Genericity, Generosity, and Tori

Gregory Cherlin

June 22, 2006

Gregory Cherlin Genericity, Generosity, and Tori

- I Structure of connected groups of finite Morley rank
 - with and without 2-tori
- II Application: Poizat's problem on generic equations Groups of unipotent type
- III Details
 - Relation with Carter subgroups
 - Genericity arguments
 - Limoncello—Degenerate type groups—Toricity
- IV Application: Permutation groups
 - Generic t-transitivity

Connected groups of finite Morley rank (in general)

- Generic covering and conjugacy theorems
- Definable hulls of *p*-tori

Gregory Cherlin Genericity, Generosity, and Tori

- Morley rank (rk (X))
- Generic set: rk(X) = rk(G)
- Connected group

 $[G:H]<\infty\implies G=H.$

 $X, Y \subseteq G$ generic $\implies X \cap Y$ generic

• d(X): definable subgroup generated by X.

- p-torus: divisible abelian p-group
- Types:

Degenerate: No infinite 2-subgroup Even: Nondegenerate, no nontrivial 2-torus ("characteristic two type")

p-unipotent: definable, connected, bounded exponent, nilpotent *p*-group • Without 2-tori

$$1 \leq O_2(G) \leq G$$

$$O_2(G)$$
: maximal unipotent 2-subgroup
 $ar{G} = G/O_2(G)$
 $ar{G} = U_2(ar{G}) st \hat{O}(ar{G})$

• Without 2-tori

$$1 \leq O_2(G) \leq G$$

 $O_2(G)$: maximal unipotent 2-subgroup $\bar{G} = G/O_2(G)$ $\bar{G} = U_2(\bar{G}) * \hat{O}(\bar{G})$

- $U_2(\bar{G})$: product of algebraic groups;
- Ô(G): no involutions

• Without 2-tori

$$1 \leq O_2(G) \leq G$$

$$O_2(G)$$
: maximal unipotent 2-subgroup
 $\bar{G} = G/O_2(G)$
 $\bar{G} = U_2(\bar{G}) * \hat{O}(\bar{G})$

• With 2-tori

Theorem (G₂)

The generic element of G belongs to $C^{\circ}(T)$ for a unique maximal 2-torus T.

$$\bar{G} = G/O_2(G) = U_2(\bar{G}) * \hat{O}(\bar{G})$$

$$\bar{G}=G/O_2(G)=U_2(\bar{G})*\hat{O}(\bar{G})$$

Theorem (E)

A simple group of even type is algebraic.

Theorem (D)

A connected degenerate type group contains no elements of order two.

$$\bar{G}=G/O_2(G)=U_2(\bar{G})*\hat{O}(\bar{G})$$

Theorem (E)

A simple group of even type is algebraic.

Methods: Finite group theory, good tori, Wagner on fields of finite Morley rank—classification

Theorem (D)

A connected degenerate type group contains no elements of order two.

$$\bar{G}=G/O_2(G)=U_2(\bar{G})*\hat{O}(\bar{G})$$

Theorem (E)

A simple group of even type is algebraic.

Methods: Finite group theory, good tori, Wagner on fields of finite Morley rank—classification

Theorem (D)

A connected degenerate type group contains no elements of order two.

Methods: Black box group theory, genericity arguments-soft

Good Tori

Theorem (E)

A simple group of even type is algebraic.

1st wave: No bad fields, no degenerate type simple sections. 2nd wave: No degenerate type simple sections. 3rd wave: General case (*tori*)

Good Tori

Theorem (E)

A simple group of even type is algebraic.

Definition

A definable divisible abelian subgroup T of G is a good torus if every definable subgroup of T is the definable hull of its torsion subgroup.

Theorem (E)

A simple group of even type is algebraic.

Definition

A definable divisible abelian subgroup T of G is a good torus if every definable subgroup of T is the definable hull of its torsion subgroup.

Rigidity properties:

R-I $N^{\circ}(T) = C^{\circ}(T)$

R-II Any uniformly definable family of subgroups of T is finite.

Ref: Altinel-Cherlin, Limoncello (J. Alg. 291 (2005), 371-413)

Theorem (E)

A simple group of even type is algebraic.

Corollary (U)

A connected group of finite Morley rank without p-tori has degenerate type.

Corollary (U)

A connected group of finite Morley rank without p-tori has degenerate type.

Direct proof

U the connected component of a Sylow 2-subgroup. M = N(U).

Corollary (U)

A connected group of finite Morley rank without p-tori has degenerate type.

Direct proof

U the connected component of a Sylow 2-subgroup. M = N(U).

Strong Embedding: If $M \cap M^g$ contains an involution then $g \in M$. Hence: All involutions of U are conjugate under the action of M.

Corollary (U)

A connected group of finite Morley rank without p-tori has degenerate type.

Direct proof

U the connected component of a Sylow 2-subgroup. M = N(U).

Strong Embedding: If $M \cap M^g$ contains an involution then $g \in M$. Hence: All involutions of U are conjugate under the action of M.

But $M^\circ = C^\circ(U)$ in view of

- (a) the absence of *p*-tori;
- (b) Wagner's theorem: the multiplicative group of a field of finite Morley rank in positive characteristic is a good torus;

Corollary (U)

A connected group of finite Morley rank without p-tori has degenerate type.

Direct proof

U the connected component of a Sylow 2-subgroup. M = N(U). All involutions of *U* are conjugate under the action of *M*.

But $M^\circ = C^\circ(U)$

forcing finitely many involutions in U.

With 2-Tori

Theorem (G_p)

The generic element of G belongs to $C^{\circ}(T)$ for a unique maximal p-torus T.

With 2-Tori

Theorem (G_p)

The generic element of G belongs to $C^{\circ}(T)$ for a unique maximal p-torus T.

Theorem (T_p)

If T is a p-torus and $H = C^{\circ}(T)$, then the union of the conjugates of H is generic in G.

With 2-Tori

Theorem (T_p)

If T is a p-torus and $H = C^{\circ}(T)$, then the union of the conjugates of H is generic in G.

Properties of $H = C^{\circ}(T)$:

- Almost self-normalizing (Rigidity-I)
- Generically disjoint from its conjugates: *H* \ (∪ *H*^[G\N(H)]) generic in *H*.

Theorem (T_p)

If T is a p-torus and $H = C^{\circ}(T)$, then the union of the conjugates of H is generic in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and generically disjoint from its conjugates then:

- $\bigcup H^G$ is generic in G;
- For X ⊆ H, we have ∪ X^G generic in G if and only if ∪ X^H is generic in H.

Definition

X is generous in G if the union of its conjugates is generic in G.

Theorem (T_p)

If T is a p-torus and $H = C^{\circ}(T)$, then H is generous in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and generically disjoint from its conjugates then:

- H is generous in G;
- For X ⊆ H, we have X is generous in G if and only if X is generous in H.

Definition

X is generous in G if the union of its conjugates is generic in G.

Gregory Cherlin Genericity, Generosity, and Tori

Poizat's Problem

Problem

Let G be a connected group of finite Morley rank which satisfies the condition

x^{*n*} = 1

generically. Then G satisfies the condition

identically.

Theorem

G as above. If $x^n = 1$ generically on *G*, and *n* is a power of 2, then $x^n = 1$ identically on *G*.

Poizat's Problem

Problem

Let G be a connected group of finite Morley rank which satisfies the condition

generically. Then G satisfies the condition

identically.

More generally:

Theorem

G as above. If $x^n = 1$ generically on *G*, and $n = 2^k n_0$ with n_0 odd, then $G = U * G_1$ with *U* a 2-group of bounded exponent and *G*/*U* a group satisfying $x^{n_0} = 1$ generically.

Analysis:

• G contains no nontrivial p-torus.

• $G = U * G_1$ with U a 2-group of bounded exponent and G/U containing no involutions.

Analysis:

• G contains no nontrivial p-torus.

• $G = U * G_1$ with U a 2-group of bounded exponent and G/U containing no involutions.

Theorem U

Generic equations

Analysis:

• G contains no nontrivial p-torus.

•
$$T = d(T_p); H = C^{\circ}(T_p)$$

• $x^n = 1$ generically in G

• $G = U * G_1$ with U a 2-group of bounded exponent and G/U containing no involutions.

Theorem U

Generic equations

Analysis:

• G contains no nontrivial p-torus.

•
$$T = d(T_p); H = C^{\circ}(T_p)$$

- $x^n = 1$ generically in G
- $x^n = 1$ generically in *H*
- $x^n = 1$ generically in *Ta* some $a \in H$
- $x^n = 1$ generically in T
- *T* = 1
- $G = U * G_1$ with U a 2-group of bounded exponent and G/U containing no involutions.

Theorem U

Gregory Cherlin Genericity, Generosity, and Tori

Definition

A Carter subgroup of *G* is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

Theorem (Frécon)

If the group G involves no bad groups and no bad fields, and T_0 is a maximal divisible torsion subgroup, then $C^{\circ}(T_0)$ is a Carter subgroup.

Definition

A Carter subgroup of *G* is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

Construction in general:

Let Q be the largest and most semisimple nilpotent subgroup you can find. Then Q is a Carter subgroup.

Definition

A Carter subgroup of *G* is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

Construction in general:

Let Q be the largest and most semisimple nilpotent subgroup you can find. Then Q is a Carter subgroup.

One would like to know that the Carter subgroups constructed in this way are generous and are all conjugate. We are taking the 0th approximation to this as our fundamental structural fact.

Definition

A Carter subgroup of *G* is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

One would like to know that the Carter subgroups constructed in this way are generous and are all conjugate. We are taking the 0th approximation to this as our fundamental structural fact.

See (or hear) Frécon ...

Selected Examples

- Degenerate type groups
- Limoncello
- Toricity

Sylow 2-subgroup finite, nontrivial. Minimal example, simple (without loss). Any 2-element will lie *outside* any proper definable connected subgroup of our ambient group *G*. Useful simplification:

Lemma (EA)

The Sylow 2-subgroup of G is elementary abelian.

Genericity argument

Afterward, other techniques are brought to bear.

Elementary abelian Sylow 2-subgroup = no elements of order 4.

Elementary abelian Sylow 2-subgroup = no elements of order 4.

 $t \mapsto H_t$

• Covariant: $H_{t^g} = H_t^g$

• Almost selfnormalizing: $N^{\circ}(H_t) = H_t$.

Elementary abelian Sylow 2-subgroup = no elements of order 4.

$$t \mapsto H_t$$

• Covariant: $H_{t^g} = H_t^g$

• Almost selfnormalizing: $N^{\circ}(H_t) = H_t$.

Here $t \neq 1$, and H_t a proper connected definable subgroup for $t \neq 1$.

Definition: $H_t = N^{\circ}(...N^{\circ}(C^{\circ}(t))...)$. One takes connected normalizers until it stabilizes.

This is only interesting for *t* a 2-element, in which case $t \notin H_t$ (by minimality).

Elementary abelian Sylow 2-subgroup = no elements of order 4.

$$t\mapsto H_t$$

• Covariant: $H_{t^g} = H_t^g$

• Almost selfnormalizing: $N^{\circ}(H_t) = H_t$.

Here $t \neq 1$, and H_t a proper connected definable subgroup for $t \neq 1$.

Definition: $H_t = N^{\circ}(...N^{\circ}(C^{\circ}(t))...)$. One takes connected normalizers until it stabilizes.

This is only interesting for *t* a 2-element, in which case $t \notin H_t$ (by minimality).

Claim

For any 2-element $t \neq 1$, the coset tH_t is generous.

For $a \in tH_t$ and t a 2-element, $[d(a) : d^{\circ}(a)] = o(t)$. So the

Elementary abelian Sylow 2-subgroup = no elements of order 4.

$$t\mapsto H_t$$

• Covariant:
$$H_{t^g} = H_t^g$$

• Almost selfnormalizing: $N^{\circ}(H_t) = H_t$.

Claim

For any 2-element $t \neq 1$, the coset tH_t is generous.

Proof.

A variation on the standard genericity argument:

•
$$N^{\circ}(tH_t) = H_t$$

• The conjugates of *tH_t* are pairwise disjoint

Even type. A "uniqueness" case, weak embedding, $M \leq G$ "big".

$M \cap M^g$ contains a nontrivial unipotent 2-subgroup iff $g \in M$

Aim: $G = SL_2$ (char. 2) and *M* a Borel subgroup

Even type.

A "uniqueness" case, weak embedding, $M \le G$ "big". Aim: $G = SL_2$ (char. 2) and M a Borel subgroup

 $A \leq M$ elementary abelian, $M/C^{\circ}(A) 2^{\perp}$. In fact $A = \Omega_1(O_2^{\circ}(M))$.

Even type. A "uniqueness" case, weak embedding, $M \le G$ "big". Aim: $G = SL_2$ (char. 2) and M a Borel subgroup

Case division

Subcase 2: SL_2 sits as a proper subgroup of *G*. Technically, we want to shift the line of division to: Subcase 2*: There are distinct conjugates A_1, A_2 of *G* with $H = C^{\circ}(A_1, A_2) > 1$. Then $L = \langle A_1, A_2 \rangle \leq C^{\circ}(H) < G$ and this gives us $L \simeq SL_2 < G$.

Even type. A "uniqueness" case, weak embedding, $M \le G$ "big". Aim: $G = SL_2$ (char. 2) and M a Borel subgroup

 $L \simeq SL_2 < G.$

Case 2*, The main line

L contains 1-dimensional algebraic tori *T*—good tori (Wagner) We learned in earlier "waves" of analysis that we want to look at the set T of conjugates of *T* lying in *M*, and eventually prove *they are all conjugate* under the action of *M*. This part of the analysis originally depended on *M* being *solvable*.

Conjugacy of tori

T: some good tori contained in M.

Objective: ${\mathcal T}$ consists of a single conjugacy class under the action of ${\mathcal M}.$

Conjugacy of tori

 \mathcal{T} : some good tori contained in M.

Objective: ${\mathcal T}$ consists of a single conjugacy class under the action of ${\mathcal M}.$

Lemma

Maximal good tori in \mathcal{M} are generous in M, and are conjugate.

Lemma

Let \mathcal{F} be a uniformly definable family of good tori, invariant under conjugation in M. Then \mathcal{F} breaks up into finitely many M-conjugacy classes.

Proof.

 T_0 a maximal good torus of *M*.

 \mathcal{F}_0 the set of conjugates of tori in \mathcal{F} that lie in \mathcal{T}_0 .

 \mathcal{F}_0 is a uniformly definable family of subgroups of T_0 , hence finite.

Conjugacy of tori

 \mathcal{T} : some good tori contained in M.

Objective: ${\mathcal T}$ consists of a single conjugacy class under the action of ${\mathcal M}.$

Lemma

Let \mathcal{F} be a uniformly definable family of good tori, invariant under conjugation in M. Then \mathcal{F} breaks up into finitely many M-conjugacy classes.

Proof.

 T_0 a maximal good torus of M. \mathcal{F}_0 the set of conjugates of tori in \mathcal{F} that lie in T_0 . \mathcal{F}_0 is a uniformly definable family of subgroups of T_0 , hence finite.

A little history: The published version of Limoncello runs this way—but the results it quotes are based on arguments found in early drafts of Limoncello

Toricity

Groups without unipotent *p*-subgroups

" p^{\perp} -type" (mainly, p = 2).

Theorem

Let G be a group of finite Morley rank of p^{\perp} type. Then every p-element is p-toral (belongs to a p-torus).

Corollary

Let G be a connected group of finite Morley rank of p^{\perp} type, and T a maximal p-torus. Then every p-element a of C(T) belongs to T.

Toricity

Groups without unipotent *p*-subgroups

" p^{\perp} -type" (mainly, p = 2).

Theorem

Let G be a group of finite Morley rank of p^{\perp} type. Then every *p*-element is *p*-toral (belongs to a *p*-torus).

Corollary

Let G be a connected group of finite Morley rank of p^{\perp} type, and T a maximal p-torus. Then every p-element a of C(T) belongs to T.

Proof.

a belongs to a maximal torus T_0 . T, T_0 are maximal *p*-tori of C(a), hence conjugate in C(a). Forcing $a \in T$.

 $a \in G p$ -element.

T a generic maximal *p*-torus of $C^{\circ}(a)$.

 $a \in G p$ -element. *T* a generic maximal *p*-torus of $C^{\circ}(a)$.

 $H = C^{\circ}(a, T)$ Suppose $a \notin H$.

 $a \in G p$ -element. *T* a generic maximal *p*-torus of $C^{\circ}(a)$.

 $H = C^{\circ}(a, T)$ Suppose $a \notin H$.

Claim: Ha generous in G.

Then generically, d(g) is not *p*-divisible, a contradiction.

 $a \in G p$ -element. *T* a generic maximal *p*-torus of $C^{\circ}(a)$.

 $H = C^{\circ}(a, T)$ Suppose $a \notin H$.

Claim: Ha generous in G.

Then generically, d(g) is not *p*-divisible, a contradiction.

Proof.

Again, *Ha* turns out to be generically disjoint from its conjugates (in a suitable sense).

Gregory Cherlin Genericity, Generosity, and Tori

(G, X)

Definably primitive: no nontrivial *G*-invariant definable equivalence relation.

(MPOSA)

(G, X)

Definably primitive: no nontrivial *G*-invariant definable equivalence relation.

(MPOSA)

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Generic transitivity: one large orbit.

```
Generic t-transitivity: on X^t.
```

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Generic transitivity: one large orbit.

```
Generic t-transitivity: on X^t.
```

Proposition

(G, X) definably primitive. Then the degree of multiple transitivity of G is bounded by a function of rk(X).

(Special case of the theorem, but sufficient.)

Lemma

T abelian divisible and definable, T_{∞} its maximal torsion free definable subgroup of *T*. Then $rk(T/T_{\infty}) \leq rk(X)$.

(In other words, the stabilizer in T of a point of X which is generic over the torsion subgroup is torsion free.)

Lemma

T abelian divisible and definable, T_{∞} its maximal torsion free definable subgroup of *T*. Then $rk(T/T_{\infty}) \leq rk(X)$.

Now after reducing to the case of G simple, if G is algebraic this controls the structure of a maximal torus and hence the rank of G.

Lemma

T abelian divisible and definable, T_{∞} its maximal torsion free definable subgroup of *T*. Then $rk(T/T_{\infty}) \leq rk(X)$.

Now after reducing to the case of G simple, if G is algebraic this controls the structure of a maximal torus and hence the rank of G.

If *G* is not algebraic we are in 2^{\perp} type and we consider the definable hull *T* of a maximal 2-torus (not in *G*, but in a suitably chosen stabilizer of a small set of points). The generic multiple transitivity gives us an action of Sym_p .

Lemma

T abelian divisible and definable, T_{∞} its maximal torsion free definable subgroup of *T*. Then $rk(T/T_{\infty}) \leq rk(X)$.

Now after reducing to the case of G simple, if G is algebraic this controls the structure of a maximal torus and hence the rank of G.

If *G* is not algebraic we are in 2^{\perp} type and we consider the definable hull *T* of a maximal 2-torus (not in *G*, but in a suitably chosen stabilizer of a small set of points).

The generic multiple transitivity gives us an action of Sym_n .

- If the action is nontrivial then T/T_{∞} blows up and we get a contradiction.
- If the action is trivial then we get a 2-element outside T centralizing T and we contradict the corollary to "toricity".

- Algebraicity of simple K*-groups of odd type
- Absolute bounds on Prüfer rank of groups of odd type
- Generosity of (some) Carter subgroups
- Construction of bad groups
- Construction of bad field towers.
- Sharp bounds on definably primitive groups
- Explicit classifications of generically 2-transitive actions of simple algebraic groups in the fMr category
- Representation theory of algebraic groups in the fMr category.