof to the reader. (The main
point is to use that A, B and V are locally finite groups, )

Now we try to identify those N « G with G/N aémz, Dp, Dq.

Let ¢:G+F, be anepl. A® B cC ker(p), since A 1is of

2
exponent p and B of exponent q. Considering the exact sequance
0+ABB+G~+V+0 we gee that ¢ corresponds with an epli V a-Fz,
and so with a subspace of V of codimension 1.

Next, suppose @:G + Dp is an epl. Then B ¢ ker(¢). Let
r, 8 with rf = sz= 1, s—lrs = 1'“-1 generate Dp. Then necessarily
P(A) = <r> and @(V) = <s>. So ker(®) N A is & subspace of codimension
1, and ker(9) NV 4s a subspace of V of codimension 1. Take H ¢ K
such that w(aH) ¥ 1. Then w(n.aﬁ) =r for some n € N. We'll show
that ker(y) = 6<aI:$ ¥ H> @ B). H. First of all, for v € H we have
a; = &, whence o(v) = 1. (Here we use that & = o(v) satisfies
52 = 1, 6—1r5 = r, implying & = 1.) Next, for I ¢ H, I +H we take
v € NI and get a¥ = ~g, B8O ¢(aI)”1 - w(aI), and w(aI)P = 1, which
implies @(aI) = 1. The assertion on ker (o) follows,

Conversely, if H € H, then N = G<aI:I € H\{H}> @ B), XN is a
normal subgroup of 6 and G/N z Dp.

It follows that the map H -+ N, N as above, 1ig a bijection of

H onto the underlying set of TI'(G). Via thig map we identify H with

the underlying set of T(G). Now we replace p by q d1n the penultimate
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paragraph and get a corresponding identification of 1 with the set of
N <a G with G/N = Dq. This allows us to identify the graph relation on

Ir(e)| = . If Hj,H, € K, then R(H;,H,)) holds 1ff H  #H, and

1!
there exists T € I with H1 n Hz c I.

Stage 2: Let (T,R) be a graph. We let V be a vectorspace over Fz

with basis Let H = <v_:5 ¢ v>. HY is a subspace of codimen-

(vv)véf' Y 5

sion 1. Put H = {EY:Y €T}. For v ¥ 6 let I(y,8) = <v, + v >

&
& <vX:l £ v,5> . I1{y,8) 1s of codimension 1, and we put

1= {I(y,8):R(y,5)}. Now construct G as in Stage 1. As observed
there, the set |T'(G)| can be identified with T, and so with H.

The relation R on T(G) holds between HY and H5 1ff v # 6 and

for some +¥',5' with y' # 6" and R(y',6') we have I(y',8') > HY n HG'

But note that there are exactly three subspaces of codimension 1
containing HY N Hy, namely HT’ H, and I(y,6). Clearly HN I =9,
80 R(Hy'aﬁ) holds iff I(vy,8) = I(y',8') for some +',§' with
R(y',5'). But then {v,8}= {v',6'} and R(y,8). So R(HY,ES) iff
R(y,8).

We have proved that TI'(G) = <I',R>. This proves:

Theorem 65: For every graph I' there is a projective profinite G with

r(¢) =I'. If T 4is finite, we can take G finitely generated.

Proof: The first statement follows from the lemmas 4n this section and
the constructions given in Stages 1 and 2 above. For the second part
we note that the discrete group G which we associate to T dis finite,

4f T 4s finite. Then P(G) is finitely generated of rank rk(G). u

Corollary: The cotheory of projective profinite groups is undecidable.

In fact, it is recursively inseparable from the set of cosentences

refutable in some finitely generated projective profinite group.




Proof: Directly from interpretability and the corresponding result

for graphs.

Remarks:
1. The cotheory of (projective) profinite groups is recursively
enumerable, as is the set of comentences refutable in some finitely

generated (projective) profinite group.
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2. The projective covers P(G) of the profinite completions of the

discrete groups considered at Stage 1 are prosclvable of class 2.

Translated to RC-fields we have:

Lorollary: The theory of RC~fields 1is undecidable. The theory of

RC~fields of finite corank 1s undecidable.

Remarks: Both statements remain true if we prescribe characteristic

and any degree of imperfectness compatible with the characteristic.

Proof:’ By Proposition 38 and the previous corollary.

I
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§8. Concludifp-Remarks

" 8.1. We are confident that all main problems in the model theory of
RC-fields have now been solved. We regret the long delay between our
discovery of the results kby end of April 1980) and the production of a
finished manuscript (January 1982). During that period other groups
have published their independent findings (as we detailed in the text),
and we thank especially Ersov, and Fried-Haran-Jarden~Lubotzky for a
free exchange of ideas. To our knowledge, the only important new result
since April 1980 is the decidability of Iwasawa RC-flelds, by Haran-

Lubotzky [Ha-L]. We point out here a consequence of their method:

Theorem 66: The theory of Iwasawa RC-filelds is equal to the theory of

Twasawa RC-fields of finite corank.

This should be contrasted with the inseparability result of

Theorem 60,

8.2. We expect that our "comodel theory" will be a useful tool in the
model theory of arbitrary fields. Here are three challenging problems:
(1) Is the class of all G(X) coelementary?

(2) Is G(Q) decidable?

(3) Prove that K infinite stable implies G(X) = 1, wvia "costability"

for profinite groups.
A negative answer to (2) would give a radically new proof of
undecidability of Q. A positive answer will need very detailed infor-

mation relating to the inverse problem of Galois theory.
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8.3. We hope to gee a Systematic treatment of profinite model theory,
not just for groups. A Promising start has been made by Zoé Chatzidakig
[Cha] at Yale. She has proved the dual of the Keisler-Shelah Theorem,
a8 well ag a Completeness Theorem.

We remark that we have an unpublighed treatment of co-model
completeness, comprising duals of Robinson's Test, existentially closed
models, model companions and forcing., The details may appear later, if
they prove useful in applications,

We are aware of formal connections between our work and that of
Henson ([ He ], but mostly unpublished) on Donstandard hulls of Banach
8paces. We believe that it will be fruitful to analyze the precise
comnection, and to seek g common topological model theory subsuming

both,
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