Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

Examples Conjectures Exclusion Methods

Positive Methods

Universal Graphs (with Forbidden Subgraphs)

Gregory Cherlin

Oct. 29, 2013 HIM, Bonn

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjecture

Exclusion Methods

Positive Methods

1 The problem

Conjectures

Exclusion Methods

	The players
Universal Graphs (with Forbidden Subgraphs)	
Gregory Cherlin	C: a finite connected graph
The problem	

The players

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

C: a finite connected graph \mathcal{G}_C : the set of countable *C*-free graphs

▲□▶▲□▶▲□▶▲□▶ □ のQ@

	The players
Universal Graphs (with Forbidden Subgraphs)	
Gregory Cherlin	C: a finite connected graph
The problem	\mathcal{G}_{C} : the set of countable C-free graphs
Examples	
Conjectures	Problem
Exclusion Methods	Is there a countable universal C-free graph?
Positive Methods	(What does this say about C?)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Four Problems

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Problem

- Is there a countable universal C-free graph?
- Is there a countable universal C-free graph with oligomorphic automorphism group?
- If so, how does one make the graph homogeneous?
- And is the universal minimal flow metrizable (what is the structural Ramsey theorem)?

Four Problems

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Problem

- Is there a countable universal C-free graph?
- Is there a countable universal C-free graph with oligomorphic automorphism group?
- If so, how does one make the graph homogeneous?
- And is the universal minimal flow metrizable (what is the structural Ramsey theorem)?

Note: We can give a criterion for #2 which implies that in #3 we can take a finite relational language.

The Model Theoretic Problem

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods \mathcal{C} a finite set of finite relational structures

 $T_{\mathcal{C}}$ the theory of \mathcal{C} -free structures

 $\mathcal{T}_{\mathcal{C}}^*$ the theory of existentially closed \mathcal{C} -free structures

Problem

Can one compute the model theoretic properties of $T^*_{\mathcal{C}}$ from the data \mathcal{C} ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Countable universal C-free with oligomorphic automorphism group: T^{*}_C is ℵ₀-categorical;
- Countable universal C-free: T_{C}^{*} is small;
- stable, ω -stable, simple, ...

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjecture

Exclusion Methods

Positive Methods

The problen

Conjectures

Examples

2

Exclusion Methods

Playing with blocks

Universal Graphs (with Forbidden Subgraphs)

Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods Block: Maximal 2-connected. The tree of blocks: cut vertices and blocks.

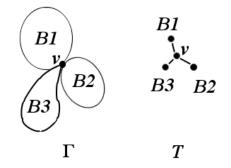
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Playing with blocks

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem


Examples

Conjectures

Exclusion Methods

Positive Methods Block: Maximal 2-connected. The tree of blocks: cut vertices and blocks.

Example: starlike with three blocks.

The case of 1 block

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Fact (Füredi-Komjáth)

Let C be 2-connected. Then the following are equivalent.

- There is a countable universal C-free graph;
- There is a countable universal C-free graph with oligomorphic automorphism group;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• C is complete.

The case of 2 blocks

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

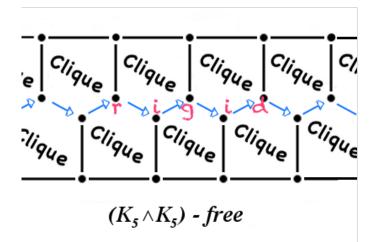
Fact (FK,Kom,ChT)

Let C have two blocks, of orders $m \le n$. Then the following are equivalent.

- There is a countable universal C-free graph;
- There is a countable universal C-free graph with oligomorphic automorphism group;
- The blocks are complete, with $m \le 5$ and $(m, n) \ne (5, 5)$.

Why not (5, 5)?

Gregory Cherlin


The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

(Rigidity)

イロト イポト イヨト イヨト

э

The case of trees

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

Examples

Fact (KMP,ChT,ChSh)

Let C be a tree. Then the following are equivalent.

- There is a countable universal C-free graph with oligomorphic automorphism group;
- C is a path.

The case of trees

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Fact (KMP,ChT,ChSh)

Let C be a tree. Then the following are equivalent.

• There is a countable universal C-free graph;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• C is a near-path.

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods

The problem

Examples

3 Conjectures

Exclusion Methods

ヘロト 人間 とくほとくほとう

æ.

5 Positive Methods

Reasonable Conclusions

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Conjectures

Exclusion Methods

Positive Methods If we want universal C-free graphs, then apparently

- the blocks should be complete;
- the block structure should be path-like;
- there is not much difference between the oligomorphic case and the general case;
- and where they differ, the oligomorphic case is cleaner.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reasonable Conjectures

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods

Conjecture

If there is a countable universal C-free graph, then

Solidity The blocks of C are complete;

Pathlike After removal of some external paths (whiskers), the tree of blocks becomes a path.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reasonable Conjectures

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods

Conjecture

If there is a countable universal C-free graph, then

- Solidity The blocks of C are complete;
- Pathlike After removal of some external paths (whiskers), the tree of blocks becomes a path.

Theorem (Cherlin/Shelah)

If there is a countable universal C-free graph and C is a block-path, then the blocks of C are complete. Therefore the second conjecture implies the first.

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problen Examples Conjectures

Exclusion Methods

Positive Methods

The problem

Examples

Conjectures

4 Exclusion Methods

ヘロト 人間 とくほとくほとう

₹ 9Q@

5 Positive Methods

The Three Exclusion Methods

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

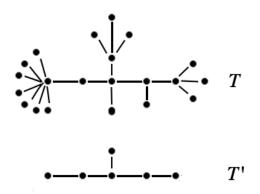
• Corner Pruning;

- Symmetric Pruning;
- The Hypergraph Template (Rigidity)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pruning Trees

Universal Graphs (with Forbidden Subgraphs)


Cherlin

The problem Examples Conjectures

Exclusion Methods

Positive Methods

The case of trees: $T' = T \setminus$ leaves

Pruning Lemma IA

Lemma

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods Let T be a finite tree for which there is a countable universal T-free graph. Then there is a countable universal T'-free graph. The same reduction applies if we require an oligormphic automorphism group.

Pruning Lemma IA

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods Lemma

Let T be a finite tree for which there is a countable universal T-free graph. Then there is a countable universal T'-free graph. The same reduction applies if we require an oligormphic automorphism group.

Proof.

Let Γ_T be universal *T*-free and $\Gamma_{T'}$ the induced graph on the vertices of infinite degree. Then $\Gamma_{T'}$ is universal *T'*-free.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pruning Lemma IA

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods

Lemma

Let T be a finite tree for which there is a countable universal T-free graph. Then there is a countable universal T'-free graph. The same reduction applies if we require an oligormphic automorphism group.

Proof.

Let Γ_T be universal *T*-free and $\Gamma_{T'}$ the induced graph on the vertices of infinite degree. Then $\Gamma_{T'}$ is universal *T'*-free.

This suffices to classify the trees T allowing a countable universal T-free graph: one considers only trees T which prune to a near-path.

Pruning Corners

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods Segment: Connected union of blocks Corner: A segment formed by a cut vertex and one component of its complement.

Lemma

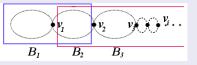
Let C be a finite graph for which there is a countable universal C-free graph. Let (v, S) be a corner of C and C' the result of pruning the corner. Then there is a countable universal C'-free graph. The same reduction applies if we require an oligomorphic automorphism group.

Application

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples


Exclusion

Methods Positive

Lemma

Let C be a block path with ℓ blocks. Suppose that there is a countable universal C-free graph, but that some block is not complete; and let ℓ be minimal. Then (up to a reversal of the numbering) we have the following.

- B_i is complete for 1 < i < ℓ and also for i = ℓ unless
 B₁ ≃ B_ℓ;
- $\ell \geq 3$ (Füredi/Komjáth);

• L_2^- embeds into R_1^+ :

Application

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Exclusion Methods

Positive Methods

Lemma

Let C be a block path with ℓ blocks. Suppose that there is a countable universal C-free graph, but that some block is not complete; and let ℓ be minimal. Then (up to a reversal of the numbering) we have the following.

- B_i is complete for 1 < i < ℓ and also for i = ℓ unless
 B₁ ≃ B_ℓ;
- $\ell \geq 3$ (Füredi/Komjáth);

 $B_1 B_2 B_3$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• L_2^- embeds into R_1^+ :

(Prune the terminal segment R_{2} .)

Symmetric Local Pruning

Universal Graphs (with Forbidden Subgraphs)

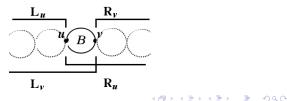
> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods


Positive Methods

Lemma

Let C be a block path, B a block of C containing two cut vertices u, v, and let

 L_u, R_u, L_v, R_v

be the corners rooted at u, v respectively, to the left and right according to some orientation. If $L_v \setminus \{v\}$ embeds into $R_u \setminus \{u\}$, then (v, R_v) is detachable.

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The probler Examples Conjecture: Exclusion

Positive Methods

The problem

2 Examples

3 Conjectures

Exclusion Methods

C-algebraic closure

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Definition

A is C-algebraically closed in Γ if the free amalgam

 Γ^∞/A

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is C-free

C-algebraic closure

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem

Examples

Conjectures

Exclusion Methods

Positive Methods

Definition

A is C-algebraically closed in Γ if the free amalgam

 Γ^{∞}/A

is C-free

Theorem (ChShSh)

The following are equivalent.

- There is a countable universal C-free graph with oligomorphic automorphism group;
- Every finite subset of a C-free graph is contained in a finite C-algebraically closed subset.

Minimal Bases

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples Conjectures

Exclusion Methods

Positive Methods

Setting: $X \subseteq A \subseteq B \subseteq \Gamma$ with Γ e.c. and C-free.

Definition

B is free over *A* if $\bigoplus_{i=1}^{n} (B \setminus A)$ embeds over *A* into Γ , all *n*. *A* is a base for *B* over *X* if *A* is minimal so that $X \subseteq A$ and *B* is free over *A*.

Example

 $C = (K_3 \land K_3), B = T$ a single triangle, $X = \{x\}, x \in T$. Then *T* cannot be free over *x*. If there is an $a \in T$ so that (a, x) is contained in infinitely many triangles, then *T* is free over (a, x). Otherwise, *T* is a base for *T* over *x*.

Algebraic Closure

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods Lemma

Let $A \subseteq \Gamma$ with Γ *C*-free and algebraically closed, and *A* finite. Then the following are equivalent.

• A is algebraically closed;

 For any A ⊆ B ⊆ Γ with B embeddable in C, B is free over A.

Algebraic Closure

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Conjectures

Exclusion Methods

Positive Methods

Lemma

Let $A \subseteq \Gamma$ with Γ *C*-free and algebraically closed, and *A* finite. Then the following are equivalent.

- A is algebraically closed;
- For any A ⊆ B ⊆ Γ with B embeddable in C, B is free over A.

Application to $(K_3 \land K_3)$ -free:

Any set X is contained in an algebraically closed set Y with $|Y| \le 4|X|$ (in the worst case, Y is a union of K_4 's).

Algebraic Closure

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples

Exclusion Methods

Positive Methods

Lemma

Let $A \subseteq \Gamma$ with Γ *C*-free and algebraically closed, and *A* finite. Then the following are equivalent.

• A is algebraically closed;

 For any A ⊆ B ⊆ Γ with B embeddable in C, B is free over A.

Application to $(K_3 \land K_3)$ -free:

Any set *X* is contained in an algebraically closed set *Y* with $|Y| \le 4|X|$ (in the worst case, *Y* is a union of K_4 's). For the general 2-bouquet (m, n) with $m \le 5$: apply the Δ -system lemma to the copies of K_n involved; come down eventually to n = 5 and the heart is empty, which leads back to the case (5, 5).

Candidates

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The probler

Conjecture

Exclusion Methods

Positive Methods

Conjecture (At the moment)

If *C* contains no trivial blocks, and there is a countable universal *C*-free graph, then *C* is a block path with complete blocks and of one of the following types $(n_1, n_2, ..., n_\ell)$.

• $3^{\ell-1}$ **n**, $3^{\ell-2}$ **n**3, $3^{\ell-2}$ 44; or

• One of the following forms:

ℓ	Types
5	$(n_1, 3, 3, 3, n_5)$
"	$(3, n_2, 3, 3, n_5); (n_1, 3, 3, 4, 4)$
4	$(n_1, 3, 3, n_4)$ $(n_4 \ge n_1 + 2)$
"	(3, n, 3, n); (4, 4, 4, n) (n > 4);
"	(3,4,4,n); (4,4,3,n); (3,4,3,n);
3	$(n_1, 3, n_3), (n_1, 4, n_3)$
2	$(4, n)$; or $(5, n)$ with $n \ge 6$

Final Remarks

Universal Graphs (with Forbidden Subgraphs)

> Gregory Cherlin

The problem Examples Conjectures Exclusion

Positive Methods — In the *mixed case* there should be the hairy ball graphs: K_n plus one path at each vertex (existence of the universal object not proved!)

— If we forbid induced graphs then the existence of a countable universal graph is undecidable (Wang's dominos).

— Forbidding substructures reduces to forbidding graphs equipped with a partition of the vertices into two classes (Ch-Shi).

— We do not know what happens with permutation patterns, which is a very interesting case. Our theory does not apply there in its present form.