Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Urysohn, Fraïssé, and Henson in the Third Millennium

Gregory Cherlin

Logic and Mathematics 2011 Sep. 4, Urbana-Champaign

Henson, 1971–1973

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

- 1971. A family of countable homogeneous graphs, PJM 38
- 1972. Countable homogeneous relational structures and ℵ₀-categorical theories, JSL 37.
- 1973. Edge partition properties of graphs, CJM 25

Around Homogeneity

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

- Uniqueness and Universality
- Free amalgamation, antichains, and Turing chaos
- Partition properties
- Automorphism groups

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Definition

A structure is homogeneous if its automorphisms induce all isomorphisms between f. g. substructures M and M_1 .

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Definition

A structure is homogeneous if its automorphisms induce all isomorphisms between f. g. substructures M and M_1 .

 $\begin{array}{ll} \text{Homogeneity} \implies \text{Uniqueness (Hausdorff for } (\mathbb{Q},<)) \\ \text{Homogeneity} \implies \text{Universality (Urysohn, } \mathbb{U}_{\mathbb{Q}} \text{ and } \mathbb{U}) \end{array}$

... a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M.

(Urysohn to Hausdorff, cited by Hušek, 2008)

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Definition

A structure is homogeneous if its automorphisms induce all isomorphisms between f. g. substructures M and M_1 .

Homogeneity \implies Uniqueness (Hausdorff for $(\mathbb{Q}, <)$) Homogeneity \implies Universality (Urysohn, $\mathbb{U}_{\mathbb{Q}}$ and \mathbb{U}) Amalgamation \implies Existence (Fraïssé)

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Definition

A structure is homogeneous if its automorphisms induce all isomorphisms between f. g. substructures M and M_1 .

 $\begin{array}{ll} \text{Homogeneity} \implies \text{Uniqueness} \ (\text{Hausdorff for} \ (\mathbb{Q}, <)) \\ \text{Homogeneity} \implies \text{Universality} \ (\text{Urysohn}, \mathbb{U}_{\mathbb{Q}} \ \text{and} \ \mathbb{U}) \\ \text{Amalgamation} \implies \text{Existence} \ (\text{Fraïssé}) \end{array}$

Applications (Henson)

• A universal homogeneous graph Γ_∞ exists and is unique:

 $\Gamma_{\infty}\simeq \text{Rado's Graph}\simeq \text{Random Graph}\simeq \Gamma_{\infty}^{\text{c}}$

 The universal homogeneous K_n-free graph Γ_n exists and is unique.

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Komjáth/Mekler/Pach 1988

- Universal *P_n*-free graphs
- C_{2n+1}-homomorphically free graphs
- $C_{\geq N}$ -free graphs

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Komjáth/Mekler/Pach 1988

- Universal P_n-free graphs
- C_{2n+1}-homomorphically free graphs
- $C_{\geq N}$ -free graphs

Cherlin/Shelah/Shi

For \mathcal{C} a finite set of connected finite graphs the following are equivalent:

- **①** The theory $T_{\mathcal{C}}^*$ of e. c. \mathcal{C} -free graphs is \aleph_0 -categorical.
- The corresponding algebraic closure operator acl_C is locally finite.

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Komjáth/Mekler/Pach 1988

- Universal P_n-free graphs
- $\bullet \ \mathrm{C}_{2n+1}\mbox{-homomorphically free graphs}$
- $C_{\geq N}$ -free graphs

Cherlin/Shelah/Shi

For $\ensuremath{\mathcal{C}}$ a finite set of connected finite graphs the following are equivalent:

- The theory $T_{\mathcal{C}}^*$ of e. c. \mathcal{C} -free graphs is \aleph_0 -categorical.
- The corresponding algebraic closure operator acl_C is locally finite.

Proof.

The set of types over a finite alg. closed set is finite

(The model is homogeneous for a finite relational language.)

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Komjáth/Mekler/Pach 1988

- Universal P_n-free graphs
- C_{2n+1} -homomorphically free graphs
- $C_{\geq N}$ -free graphs

Cherlin/Shelah/Shi

For \mathcal{C} a finite set of connected finite graphs the following are equivalent:

- The theory $T_{\mathcal{C}}^*$ of e. c. \mathcal{C} -free graphs is \aleph_0 -categorical.
- The corresponding algebraic closure operator acl_C is locally finite.

Example For any C, there is a universal C-homomorphically free graph. — acl is degenerate in this case.

Decision Problems

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 1.

(A) Is T^{*}_C ℵ₀-categorical?
(B) Is there a universal C-free graph?

Decision Problems

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 1.

(A) Is T^{*}_C ℵ₀-categorical?
(B) Is there a universal C-free graph?

Komjáth/Füredi

If C is 2-connected then the following are equivalent.

- There is a universal C-free graph.
- 2 T_C^* is \aleph_0 -categorical.
- O is complete.

Decision Problems

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 1.

(A) Is $T^*_{\mathcal{C}} \aleph_0$ -categorical?

(B) Is there a universal C-free graph?

Komjáth/Füredi

If C is 2-connected then the following are equivalent.

- There is a universal C-free graph.
- 2 T_C^* is \aleph_0 -categorical.
- O is complete.

Problem 2. (Solidity Conjecture) Show that if there is a universal C-free graph then its blocks are complete. Ongoing ...

Undecidability

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem (Here there be Tygers)

The universality and \aleph_0 -categoricity problems are undecidable for finite sets of forbidden induced subgraphs (universal theories).

Proof.

Wang tilings \rightarrow black/white tilings \rightarrow binary relations on $(\mathbb{Z}, s) \rightarrow$ graphs on \mathbb{Z} and:

Many tilings \implies no universal graph;

No tilings \implies local finiteness \implies universal graph

(and recursive inseparability)

II. Antichains and Turing Chaos

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

- Free amalgamation
- Indecomposability
- Antichains

II. Antichains and Turing Chaos

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

- Free amalgamation
- Indecomposability
- Antichains

Examples

- WGB-graphs
- Directed graphs (Henson 1972)
- Nilpotent rings and groups of class 2 [CSW 1993]

Antichains and WQO

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

• WQO

Antichains and WQO

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

• WQO

Tournaments: Henson 1972 Permutation Patterns: Tarjan 1972

Minimal antichains

Nash-Williams 1963, Gustedt 1993/1999 Subgraphs: Cycles and anchored paths (Ding 1992)

III. Classification

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

It is an interesting and apparently open question if there are any homogeneous graphs G (with $c(G) = \aleph_0$) which have G and \overline{G} connected, other than U, G_p and \overline{G}_p ($p \ge 3$). [H1971]

III. Classification

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

It is an interesting and apparently open question if there are any homogeneous graphs G (with $c(G) = \aleph_0$) which have G and \overline{G} connected, other than U, G_p and \overline{G}_p ($p \ge 3$). [H1971]

Classifications

Graphs Lachlan/Woodrow 1980 Tournaments Lachlan 1984 Directed Graphs Cherlin 1998

III. Classification

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

It is an interesting and apparently open question if there are any homogeneous graphs G (with $c(G) = \aleph_0$) which have G and \overline{G} connected, other than U, G_p and \overline{G}_p ($p \ge 3$). [H1971]

Classifications

Graphs Lachlan/Woodrow 1980 Tournaments Lachlan 1984 Directed Graphs Cherlin 1998

Chaos?

The Ramsey Method

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Homogeneous Tournaments: Catalog Orders L_1 , \mathbb{Q} Strict Local Orders $S[L_1]$, $S(\mathbb{Q})$ Generic T^{∞}

The Ramsey Method

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Homogeneous Tournaments: Catalog Orders L_1 , \mathbb{Q} Strict Local Orders $S[L_1]$, $S(\mathbb{Q})$ Generic T^{∞} The critical tournament $C^+ = [L_1, \vec{C}_3]$ (or its dual).

Theorem (Lachlan)

 $C^+ \implies T$ for all finite T.

 $C^+ \implies T$

Definition

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

$\begin{array}{l} \mathcal{A}^{\ell} \ \left\{ \mathrm{A} \in \mathcal{A} : \forall \mathrm{B} = \mathrm{A} \cup \mathrm{L} \left(\mathrm{B} \in \mathcal{A} \right) \right\} \\ \mathcal{A}' \ \left\{ \mathrm{A} \in \mathcal{A} : \forall \mathrm{B} = \mathrm{L}[\mathrm{A}] \cup \left\{ \mathrm{v} \right\} \left(\mathrm{B} \in \mathcal{A} \right) \right\} \end{array}$

 $\overline{C^+} \implies T$

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Definition

$$\mathcal{A}^{\ell} \{ A \in \mathcal{A} : \forall B = A \cup L(B \in \mathcal{A}) \}$$
$$\mathcal{A}' \{ A \in \mathcal{A} : \forall B = L[A] \cup \{ v \} (B \in \mathcal{A}) \}$$

Lemma

$$\mathcal{A}^{\ell}$$
 has amalgamation
 $\mathcal{C}^{+} \in \mathcal{A} \implies \mathcal{C}^{+} \in \mathcal{A}'$
 $\mathcal{A}' \subseteq \mathcal{A}^{\ell}$

- T

Definition

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

$$\mathcal{A}^{\ell} \{ A \in \mathcal{A} : \forall B = A \cup L(B \in \mathcal{A}) \}$$
$$\mathcal{A}' \{ A \in \mathcal{A} : \forall B = L[A] \cup \{ v \} (B \in \mathcal{A}) \}$$

Lemma

$$\mathcal{A}^{\ell}$$
 has amalgamation
 $\mathcal{C}^{+} \in \mathcal{A} \implies \mathcal{C}^{+} \in \mathcal{A}'$
 $\mathcal{A}' \subseteq \mathcal{A}^{\ell}$

Proof of the Theorem; If all tournaments of order n - 1 are in \mathcal{A} then taking " \mathcal{A} " to be \mathcal{A}^{ℓ} , all tournaments of order n are in \mathcal{A} .

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Lemma

A^ℓ has amalgamation
 C⁺ ∈ *A* ⇒ *C⁺* ∈ *A'*

$$\bigcirc \mathcal{A}' \subseteq \mathcal{A}^{\ell}$$

Proof.

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Lemma

A^ℓ has amalgamation
 C⁺ ∈ *A* ⇒ *C⁺* ∈ *A'*

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \bullet \\ \end{array} \\ \mathcal{A}' \subseteq \mathcal{A}^{\ell} \end{array} \\ \end{array}$$

Proof.

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Lemma

• \mathcal{A}^{ℓ} has amalgamation

$$\bigcirc \mathcal{A}' \subseteq \mathcal{A}^{\ell}$$

Proof.

Formal

Interesting, but not as interesting as

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Lemma

A^ℓ has amalgamation
 C⁺ ∈ *A* ⇒ *C⁺* ∈ *A'*

$${ig 3} \ {\mathcal A}' \subseteq {\mathcal A}^\ell$$

Proof.

Formal

- Interesting, but not as interesting as
- Ramsey's Theorem: details to follow.

The Ramsey Argument

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

The Ramsey Argument

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Homogeneous Directed Graphs

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem

The homogeneous directed graphs consist of the following.

Henson digraphs Γ_T with T an antichain of tournaments;

Ountably many others (explicitly listed).

Homogeneous Directed Graphs

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem

The homogeneous directed graphs consist of the following.

Henson digraphs Γ_T with T an antichain of tournaments;

2 Countably many others (explicitly listed).

The general method.

- Make catalog.
- Reduce completeness proof to a finite number of base cases.
- Verify by explicit amalgamation [else, revise catalog]

Homogeneous Directed Graphs

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem

The homogeneous directed graphs consist of the following.

Henson digraphs Γ_T with T an antichain of tournaments;

2 Countably many others (explicitly listed).

The general method.

- Make catalog.
- Reduce completeness proof to a finite number of base cases.

Is there Chaos?

Conjecture: Yes, but not seen yet.

Lachlan Chaos

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 3. Decision Problem: For A_0 , B_0 finite:

$$\label{eq:constraint} \begin{split} &\bigwedge \mathcal{A}_0 \implies \bigvee \mathcal{B}_0? \\ \text{i.e.} \qquad |\{\mathcal{A}: \mathcal{A}_0 \subseteq \mathcal{A}, \mathcal{A} \cap \mathcal{B}_0 = \emptyset\}| = 0? \end{split}$$

Lachlan Chaos

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 3. Decision Problem: For A_0 , B_0 finite:

$$\begin{split} & \bigwedge \mathcal{A}_0 \implies \bigvee \mathcal{B}_0? \\ \text{i.e.} & |\{\mathcal{A} : \mathcal{A}_0 \subseteq \mathcal{A}, \mathcal{A} \cap \mathcal{B}_0 = \emptyset\}| = 0? \end{split}$$

Variations: $|\{\mathcal{A}: \mathcal{A}_0 \subseteq \mathcal{A}, \mathcal{A} \cap \mathcal{B}_0 = \emptyset\}| = ??$

Example

• Lachlan's Decision problem is decidable in the class of homogeneous directed graphs.

Lachlan Chaos

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 3. Decision Problem: For A_0 , B_0 finite:

$$\bigwedge \mathcal{A}_0 \implies \bigvee \mathcal{B}_0?$$

 $\text{i.e.} \qquad |\{\mathcal{A}: \mathcal{A}_0 \subseteq \mathcal{A}, \mathcal{A} \cap \mathcal{B}_0 = \emptyset\}| = 0?$

Variations:
$$|\{\mathcal{A}: \mathcal{A}_0 \subseteq \mathcal{A}, \mathcal{A} \cap \mathcal{B}_0 = \emptyset\}| = ??$$

Example

• Lachlan's Decision problem is decidable in the class of homogeneous directed graphs.

• The decision problem for " $\exists 2^{\aleph_0}$ " is equivalent to the following.

Problem 3'. For \mathcal{T} a finite set of tournaments, is there an infinite antichain of finite \mathcal{T} -free tournaments?

The WQO decision problem

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 4. Decision Problem. (Q, \leq) a class of finite structures with the substructure relation (or induced substructure). $C \subseteq Q$ finite. $I_C =$

$$\{ q \in \mathcal{Q} : \neg \exists c \in C \, (c \leq q) \}$$

Is I_C WQO?

The WQO decision problem

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 4. Decision Problem. (Q, \leq) a class of finite structures with the substructure relation (or induced substructure). $C \subseteq Q$ finite. $I_C =$

$$\{q \in \mathcal{Q} : \neg \exists c \in C \, (c \leq q)\}$$

Is I_C WQO?

Harvey Friedman: There is a recursive locally finite partial order (\mathcal{Q}, \leq) for which the *WQO* decision problem is a complete Π_1^1 set. On the other hand ...

Finiteness Theorem

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem (Cherlin/Latka 2000)

For any *k* there is a finite set of infinite antichains Λ_k such that for any set \mathcal{T} of finite tournaments with $|\mathcal{T}| \leq k$ the following are equivalent.

1
$$\mathcal{Q}_{\mathcal{T}}$$
 is wqo;

$$\exists I \in \Lambda_k \ I \subseteq_* \mathcal{Q}_{\mathcal{T}}.$$

- Tournaments $|\Lambda_1| = 2$: Latka
- Permutation Patterns Vatter, Waton, Brignall, ...

• Induced graphs Gustedt Motivation: implications for computational problems. *NB*. Gustedt develops a general theory of minimal antichains.

Finiteness Theorem

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem (Cherlin/Latka 2000)

For any *k* there is a finite set of infinite antichains Λ_k such that for any set \mathcal{T} of finite tournaments with $|\mathcal{T}| \leq k$ the following are equivalent.

• $\mathcal{Q}_{\mathcal{T}}$ is wqo;

$$\exists I \in \Lambda_k \ I \subseteq_* \mathcal{Q}_{\mathcal{T}}.$$

- Tournaments $|\Lambda_1| = 2$: Latka
- Permutation Patterns Vatter, Waton, Brignall, ...

• Induced graphs Gustedt Motivation: implications for computational problems. *NB.* Gustedt develops a general theory of minimal antichains.

Problem 5. Encode permutations by tournaments, preserving (known) minimal antichains.

Classification Problems

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 6. Classify homogeneous structures of the following types:

Partitioned Graphs

Metrically Homogeneous Graphs [Cameron 1998]

k-Dimensional Permutations [Cameron 2002]

Graphs as Metric Spaces

Definition

A graph is metrically homogeneous if it is homogeneous as a metric space.

Example *r*-regular tree.

(Note: the metric on *n* vertices determines the metric on their convex closure!)

Metrically Homogeneous Graphs

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Example Macpherson's Graphs $T_{r,s}$.

Construction

 $\Gamma = (A, B)$ bipartite and homogeneous as a metric space with bipartition.

Then $\frac{1}{2}A$ is a metrically homogeneous graph.

Application $\Gamma = T(r, s)$ a semi-regular (r, s)-branching tree. Macpherson's graph $T_{r,s}$ is $\frac{1}{2}A$.

Theorem (Macpherson)

Distance transitive infinite locally finite graphs are of the form $T_{r,s}$ with $2 \le r, s < \infty$.

CATALOG

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Known Metrically Homogeneous Graphs

• $\delta \leq 2$ [Lachlan/Woodrow], deg ≤ 2 [C_n], or finite [Cameron]

$$T_{r,s} (2 \le r, s \le \infty)$$

•
$$\Gamma^{\delta}_{a,n}$$
 with $\delta \geq 4$ if $n < \infty$.

CATALOG

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Known Metrically Homogeneous Graphs

• $\delta \leq 2$ [Lachlan/Woodrow], deg ≤ 2 [C_n], or finite [Cameron]

$$T_{r,s} (2 \le r, s \le \infty)$$

•
$$\Gamma_{a,n}^{\delta}$$
 with $\delta \geq 4$ if $n < \infty$.

 \mathcal{S} : Henson constraints (1, δ)-spaces (an independent set of cliques).

Amalgamation:

- $d^+(b_1, b_2) = \min_a(d_1(b_1, a) + d_2(b_2, a))$
- $d'(b_1, b_2) = \min(d^+(b_1, b_2), \delta 1).$

Metric Triangle Constraints

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Initial Conjecture
$$\mathcal{A}^{\delta}_{\Delta} = \mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$$
 (KMP-type). I.e.

$$2K + 1 \le P \qquad (P \text{ odd})$$
$$P \le C$$

Metric Triangle Constraints

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Initial Conjecture
$$\mathcal{A}^{\delta}_{\Delta} = \mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$$
 (KMP-type). I.e.

$$2K + 1 \le P \qquad (P \text{ odd})$$
$$P \le C$$

Theorem (But actually:)

 $\mathcal{A}_{\Delta}^{\delta} = \mathcal{A}_{K,C}^{\delta}$ with $K = (K_1, K_2)$ and $C = (C_1, C_2)$, subject to "Presburger" conditions.

$$2K_1 + 1 \le P < 2K_2 + 2d(a, b) \qquad (P \text{ odd})$$
$$P \le C_i \text{ where } P \equiv i \mod 2$$

Metric Triangle Constraints

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Initial Conjecture
$$\mathcal{A}^{\delta}_{\Delta} = \mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$$
 (KMP-type). I.e.

$$2K + 1 \le P \qquad (P \text{ odd})$$
$$P \le C$$

Theorem (But actually:)

 $\mathcal{A}_{\Delta}^{\delta} = \mathcal{A}_{K,C}^{\delta}$ with $K = (K_1, K_2)$ and $C = (C_1, C_2)$, subject to "Presburger" conditions.

$$2K_1 + 1 \le P < 2K_2 + 2d(a, b) \qquad (P \text{ odd})$$
$$P \le C_i \text{ where } P \equiv i \mod 2$$

Lemma

 $\mathcal{A}_{K,C}^{\delta}$ has amalgamation iff it has 5-amalgamation.

Classification Conjecture

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

With a few notable exceptions

• If $\delta < \infty$ then $\mathcal{A}^{\delta} \cap \Delta$ has amalgamation.

2 If
$$\mathcal{A}^{\delta} \cap \Delta = \Delta^{\delta}_{\mathcal{K},\mathcal{C}}$$
 then $\mathcal{A}^{\delta} = \mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C};\mathcal{S}}$ or $\mathcal{A}^{\delta}_{a,n}$.

Solution If $\delta = \infty$ and Γ is not bipartite, then $\Gamma = \lim \Gamma_i$ with Γ_i metrically homogeneous of diameter 2*i*, for large *i*.

Classification Conjecture

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

With a few notable exceptions

• If $\delta < \infty$ then $\mathcal{A}^{\delta} \cap \Delta$ has amalgamation.

$$each 3 If \mathcal{A}^{\delta} \cap \Delta = \Delta^{\delta}_{\mathcal{K},\mathcal{C}} \text{ then } \mathcal{A}^{\delta} = \mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C};\mathcal{S}} \text{ or } \mathcal{A}^{\delta}_{\boldsymbol{a},\boldsymbol{n}}.$$

If δ = ∞ and Γ is not bipartite, then Γ = lim Γ_i with Γ_i metrically homogeneous of diameter 2*i*, for large *i*.
 Problem. Show that (1,2) ⇒ (3).

IV. Indivisibility

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

COROLLARY 4.2. Let $p \ge 3$ and suppose that $|G_p| = A_1 \bigcup \cdots \bigcup A_n$. Then for some $j = 1, \ldots, n$ the graph $G_p|A_j$ admits every finite graph which does not admit K_p .

... We raise the question of whether or not the conclusion of Corollary 4.2 can be strengthened to read: " $G_p|A_j$ admits G_p , for some j = 1, ..., n."?

IV. Indivisibility

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

COROLLARY 4.2. Let $p \ge 3$ and suppose that $|G_p| = A_1 \bigcup \cdots \bigcup A_n$. Then for some j = 1, ..., n the graph $G_p|A_j$ admits every finite graph which does not admit K_p .

... We raise the question of whether or not the conclusion of Corollary 4.2 can be strengthened to read: " $G_p|A_j$ admits G_p , for some j = 1, ..., n."?

Yes

 G_3 Komjáth/Rödl 1986 G_n El-Zahar/Sauer 1989 \mathbb{U}^{δ} van Thé/Sauer 2009 Free Amalgamation EZ/S 2003, 2005 Ref: L. van Thé, AMS Memoir 968, 2010

Indivisibility and Free Amalgamation

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Theorem (El-Zahar, Sauer)

Let L be a finite binary language, Γ a countable homogeneous L-structure, and assume A_L has free amalgamation. Then Γ is indivisible iff any two orbits of Γ are comparable up to a finite partition.

Orbits are orbits for the stabilizer of an arbitrary finite subset.

The relation $O \le O'$ which we call comparability up to a finite partition is defined by: there is a finite partition of O whose pieces embed into O'.

V. Structural Ramsey Theory

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Ref: Again, L. van Thé, AMS Memoir 968, 2010 This is the finitary variant.

Hungarian Notation $N \rightarrow (n)_k^m$ Generalized $C \rightarrow (B)_k^A$. Restrict *B*, or add a linear order to the language.

Nešetril-Rödl Amalgamation Method

V. Structural Ramsey Theory

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Ref: Again, L. van Thé, AMS Memoir 968, 2010 This is the finitary variant.

Hungarian Notation $N \to (n)_k^m$ Generalized $C \to (B)_k^A$. Restrict *B*, or add a linear order to the language.

Nešetril-Rödl Amalgamation Method

Familiar homogeneous structures acquire the Ramsey property when equipped with a suitable ordering, or a bit more.

Expanding Homogeneous Structures

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 7. Is every finitely determined relational homogeneous structure in a finite language a reduct of a class with the Ramsey property? (Asked often by Bodirsky.)

Expanding Homogeneous Structures

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 7. Is every finitely determined relational homogeneous structure in a finite language a reduct of a class with the Ramsey property? (Asked often by Bodirsky.)

Problem 7'. Give a model theoretic description of the way to add a linear order which covers the known cases.

Expanding Homogeneous Structures

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 7. Is every finitely determined relational homogeneous structure in a finite language a reduct of a class with the Ramsey property? (Asked often by Bodirsky.)

Problem 7'. Give a model theoretic description of the way to add a linear order which covers the known cases.

Examples

Random graph: freely Urysohn space: freely Partial order: compatibly Boolean algebra: lexicographically

VI. Automorphism groups

Urysohn, Fraïssé, and Henson in the Third Millennium

Henson 1971

- There is an $\alpha \in Aut(\Gamma_n)$ with a single orbit iff $n \leq 3$ or $n = \infty$.
- $(\Gamma, Aut(\Gamma)) \hookrightarrow (\Gamma_{\infty}, Aut(\Gamma_{\infty}))$ (with unique extensions) Corollary. $S_{\infty} \hookrightarrow Aut(\Gamma_{\infty})$ Jaligot-Bilge, extensions, in progress.

Hasson-Kojman-Onshuus: Symmetric indivisibility

Problem 8. Given a finite partition of Γ_n and a K_n -free graph Γ , is there an embedding of Γ into one piece so that automorphisms of Γ extend uniquely to Γ_n ?

Normal Subgroups

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

$\mathit{S}_\infty/\mathsf{Bdd}$ is simple

Theorem (Tent-Ziegler)

If C is an unbounded conjugacy class in $\text{Aut}(\mathbb{U})$ then $(C\cup C^{-1})^8=\mathbb{U}.$

Corollary $Aut(\mathbb{U})/Bdd$ is simple Note: Work with \mathbb{U}_S with S countable and additively closed, and vary S.

Tent (ongoing): this is a formal consequence of canonical amalgamation $B_1 \otimes_A B_2$ and a formalism reminiscent of stability theory (in fact, includes the case of strongly minimal sets as treated by Lascar).

Topological Dynamics

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Kechris/Pestov/Todorcevic

Extreme Amenability: Fixed points of compact actions. Equivalent to the finitary Ramsey property.

Topological Dynamics

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Kechris/Pestov/Todorcevic

Extreme Amenability: Fixed points of compact actions. Equivalent to the finitary Ramsey property.

In the absence of linear order, characterize the universal minimal compact flow.

Topological Dynamics

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Kechris/Pestov/Todorcevic

Extreme Amenability: Fixed points of compact actions. Equivalent to the finitary Ramsey property.

In the absence of linear order, characterize the universal minimal compact flow.

Definitely Millennium III ... motivates Bodirsky's favorite question.

Problems

Urysohn, Fraïssé, and Henson in the Third Millennium

> Gregory Cherlin

Problem 1. Universal C-free graphs and \aleph_0 -categoricity. Problem 2. Solidity Conjecture (Complete blocks) Problem 3. [Lachlan] For $\mathcal{A}_0, \mathcal{B}_0$ finite: $\bigwedge \mathcal{A}_0 \implies \bigvee \mathcal{B}_0$? Problem 4. (Q, \leq) finite *L*-structures with the substructure or induced substructure relation. $C \subseteq Q$ finite. $I_C = \{q \in Q : \neg \exists c \in C (c \leq q)\}$. Is I_C WQO? Problem 5. Encode permutations by tournaments, preserving (known) minimal antichains. Problem 6. Classify homogeneous partitioned graphs, metrically homogeneous graphs, and primitive homogeneous k-dim. permutations. Problem 7. (A) Is every f.d. relational homogeneous structure in a finite language a reduct of a Ramsey class? (B) Give a model theoretic description of the right linear order.

Problem 8. Indivisibility with unique extendability.