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Henson
in the Third
Millennium

Gregory
Cherlin

Urysohn, Fraı̈ssé, and Henson
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Henson, 1971–1973

1971. A family of countable homogeneous graphs,
PJM 38

1972. Countable homogeneous relational structures
and ℵ0-categorical theories, JSL 37.

1973. Edge partition properties of graphs, CJM 25
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Around Homogeneity

Uniqueness and Universality
Free amalgamation, antichains, and Turing chaos
Partition properties
Automorphism groups



Urysohn,
Fraı̈ssé, and
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I. Universality and Uniqueness

Definition
A structure is homogeneous if its automorphisms induce all
isomorphisms between f. g. substructures M and M1.

Homogeneity =⇒ Uniqueness (Hausdorff for (Q, <))
Homogeneity =⇒ Universality (Urysohn, UQ and U)
Amalgamation =⇒ Existence (Fraı̈ssé)

Applications (Henson)

A universal homogeneous graph Γ∞ exists and is
unique:

Γ∞ ' Rado’s Graph ' Random Graph ' Γc
∞

The universal homogeneous Kn-free graph Γn exists
and is unique.
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the latter being, that it is possible to map the whole
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Further Applications

Komjáth/Mekler/Pach 1988

Universal Pn-free graphs
C2n+1-homomorphically free graphs
C≥N -free graphs

Cherlin/Shelah/Shi

For C a finite set of connected finite graphs the following are
equivalent:

1 The theory T ∗C of e. c. C-free graphs is ℵ0-categorical.
2 The corresponding algebraic closure operator aclC is

locally finite.

Example For any C, there is a universal C-homomorphically
free graph. — acl is degenerate in this case.
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Further Applications

Komjáth/Mekler/Pach 1988

Universal Pn-free graphs
C2n+1-homomorphically free graphs
C≥N-free graphs

Cherlin/Shelah/Shi

For C a finite set of connected finite graphs the following are
equivalent:

1 The theory T∗C of e. c. C-free graphs is ℵ0-categorical.
2 The corresponding algebraic closure operator aclC is

locally finite.

Proof.
The set of types over a finite alg. closed set is finite

(The model is homogeneous for a finite relational language.)

Example For any C, there is a universal C-homomorphically
free graph. — acl is degenerate in this case.
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Decision Problems

Problem 1.
(A) Is T∗C ℵ0-categorical?
(B) Is there a universal C-free graph?

Komjáth/Füredi

If C is 2-connected then the following are equivalent.
1 There is a universal C-free graph.
2 T∗C is ℵ0-categorical.
3 C is complete.

Problem 2. (Solidity Conjecture) Show that if there is a
universal C-free graph then its blocks are complete.
Ongoing . . .
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Undecidability

Theorem (Here there be Tygers)
The universality and ℵ0-categoricity problems are
undecidable for finite sets of forbidden induced subgraphs
(universal theories).

Proof.
Wang tilings→ black/white tilings→

binary relations on (Z, s)→ graphs on Z and:

Many tilings =⇒ no universal graph;
No tilings =⇒ local finiteness =⇒ universal graph

(and recursive inseparability)
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II. Antichains and Turing Chaos

Free amalgamation
Indecomposability
Antichains

Examples
WGB-graphs
Directed graphs (Henson 1972)
Nilpotent rings and groups of class 2 [CSW 1993]
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Antichains and WQO

•WQO

Tournaments: Henson 1972
Permutation Patterns: Tarjan 1972
• Minimal antichains
Nash-Williams 1963, Gustedt 1993/1999
Subgraphs: Cycles and anchored paths (Ding 1992)
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III. Classification

It is an interesting and apparently open question if
there are any homogeneous graphs G (with
c(G) = ℵ0) which have G and G connected, other
than U, Gp and Gp (p ≥ 3). [H1971]

Classifications

Graphs Lachlan/Woodrow 1980
Tournaments Lachlan 1984
Directed Graphs Cherlin 1998

• Chaos?
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The Ramsey Method

Homogeneous Tournaments: Catalog
Orders L1, Q

Strict Local Orders S[L1], S(Q)

Generic T∞

The critical tournament C+ = [L1, ~C3] (or its dual).

Theorem (Lachlan)

C+ =⇒ T for all finite T.
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C+ =⇒ T

Definition

A` {A ∈ A : ∀B = A ∪ L (B ∈ A)}
A′ {A ∈ A : ∀B = L[A] ∪ {v} (B ∈ A)}

Lemma

1 A` has amalgamation
2 C+ ∈ A =⇒ C+ ∈ A′
3 A′ ⊆ A`

Proof of the Theorem; If all tournaments of order n− 1 are
in A then taking “A” to be A`, all tournaments of order n are
in A.
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Proof of the Lemma

Lemma

1 A` has amalgamation
2 C+ ∈ A =⇒ C+ ∈ A′
3 A′ ⊆ A`

Proof.

1 Formal
2 Interesting, but not as interesting as
3 Ramsey’s Theorem: details to follow.
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Henson
in the Third
Millennium

Gregory
Cherlin

Proof of the Lemma

Lemma

1 A` has amalgamation
2 C+ ∈ A =⇒ C+ ∈ A′
3 A′ ⊆ A`

Proof.
1 Formal

2 Interesting, but not as interesting as
3 Ramsey’s Theorem: details to follow.



Urysohn,
Fraı̈ssé, and
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The Ramsey Argument

=⇒
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Homogeneous Directed Graphs

Theorem
The homogeneous directed graphs consist of the following.

1 Henson digraphs ΓT with T an antichain of
tournaments;

2 Countably many others (explicitly listed).

The general method.

1 Make catalog.
2 Reduce completeness proof to a finite number of base

cases.
3 Verify by explicit amalgamation [else, revise catalog]

Is there Chaos?
Conjecture: Yes, but not seen yet.
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Lachlan Chaos

Problem 3. Decision Problem: For A0, B0 finite:∧
A0 =⇒

∨
B0?

i.e. |{A : A0 ⊆ A,A ∩ B0 = ∅}| = 0?

Variations: |{A : A0 ⊆ A,A ∩ B0 = ∅}| =??

Example
• Lachlan’s Decision problem is decidable in the class of
homogeneous directed graphs.
• The decision problem for “∃2ℵ0” is equivalent to the
following.
Problem 3’. For T a finite set of tournaments, is there an
infinite antichain of finite T -free tournaments?
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The WQO decision problem

Problem 4. Decision Problem. (Q,≤) a class of finite
structures with the substructure relation (or induced
substructure). C ⊆ Q finite. IC =

{q ∈ Q : ¬∃c ∈ C (c ≤ q)}

Is IC WQO?

Harvey Friedman: There is a recursive locally finite partial
order (Q,≤) for which the WQO decision problem is a
complete Π1

1 set.
On the other hand . . .
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Finiteness Theorem

Theorem (Cherlin/Latka 2000)
For any k there is a finite set of infinite antichains Λk such
that for any set T of finite tournaments with |T | ≤ k the
following are equivalent.

1 QT is wqo;
2 ∃I ∈ Λk I ⊆∗ QT .

• Tournaments |Λ1| = 2: Latka
• Permutation Patterns Vatter, Waton, Brignall, . . .
• Induced graphs Gustedt
Motivation: implications for computational problems.
NB. Gustedt develops a general theory of minimal
antichains.

Problem 5. Encode permutations by tournaments,
preserving (known) minimal antichains.
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Classification Problems

Problem 6. Classify homogeneous structures of the
following types:
Partitioned Graphs
Metrically Homogeneous Graphs [Cameron 1998]
k -Dimensional Permutations [Cameron 2002]

Graphs as Metric Spaces

Definition
A graph is metrically homogeneous if it is homogeneous as
a metric space.

Example r -regular tree.
(Note: the metric on n vertices determines the metric on
their convex closure!)
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Metrically Homogeneous Graphs

Example Macpherson’s Graphs Tr ,s.
Construction
Γ = (A,B) bipartite and homogeneous as a metric space
with bipartition.
Then 1

2A is a metrically homogeneous graph.
Application Γ = T (r , s) a semi-regular (r , s)-branching tree.
Macpherson’s graph Tr ,s is 1

2A.

Theorem (Macpherson)
Distance transitive infinite locally finite graphs are of the
form Tr ,s with 2 ≤ r , s <∞.
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Henson
in the Third
Millennium

Gregory
Cherlin

CATALOG

Known Metrically Homogeneous Graphs

1 δ ≤ 2 [Lachlan/Woodrow], deg ≤ 2 [Cn], or finite
[Cameron]

2 Tr ,s (2 ≤ r , s ≤ ∞)
3 Γδ∆,S with Aδ∆ 3-constrained
4 Γδa,n with δ ≥ 4 if n <∞.

S: Henson constraints (1, δ)-spaces (an independent set of
cliques).
Amalgamation:

d+(b1,b2) = mina(d1(b1,a) + d2(b2,a))

d ′(b1,b2) = min(d+(b1,b2), δ − 1).
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Henson
in the Third
Millennium

Gregory
Cherlin

CATALOG

Known Metrically Homogeneous Graphs

1 δ ≤ 2 [Lachlan/Woodrow], deg ≤ 2 [Cn], or finite
[Cameron]

2 Tr ,s (2 ≤ r , s ≤ ∞)
3 Γδ∆,S with Aδ∆ 3-constrained
4 Γδa,n with δ ≥ 4 if n <∞.

S: Henson constraints (1, δ)-spaces (an independent set of
cliques).
Amalgamation:

d+(b1,b2) = mina(d1(b1,a) + d2(b2,a))

d ′(b1,b2) = min(d+(b1,b2), δ − 1).



Urysohn,
Fraı̈ssé, and
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Metric Triangle Constraints

Initial Conjecture Aδ∆ = AδK ,C (KMP-type). I.e.

2K + 1 ≤ P (P odd)
P ≤ C

Theorem (But actually:)

Aδ∆ = AδK ,C with K = (K1,K2) and C = (C1,C2), subject to
“Presburger” conditions.

2K1 + 1 ≤ P < 2K2 + 2d(a,b) (P odd)
P ≤ Ci where P ≡ i mod 2

Lemma

AδK ,C has amalgamation iff it has 5-amalgamation.
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Classification Conjecture

With a few notable exceptions
1 If δ <∞ then Aδ ∩∆ has amalgamation.
2 If Aδ ∩∆ = ∆δ

K ,C then Aδ = AδK ,C;S or Aδa,n.
3 If δ =∞ and Γ is not bipartite, then Γ = lim Γi with Γi

metrically homogeneous of diameter 2i , for large i .

Problem. Show that (1,2) =⇒ (3).
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2 If Aδ ∩∆ = ∆δ

K ,C then Aδ = AδK ,C;S or Aδa,n.
3 If δ =∞ and Γ is not bipartite, then Γ = lim Γi with Γi

metrically homogeneous of diameter 2i , for large i .
Problem. Show that (1,2) =⇒ (3).
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IV. Indivisibility

COROLLARY 4.2. Let p ≥ 3 and suppose that
|Gp| = A1

⋃
· · ·

⋃
An. Then for some j = 1, . . . ,n

the graph Gp|Aj admits every finite graph which
does not admit Kp.
. . . We raise the question of whether or not the
conclusion of Corollary 4.2 can be strengthened to
read: ”Gp|Aj admits Gp, for some j = 1, ...,n.”?

Yes

G3 Komjáth/Rödl 1986
Gn El-Zahar/Sauer 1989
Uδ van Thé/Sauer 2009

Free Amalgamation EZ/S 2003, 2005

Ref: L. van Thé, AMS Memoir 968, 2010
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Indivisibility and Free Amalgamation

Theorem (El-Zahar, Sauer)
Let L be a finite binary language, Γ a countable
homogeneous L-structure, and assume AL has free
amalgamation. Then Γ is indivisible iff any two orbits of Γ
are comparable up to a finite partition.

Orbits are orbits for the stabilizer of an arbitrary finite
subset.

The relation O ≤ O′ which we call comparability up to a
finite partition is defined by: there is a finite partition of O
whose pieces embed into O′.
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V. Structural Ramsey Theory

Ref: Again, L. van Thé, AMS Memoir 968, 2010
This is the finitary variant.

Hungarian Notation N → (n)m
k

Generalized C → (B)A
k .

Restrict B, or add a linear order to the
language.

Nešetril-Rödl Amalgamation Method

Familiar homogeneous structures acquire the Ramsey
property when equipped with a suitable ordering, or a bit
more.



Urysohn,
Fraı̈ssé, and
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Expanding Homogeneous Structures

Problem 7. Is every finitely determined relational
homogeneous structure in a finite language a reduct of a
class with the Ramsey property?
(Asked often by Bodirsky.)

Problem 7’. Give a model theoretic description of the way to
add a linear order which covers the known cases.

Examples
Random graph: freely
Urysohn space: freely
Partial order: compatibly
Boolean algebra: lexicographically
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VI. Automorphism groups

Henson 1971

• There is an α ∈ Aut(Γn) with a single orbit iff n ≤ 3 or
n =∞.

• (Γ,Aut(Γ)) ↪→ (Γ∞,Aut(Γ∞)) (with unique extensions)
Corollary. S∞ ↪→ Aut(Γ∞)
Jaligot-Bilge, extensions, in progress.
Hasson-Kojman-Onshuus: Symmetric indivisibility

Problem 8. Given a finite partition of Γn and a Kn-free graph
Γ, is there an embedding of Γ into one piece so that
automorphisms of Γ extend uniquely to Γn?



Urysohn,
Fraı̈ssé, and
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Normal Subgroups

S∞/Bdd is simple

Theorem (Tent-Ziegler)

If C is an unbounded conjugacy class in Aut(U) then
(C ∪ C−1)8 = U.

Corollary Aut(U)/Bdd is simple
Note: Work with US with S countable and additively closed,
and vary S.

Tent (ongoing): this is a formal consequence of canonical
amalgamation B1 ⊗A B2 and a formalism reminiscent of
stability theory (in fact, includes the case of strongly minimal
sets as treated by Lascar).
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Topological Dynamics

Kechris/Pestov/Todorcevic

Extreme Amenability: Fixed points of compact actions.
Equivalent to the finitary Ramsey property.

In the absence of linear order, characterize the universal
minimal compact flow.

Definitely Millennium III . . . motivates Bodirsky’s favorite
question.
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Problems

Problem 1. Universal C-free graphs and ℵ0-categoricity.
Problem 2. Solidity Conjecture (Complete blocks)
Problem 3. [Lachlan] For A0, B0 finite:

∧
A0 =⇒

∨
B0?

Problem 4. (Q,≤) finite L-structures with the substructure or
induced substructure relation. C ⊆ Q finite.
IC = {q ∈ Q : ¬∃c ∈ C (c ≤ q)}. Is IC WQO?
Problem 5. Encode permutations by tournaments,
preserving (known) minimal antichains.
Problem 6. Classify homogeneous partitioned graphs,
metrically homogeneous graphs, and primitive
homogeneous k -dim. permutations.
Problem 7. (A) Is every f.d. relational homogeneous
structure in a finite language a reduct of a Ramsey class?
(B) Give a model theoretic description of the right linear
order.
Problem 8. Indivisibility with unique extendability.


