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Themes

Connected groups of finite Morley rank (in general)

Generic covering and conjugacy theorems

Definable hulls of p-tori
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Essential Notions

Morley rank (rk (X))

Generic set: rk (X) = rk (G)

Connected group
[G : H] < ∞ =⇒ G = H.
X , Y ⊆ G generic =⇒ X ∩ Y generic

d(X ): definable subgroup generated by X .
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Types

p-torus: divisible abelian p-group

Types:
Degenerate: No infinite 2-subgroup
Even: Nondegenerate, no nontrivial 2-torus (“characteristic
two type”)

p-unipotent: definable, connected, bounded exponent,
nilpotent p-group
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Structure

Without 2-tori

1 ≤ O2(G) ≤ G

O2(G): maximal unipotent 2-subgroup
Ḡ = G/O2(G)

Ḡ = U2(Ḡ) ∗ Ô(Ḡ)

With 2-tori

Theorem (G2)

The generic element of G belongs to C◦(T ) for a unique
maximal 2-torus T .
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Without 2-tori

Ḡ = G/O2(G) = U2(Ḡ) ∗ Ô(Ḡ)

U2(Ḡ): product of algebraic groups; Ô(G): no involutions

Ingredients

Theorem (E)

A simple group of even type is algebraic.

Methods: Finite group theory, good tori, Wagner on fields of
finite Morley rank—classification

Theorem (D)

A connected degenerate type group contains no elements of
order two.

Methods: Black box group theory, genericity arguments—soft
methods
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Good Tori

Theorem (E)

A simple group of even type is algebraic.

1st wave: No bad fields, no degenerate type simple sections.
2nd wave: No degenerate type simple sections.
3rd wave: General case (tori)

Definition

A definable divisible abelian subgroup T of G is a good torus if
every definable subgroup of T is the definable hull of its torsion
subgroup.

Rigidity properties:
R-I N◦(T ) = C◦(T )

R-II Any uniformly definable family of subgroups of T is finite.

Ref: Altinel-Cherlin, Limoncello (J. Alg. 291 (2005), 371–413)

Gregory Cherlin Genericity, Generosity, and Tori



Good Tori

Theorem (E)

A simple group of even type is algebraic.

Definition

A definable divisible abelian subgroup T of G is a good torus if
every definable subgroup of T is the definable hull of its torsion
subgroup.

Rigidity properties:

R-I N◦(T ) = C◦(T )

R-II Any uniformly definable family of subgroups of T is finite.

Ref: Altinel-Cherlin, Limoncello (J. Alg. 291 (2005), 371–413)

Gregory Cherlin Genericity, Generosity, and Tori



Good Tori

Theorem (E)

A simple group of even type is algebraic.

Definition

A definable divisible abelian subgroup T of G is a good torus if
every definable subgroup of T is the definable hull of its torsion
subgroup.

Rigidity properties:

R-I N◦(T ) = C◦(T )

R-II Any uniformly definable family of subgroups of T is finite.

Ref: Altinel-Cherlin, Limoncello (J. Alg. 291 (2005), 371–413)

Gregory Cherlin Genericity, Generosity, and Tori



Unipotent Type

Theorem (E)

A simple group of even type is algebraic.

Corollary (U)

A connected group of finite Morley rank without p-tori has
degenerate type.

Direct proof

U the connected component of a Sylow 2-subgroup.
M = N(U).

Strong Embedding: If M ∩Mg contains an involution then
g ∈ M. Hence: All involutions of U are conjugate under the
action of M.

But M◦ = C◦(U)

in view of
(a) the absence of p-tori;
(b) Wagner’s theorem: the multiplicative group of a field of

finite Morley rank in positive characteristic is a good torus;

forcing finitely many involutions in U.
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With 2-Tori

Theorem (Gp)

The generic element of G belongs to C◦(T ) for a unique
maximal p-torus T .

Theorem (Tp)

If T is a p-torus and H = C◦(T ), then the union of the
conjugates of H is generic in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and
generically disjoint from its conjugates then:

in G;

For X ⊆ H, we have in H.

Definition

X is generous in G if the union of its conjugates is generic in G.
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With 2-Tori

Theorem (Tp)

If T is a p-torus and H = C◦(T ), then the union of the
conjugates of H is generic in G.
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Almost self-normalizing (Rigidity-I)
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⋃
H [G\N(H)])
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conjugates of H is generic in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and
generically disjoint from its conjugates then:⋃
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For X ⊆ H, we have
⋃

X G generic in G if and only if
⋃

X H
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With 2-Tori

Theorem (Tp)

If T is a p-torus and H = C◦(T ), then H is generous in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and
generically disjoint from its conjugates then:

H is generous in G;

For X ⊆ H, we have X is generous in G if and only if X is
generous in H.

Definition

X is generous in G if the union of its conjugates is generic in G.
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Poizat’s Problem

Problem

Let G be a connected group of finite Morley rank which satisfies
the condition

xn = 1

generically. Then G satisfies the condition

xn = 1

identically.

More generally:

Theorem

G as above. If xn = 1 generically on G, and n is a power of 2,
then xn = 1 identically on G.

and n = 2knO with nO odd, then
G = U ∗G1 with U a 2-group of bounded exponent and G/U a
group satisfying xnO = 1 generically.
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Generic equations

Analysis:

G contains no nontrivial p-torus.

T = d(Tp); H = C◦(Tp)
xn = 1 generically in G

xn = 1 generically in H
xn = 1 generically in Ta some a ∈ H
xn = 1 generically in T
T = 1

G = U ∗G1 with U a 2-group of bounded exponent and
G/U containing no involutions.

Theorem U
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Carter Subgroups

Definition

A Carter subgroup of G is a connected definable nilpotent
subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

Theorem (Frécon)

If the group G involves no bad groups and no bad fields, and T0

is a maximal divisible torsion subgroup, then C◦(T0) is a Carter
subgroup.

Construction in general:
Let Q be the largest and most semisimple nilpotent subgroup
you can find. Then Q is a Carter subgroup.

One would like to know that the Carter subgroups constructed
in this way are generous and are all conjugate. We are taking
the 0th approximation to this as our fundamental structural fact.

See (or hear) Frécon . . .
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Generosity Arguments

Selected Examples

Degenerate type groups

Limoncello

Toricity
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Degenerate type groups

Sylow 2-subgroup finite, nontrivial.
Minimal example, simple (without loss).
Any 2-element will lie outside any proper definable connected
subgroup of our ambient group G.
Useful simplification:

Lemma (EA)

The Sylow 2-subgroup of G is elementary abelian.

Genericity argument

Afterward, other techniques are brought to bear.
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Lemma EA

Elementary abelian Sylow 2-subgroup = no elements of order 4.

t 7→ Ht

Covariant: Htg = Hg
t

Almost selfnormalizing: N◦(Ht) = Ht .

Claim

For any 2-element t 6= 1, the coset tHt is generous.

Proof.

A variation on the standard genericity argument:

N◦(tHt) = Ht

The conjugates of tHt are pairwise disjoint
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Lemma EA

Elementary abelian Sylow 2-subgroup = no elements of order 4.

t 7→ Ht

Covariant: Htg = Hg
t

Almost selfnormalizing: N◦(Ht) = Ht .

Here t 6= 1, and Ht a proper connected definable subgroup for
t 6= 1.
Definition: Ht = N◦(. . . N◦(C◦(t)) . . . ). One takes connected
normalizers until it stabilizes.
This is only interesting for t a 2-element, in which case t /∈ Ht

(by minimality).

Claim

For any 2-element t 6= 1, the coset tHt is generous.

For a ∈ tHt and t a 2-element, [d(a) : d◦(a)] = o(t). So the
cosets corresponding to t of order 2 or 4 are disjoint, and our
claim follows.

Proof.

A variation on the standard genericity argument:

N◦(tHt) = Ht

The conjugates of tHt are pairwise disjoint
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Limoncello

The initial configuration

Even type.
A “uniqueness” case, weak embedding, M ≤ G “big”.

M ∩Mg contains a nontrivial unipotent 2-subgroup
iff

g ∈ M

Aim: G = SL2 (char. 2) and M a Borel subgroup

L ' SL2 < G.

Case 2∗, The main line

L contains 1-dimensional algebraic tori T —good tori (Wagner)
We learned in earlier “waves” of analysis that we want to look at
the set T of conjugates of T lying in M, and eventually prove
they are all conjugate under the action of M. This part of the
analysis originally depended on M being solvable.
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Limoncello

The initial configuration

Even type.
A “uniqueness” case, weak embedding, M ≤ G “big”.
Aim: G = SL2 (char. 2) and M a Borel subgroup

Case division

Subcase 2: SL2 sits as a proper subgroup of G.
Technically, we want to shift the line of division to:
Subcase 2∗: There are distinct conjugates A1, A2 of G with
H = C◦(A1, A2) > 1.
Then L = 〈A1, A2〉 ≤ C◦(H) < G and this gives us L ' SL2 < G.

Case 2∗, The main line
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Conjugacy of tori

T : some good tori contained in M.
Objective: T consists of a single conjugacy class under the
action of M.

Lemma

Maximal good tori in M are generous in M, and are conjugate.

Lemma

Let F be a uniformly definable family of good tori, invariant
under conjugation in M. Then F breaks up into finitely many
M-conjugacy classes.

Proof.

T0 a maximal good torus of M.
F0 the set of conjugates of tori in F that lie in T0.
F0 is a uniformly definable family of subgroups of T0, hence
finite.

A little history: The published version of Limoncello runs this
way—but the results it quotes are based on arguments found in
early drafts of Limoncello.

Gregory Cherlin Genericity, Generosity, and Tori



Conjugacy of tori

T : some good tori contained in M.
Objective: T consists of a single conjugacy class under the
action of M.

Lemma

Maximal good tori in M are generous in M, and are conjugate.

Lemma

Let F be a uniformly definable family of good tori, invariant
under conjugation in M. Then F breaks up into finitely many
M-conjugacy classes.

Proof.

T0 a maximal good torus of M.
F0 the set of conjugates of tori in F that lie in T0.
F0 is a uniformly definable family of subgroups of T0, hence
finite.

A little history: The published version of Limoncello runs this
way—but the results it quotes are based on arguments found in
early drafts of Limoncello.

Gregory Cherlin Genericity, Generosity, and Tori



Conjugacy of tori

T : some good tori contained in M.
Objective: T consists of a single conjugacy class under the
action of M.

Lemma

Let F be a uniformly definable family of good tori, invariant
under conjugation in M. Then F breaks up into finitely many
M-conjugacy classes.

Proof.

T0 a maximal good torus of M.
F0 the set of conjugates of tori in F that lie in T0.
F0 is a uniformly definable family of subgroups of T0, hence
finite.

A little history: The published version of Limoncello runs this
way—but the results it quotes are based on arguments found in
early drafts of Limoncello.

Gregory Cherlin Genericity, Generosity, and Tori



Toricity

Groups without unipotent p-subgroups

“p⊥-type” (mainly, p = 2).

Theorem

Let G be a group of finite Morley rank of p⊥ type. Then every
p-element is p-toral (belongs to a p-torus).

Corollary

Let G be a connected group of finite Morley rank of p⊥ type,
and T a maximal p-torus. Then every p-element a of C(T )
belongs to T .

Proof.

a belongs to a maximal torus T0.
T , T0 are maximal p-tori of C(a), hence conjugate in C(a).
Forcing a ∈ T .
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Toricity via generosity

a ∈ G p-element.
T a generic maximal p-torus of C◦(a).

H = C◦(a, T )

Suppose a /∈ H.

Claim: Ha generous in G.

Then generically, d(g) is not p-divisible, a contradiction.

Proof.

Again, Ha turns out to be generically disjoint from its
conjugates (in a suitable sense).
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Permutation Groups

(G, X )

Definably primitive: no nontrivial G-invariant definable
equivalence relation.

(MPOSA)

Theorem

(G, X ) definably primitive. Then rk (G) is bounded by a function
of rk (X ).

Gregory Cherlin Genericity, Generosity, and Tori



Permutation Groups

(G, X )

Definably primitive: no nontrivial G-invariant definable
equivalence relation.

(MPOSA)

Theorem
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Generic multiple transitivity

Theorem

(G, X ) definably primitive. Then rk (G) is bounded by a function
of rk (X ).

Generic transitivity: one large orbit.

Generic t-transitivity: on X t .

Proposition

(G, X ) definably primitive. Then the degree of multiple
transitivity of G is bounded by a function of rk (X ).

(Special case of the theorem, but sufficient.)
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Bounds on t

Lemma

T abelian divisible and definable, T∞ its maximal torsion free
definable subgroup of T . Then rk (T/T∞) ≤ rk (X ).

(In other words, the stabilizer in T of a point of X which is
generic over the torsion subgroup is torsion free.)

Now after reducing to the case of G simple, if G is algebraic this
controls the structure of a maximal torus and hence the rank of
G.

If G is not algebraic we are in 2⊥ type and we consider the
definable hull T of a maximal 2-torus (not in G, but in a suitably
chosen stabilizer of a small set of points).
The generic multiple transitivity gives us an action of Symn .

• If the action is nontrivial then T/T∞ blows up and we get a
contradiction.

• If the action is trivial then we get a 2-element outside T
centralizing T and we contradict the corollary to “toricity”.
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If G is not algebraic we are in 2⊥ type and we consider the
definable hull T of a maximal 2-torus (not in G, but in a suitably
chosen stabilizer of a small set of points).
The generic multiple transitivity gives us an action of Symn on
T , more or less (an action of a group with Symn as a section).

• If the action is nontrivial then T/T∞ blows up and we get a
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Challenges

Algebraicity of simple K ∗-groups of odd type

Absolute bounds on Prüfer rank of groups of odd type

• Generosity of (some) Carter subgroups

Construction of bad groups

Construction of bad field towers.

• Sharp bounds on definably primitive groups

Explicit classifications of generically 2-transitive actions of
simple algebraic groups in the fMr category

Representation theory of algebraic groups in the fMr
category.
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